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Those unitary representations of SLiR) are classified which contain each irreducible SO( 4) 
representation at most once. 

1. INTRODUCTION 

Unitary representations of the group SLiR) [the uni
versal covering group of SLiR)] have received some atten
tion recently. 1-3 In this paper we classify all irreducible uni
tary representations ("unirreps") that are multiplicity-free 

with respect to an S04 subgroup. Our method is based on a 
technique developed for SL3 (R) by Ogievetskii and Soka
chev.4 Our results disagree substantially with those given 
previously by Kihlberg5 and by Ne'eman and Sijacki; in par
ticular, we find that several oftheir claimed representations 
do not exist. 

2. FORMALISM 

The group SL4 (R) has S04 (R) as its maximal compact 
subgroup. By choosing a metric ga (3 on R4 we single out a 
particular S04 (R) subgroup. The corresponding S04 Lie 
algebra &' is spanned by the trace-free tensors La (3 which 
are antisymmetric when their first index is lowered by gaP: 

La (3 = -L(3a' (1) 

This subalgebra &' acts by commutation (the adjoint repre
sentation) on the complementary subspace of trace-free ten
sors Qa (3' symmetric when lowered by ga(3: 

Qa(3 = Q(3a' 

and under this action the Q 's transform as a tensor 
representation. 

The subalgebra &' can be further decomposed into its 
even (self-dual) and odd (anti-self-dual) subspaces with re
spect to the operation *, defined on antisymmetric tensors 
La (3 by 

*L . - I.e y 15L a(3' - Z"'a(3 yl5' 

where Ea (3y 15 is the totally antisymmetric tensor normalized 
with respect to the metric ga (3 (the sign of Ea (3y 15 can be 
chosen arbitrarily). Each of these subspaces is an ideal of tJ, 
isomorphic as a Lie algebra to S03 (R), and the decomposi
tion thereby realizes the relation 

(2) 

Denote by iJ and iK the inclusion maps of the first and sec
ond S03 subalgebras in the direct sum (2). Because our S04' 
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&', is a space of tensors, we can regard iJ (iK) as itself a tensor 
in]E3 ®]E4 ® ]E4. The lower case Latin indices a, band c will 
refer to vectors in ]E3 that correspond to self-dual tensors in 
]E4 ® ]E4, and the lower case Latin indices p, q and r will refer 
to vectors in (strictly speaking a distinct)]E3 that correspond 
to anti-self-dual tensors in]E4 ® ]E4. Thus J and K will be 
written in the form Jaa (3, K pa (3' In terms of J and K, the 
commutation relations of S04 (R) have the form 

Ja a y Jb y (3 - Jb a y Ja y (3 = iEab cJc a (3' (3) 

K pay Kq y (3 - Kq a y K p y (3 = iE p/ Kr a (3' (4) 

Ja a y K p y (3 - K pay Ja y (3 = 0, (5) 

or, suppressing the ]E4 indices, 

[Ja,Jb ] = iEab c Jc' 

[Kp,Kq] = iEpqrKr , 

[Jo,Kp] = O. 

(6) 

(7) 

(8) 

Here the tensor Eabc is an anti symmetric tensor on E3 nor
malized with respect to the metric gab of]E3. 

The space of symmetric tracefree tensors Qa (3 can be 
identified with the space of tensors iQap having two]E3 indi
ces; in this case, the isomorphism is a tensor in lE? ® ]E3 
®]E4 ® ]E4, namely 

'Q a(3 _ 2J a K (3y - 2J (3 K ay (9) I ap - a y p - a y p . 

If, as in Eqs. (6)-{8), we suppress the ]E4 indices, the action of 
the S04 subalgebra &' on the symmetric tensors is expressed 
by the commutation relations 

[Ja,Qbp] = iEab cQcp' 

[K p,Qaq] = iE p/Qar' 

(10) 

(11) 

Equations (6)-{8), (10) and (11) exhibit the commutation 
relations of the antisymmetric (]E4) tensors with each other 
and with the symmetric tensors. The remaining commuta
tion relations of sl4 (R), those of the symmetric tensors with 
themselves are given by 

[Qap,Qbq] + iEab cJcg pq + iE p/ Kr gab = O. (12) 

Any unirrep of sl4 (R), when restricted to S04' can be 
decomposed into a direct sum of irreducible finite dimen
sional S04 representations. We will consider only multiplic
ity-free representations, those for which no representation of 
S04 occurs more than once in the decomposition. A represen
tation ofs04 is characterized by the eigenvaluesj(j + 1) and 
k (k + 1) oftheoperatorsj 2 andK2 thatcorrespondtoJ 2 and 

1269 J. Math. Phys. 21(6), June 1980 0022-2488/80/061269-08$1.00 © 1980 American Institute of Physics 1269 



                                                                                                                                    

K 2 • We will label the representation by the integers m = 2 j 
and n = 2k, eigenvalues of the number operators M and N, 
defined by 

J2 = !M(M +2), K2 = !N(N +2). (13) 

If we denote by JY'mn the (m + 1 )(n + 1 )-dimensional sub
stratum of a representation (m ,n), then the substratum of an 
arbitrary multiplicity-free representation of sl4 (R) can be 
regarded as a subspace of the Hilbert space 

JY'. - Ell JY'm1l' (14) 
m,n =0 

The associated lattice of points (m, n) will be denoted by H, 
so that JY' = Ell (m.1I)EH JY'mn' The representation will be uni
tarYE and only if Qa p is represented by a self-adjoint opera
tor Qap. 

We now follow an approach analogous to that used by 
Ogievetskii and Sokachev4 in dealing with representations of 
SL3 (R). We introduce ladder operators (operator valued lE3 

vectors) Ua and v p which raise and lower by 2 the values ofm 
and n, respectively: 

[M,ua ] = -2ua, 

[N,va ] = - 2va; 

U(J and v p commute with each other, 

[Ua,Vp] =0, 

and with each other's adjoints, 

[ua,v~] = 0; 

(15) 

(16) 

(17) 

(18) 

and, in their commutation relations with the operators ia 
and Ka that correspond to Ja and Ka, they transform as S04 
tensors oftypes (1,0) and (0,1) respectively: 

[ia,ub]=i€abcUc' [Kp,ub ] =0, (19) 

(20) 

They satisfy an additional set of relations given in the Ap
pendix (and in Ref. 4). 

A tensor operator on dY'such as Qap whose commuta
tion relations with J and K provide a (1,1) representation of 
S04 can be written in terms of Ua , v P' Ja , and K p in the 
manner, 

il p = Ua v pA + Au:v~ + v pBu: + ujlv~ 
A. A. 

+ Jav pC + CJav~ + uaK pD + Du':K p + JaK pE, 
(21) 

where A = A (M, N), A = A (M, N), ... ,E = E (M, N) are 
S04-scalar operators constructed from M and N only. The 
substratum of an irreducible representation will not be JY', 
but rather a subspace 

.'/" = Ell diY'mn , (22) 
(m,n)ES 

where S is a sublattice of H. We may nonetheless regard Q as 
an operator acting on JY' by setting Q to zero on JY' - Y 
and settingA (M, N ), ... ,E (M, N) to zero whenever the associ
ated term in (21) would otherwise map Y to JY' - Y. 
Thus, for example, if (m, n)ES and (m - 2, n - 2)tEs, the 
eigenvalueAmn of A will vanish. In this way, the operator Q 
of any representation on Y C JY' can be expressed in the 
form (21). 

With i a, and K p and Qa p in this form, the commuta
tion relations (6)-(8), (10) and (11), which express the S04 
character of the operators, are automatically satisfied. The 
remaining commutation relation (12) then provides a set of 
algebraic relations among the coefficients A, ... ,E. These we 
give explicitly in the Appendix. Here, however, we will re
strict ourselves to unitary representations. For these, it is 
implicit in Kihlberg's work6 and is explicitly noted by Ne'e
man and Sijacki2 that i2, p = Q ': p can only connect a given 
subspace JY'mll to the diagonally related subspaces 

dY'm + 2,,, f- 2 , diY'm + 2,11 _ 2 , diY'm - 2,n + 2' JY'm _ 2,11 _ 2 . For 
unitary, multiplicity-free representations, Qam therefore has 
the form 

Qap = UuU pA + A *u:v~ + v pBu: + uaB *v~. (23) 

The commutator [Qap,Qbq] is then [see Appendix, Eq. (A6)] given by 

[Qap,Qbq] +i€abC~gpq +i€p/Krgab =iEabCic[RJ~gpq +RJKKKpKq +RJvuvpvq +v~v:RJ"'u'] 

+ iE p/ Kr [RKbgab + RKJJiaib + RKuuuaub + U:UtRKU'u']' 

where, denoting A (M, N) and B (M, N) by AMN and BMN , 

1270 

RJ~ = -4(M +3)(N +2)2[ AM+2 N+2[2 +4(M -1)N 2[A,\1N[2 -4(M +3)N 2[ BM+2 N [2 
+4(M -l)(N + 2)2 [ BMN +2[2 + 1, 

RJKK = 16(M + 3)[AM +2 N +2 [2 - 16(M -1)[ AMN[2 + 16(M + 3)[ BM +2 N [2 - 16(M -1)[ BMN +2[2, 

R Jvv = - 4(M + 3)AM+2 N +2 BM+2 N+4 +4(M -1)AM N +4BM N +2' 

RKl; = -4(N +3)(M +2)2[ AM+2 N+2[2 +4(N -1)M2[AMN[2 -4(N +3)M 2[ BM N+2[2 

+4(N -1)(M +2)2[ BM+2N [2 + 1, 

RKJJ = 16(N + 3)[AM+2 N+2 [2 -16(N -1)[ AMN[2 + 16(N + 3)[ BM N +2[2 - 16(N -1)[ BM +2 N [2, 

R Kuu = -4(N + 3)AM+2 N+2 B't+4 N+2 +4(N -1)AM+4 NB 't+2 N, 
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(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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The operator Qap, and hence the commutator (24), is invariant under the simultaneous interchange 

M +-----+ N, U a +-----+v P' A +-----+A, B+-----+B *, ja +-----+K p , (33) 

which exchange the roles of the two S03'S in S04' Equations (25)-(32) for the coefficients RJ/j , ... ,R KV*v* are therefore also 
invariant under the interchange (33). 

Let Y c 3Y be the substratum of our representation. 
The operators A and B must then satisfy the relation 

P mn [ [Qap,Qbq] + if:ab cjcg pq + if: p/ j{pgab I = 0, (34) 

where Pmn is the projection operator onto any subspace 
JY'mn cY. Equation (34) implies, for (m, n)ESthat 

RJb = 0, m#O, n# 1; R Ko = 0, n#O, m# 1; (35) 

RJKK = 0, m#O, n#O,I; R KJJ = 0, m#O,I, n#O; 
(36) 

R J ,.,. = 0, m #0; R Kuu = 0, n #0. (37) 
- - -2 

Whenn = I,KpKq =J,spqK =W'pq' because 
K 2 = IN (N + 2), and the RJO and RJKK terms provide only 
one independent relation, namely 

RJb + lRJKK = 0, n = 1, m#O. (38) 

Similarly, at m = 1 we have 

RKt! + lR KJJ = 0, m = 1, n#O. (39) 

Equations (35)-(39) are equivalent to the commutation rela
tion (34). Consequently, given any operators A and Band 
subset SCH, such that A and B leave invariant 
Y = E& (m.n)ES3Ymn and satisfy equations (35)-(39) for all 
(m, n)ES, we get a representation of sl4 (JR) with substratum 
Y. 

Equations (35) and (36) have a relatively simple explicit 
form when written as the linear combinations 

R JIJ + lN 2RJKK = 0, RKD + !M2RKJJ = 0, (40) 

RJb + !(N + 2)2 RJKK = 0, RKD + !(M + 2)2 R KJJ = 0. 
(41) 

Equation (40) reduces when n = 1 (m = 1) to Eqs. (38) and 
(39); Eqs. (40) and (41) are therefore equivalent to Eqs. (35), 
(38) and (39). Explicitly, the full set of independent equa
tions is [in the order (40), (41), (37)] 

(M+3)(N+l)[A M+2 N+2[2-(M-l)(N+l) 
X[BM N+2 [2=T'6, m#O, (42) 

(M+I)(N+3)[A M+2 N+-2[2-(M+l)(N-l) 
X [B\1+2 ,v[2=T'6, n#O, (42') 

(M -1)(N + 1)[AM,v[2 - (M +3)(N + 1)[ B M+ 2 N [2 = T'6, 
m#O, n#O,I, (43) 

(M + I)(N - 1)[ AMN [2 - (M + 1)(N + 3)[ BM N+2[2 = T'6, 
m#O,I, n#O, (43') 

(M +3)A\1+2 N+2BM+2 N+4 

-(M-I)AMN+4BMN+2 =0, m#O, (44) 

(N+3)A M+ 2 N+2Bt+4 N+-2 

-(N-l)AM+4NBt+2 N =0, n#O. (44') 

The equation hold, with the exclusions given, when (m, n) 
ES. The exclusions mean geometrically that an equation is 
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not valid at (m, n) unless every operator A or B that appears 
in the equation with nonzero coefficient connects (m, n) to a 
point (m', n') in H. In other words, precisely those equations 
are excluded in which meaningless eigenvalues would other
wise occur (with nonzero coefficients). 

Ignoring for a moment the fact that the nature of the 
substratum may affect the solution to these equations, it is 
easy to check that they admit the following generic family of 
positive real solutions, parameterized by a real number k: 

1 [ k + (M + N)2 ] 1/2 

AMN(k) ="8 (M 2 -1)(N 2 -1) , (45a) 

1 [ k + (M - N? ] 112 

B\1,iV(k) ="8 (M 2 -1)(N 2 _ I) , (45b) 

We will find that, to within unitary equivalence, this family 
encompasses all multiplicity-free unirreps of sl4 (JR). 

Note that these solutions blow up at m = 1 and n = 1. 
However, because the operator A occurs in Q only in the 
combination uvA, and uvA (3Ymn ) = O,form orn.;;l, these 
eigenvalues Amn for m or n.;; 1 have no meaning for a repre
sentation in any event. Similarly, Bmn with m or n.;; 1 has no 
meaning for any representation. Nonetheless, the fact that 
the form (45) blows up for m or n = 1 has an important 
consequence: In valid equations where A mn or Bmn , with m 
or n = 1 formally occur, their coefficients vanish-for ex
ample, in equation (43), the coefficient of AMN is 

(M - 1)(N + 1) which vanishes at m = 1. Thus an expres
sion % occurs, and form (45) in general fails to satisfy the 
recursion relations (42), (43), and (44) at m = 1 and (42'), 
(43'), and (44') at n = 1. Additional checks are therefore 
necessary to verify the existence of a representation when 
points with m = 1 or n = 1 occur in S. 

The parameter k may be expressed in terms of the qua
dratic Casimir operator Qa p Q a p - j 2 - j{2 by the equation 

k = 4(QapQa p - j2 - j(2) -16. (46) 

3. CLASSIFICATION OF THE MULTIPLICITY-FREE 
UNIRREPS 

We begin by stating as a theorem the central result of 
this section and then devote the remainder of our space to its 
proof. The substratum Y of an irreducible representation 
can contain at most all subspaces JY'm' fI' connected to a sin
gle 3Y mn by repeated action of the operators uvA, vBu*, and 
their adjoints; that is, S must be a subset of 

Imn = [(m',n')[mod 4, m' - m=n' - n a or 2), 
(47) 

for some integers m = 0, 1,2, 3, n = 0, 1. It turns out that 
the only sublattices which arise are the loa' 120, the lines 

Lao = [m',m')[m'=O mod 4), (48) 
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LII = (m',m')lm'-I mod4J, (49) 

and the triangular lattices (for m, n > 0) 

Tmo = (m',n')Elmolm' - m;>n'], (SO) 

Ton = (m',n')Elonln'-n;>m'J. (SI) 

Theorem: Every multiplicity-free unitary irreducible 
representation of the Lie algebra sl4 (1R) is unitarily equiv
alent to a representation of the form (4S) with sublattice and 
associated value of the real parameter k given as follows: 

S=1oo, k> -4, 

S= 120, k>O, 

S=Loo, k= -4, 

S = L II , k= -4, 

S= Tmo ' k= - (m -2f for m >0, 

S = Ton, k= - (n _2)2 for n > O. 

Note that only the last two cases correspond to spin or 

representations of SL4 (1R) [representations of SLilR) that 
are not also representations of SLilR)] , and for these the 
parameter k can only take a discrete set of values. 

In order to establish this result, several steps are needed. 
Considering first the absolute values IA I and IB I ofthe oper
ators A and B of a representation with sublattice S, we show 
that IA I and IB I provide a representation given by the generic 
formula (4S) for some k, and also having sublattice S. We 
then show that when S is convex, the replacement of A and B 
by their absolute values is a unitary equivalence. Finally, we 
classify the (irreducible) generic representations, finding in 
particular that their associated sublattices are convex. It 
thus follows that every unirrep is equivalent to one of the 
generic representations just classified. 

In what follows, the operator A will be said to connect 
points (m - 2, n - 2) and (m, n) in H if uv A (JY mn )~O. 
Similarly, B connects (m - 2, n) and (m, n - 2) if 
vBu*(JY m _ 2 n) ~O. And a subset of H will be called "con
nected" (with respect to a particular A, B) if it does not fall 
into disjoint subsets which are not connected to each other 
by A or B. We will denote by Am" (Bm,,) the eigenvalue of A 
(B) corresponding to eigenvalues m and n of the operators M 
and N; that is, Aw = Amn w for wE£" mn' 

A. Two lemmas 

Lemma 1: If A and B furnish a unirrep on .Y, then IA I 
and IB I also furnish a unirrep on.Y. Moreover, IA I and IB I 
are given on S by the generic formula (4S) for some fixed 
value of the parameter k; that is, there is a number k such 
that if(m - 2, n - 2), (m, n)ES, IAmn I is given by the generic 
formula (4Sa), 

I
A 12 __ 1_ k + (m + nf 

mn - 64 (m 2 _ I)(n 2 - 1) 

and if (m - 2, n), (m,n - 2)ES, IB mn I is given by (4Sb), 

I
B 12 __ 1_ k + (m - nf 

mn - 64 (m 2 _ 1)(n2 - 1) 

Proof It follows by inspection that IA I and IB I satisfy 
the recursion relations (42)-(44') whenever A and B do so. 
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Furthermore, IA I (respectively IB Ilnishes if and only if A 
(respectively B) vanishes, so that .Y remains an irreducible 
invariant subspace. This establishes the first part of the 
Lemma. 

Now let Sbe a connected subset of S containing at least 
two points (m I' n I) and (m2' n2), and let S' CS be the (con
nected) subset that results from adjoining to Sail (m', n') 
connected by A or ~ to some (m, n)ES. Suppose that IA I or 
IB I are gen~ic on S; we will first show that IA I and IB I are 
generic on S ' . 

A point in Scan connected to S-S four ways: 
1. A connects (m - 2, n - 2)sSto (m, n)rES, 
2. A connects (m - 2, n - 2)t=S to (m, n)E.5. 
3. B connects (m - 2, n)sSto (m, n - 2)rES, 
4. B connects (m - 2, n)t=Sto (m, n -2)E.5. 
Case 1: W e m~st show that IA mn I is generic, IA mn I 

= Amn (k). Since S is connected, (m - 2, n - 2) is connect
ed either (a) to (m -4,n -4)sSbyA, (b) to(m -4,n)sSby 
B, or (c) to (m, n -4)sSby B. 

(Ia). Here IAm- 2 n _ 2 I is generic and (m - 4, 
n - 4)sS::::::?m;>4, n;>4::::::?Eq. (43') holds at (m - 2, n - 2). 
This equation gives IBm _ 2 n I: 
(m -I)(n - 3)1 Am -2" -2 12 - (m -l)(n + 1)1 Bm 2 n 12 

=~ 
16 

::::::?IBm 2 n 12 = _ 1 + n - 3 
I6(m - I)(n + 1) n + 1 

._1_ k + (m + n - 4)2 
64 [(m - 2)2 - 1 ] [(n - 2)2 - 1 ] 

k + (m -2 - n)2 

[(m - 2)2 - 1 ] [(n 2 - 1) ] 
(S2) 

That is, IBm 2 n I is generic. Then m, n;>4 implies that Eq. 
(42) is valid at (m - 2, n - 2), and when IBm .. 2 n I is generic, 
Eq. (42) implies lAm" I is generic. 

(1 b). Here IBm _ 2 n I is generic. Equation (42) is valid at 
(m - 2, n - 2) and implies that IAmn I is generic. 

(Ic). IBm" 2 I is generic and Eq. (42') implies that 
IAmn I is generic. 

Case 2: Again we must show that IA mn I is generic. Here 
(m, n)sSis connected either (a) to (m + 2, n + 2)ESby A, (b) 
to (m - 2, n + 2)sSby B, or (c) to (m + 2, n - 2)sSby B. 

(2a). lAm +2 n +2 I is generic and Eq. (42) at (m, n) im
plies IBm n +21 is generic. Equation (43') holds at (m, n) and 
implies IA mn I is generic. 

(2b). IBm" + 2 I is generic, and Eq. (43'), valid at (m, n), 
implies lAm" I is generic. 

(2c). IBm +2 " I is generic and Eq. (43), valid at (m, n), 
implies IAmn I is generic. 

Case 3: We must show that B mn is generic. (m - 2, n)ES 
is connected either (a) to (m, n + 2) by A, (b) to (m - 4, 
n -2)by A, or (c) to (m -4, n +2) by B. 

(3a). IA m n + 2 I is generic; and Eq. (42'), valid at (m - 2, 
n) because (m, n - 2)ES::::::?n ~O, implies IBmn I is generic. 

(3b). lAm _ 2 " I is generic, and Eq. (43), valid at (m - 2, 
n), implies IB"", I is generic. 

(3c). IBm 2" + 2 I is generic, and Eq. (42), valid at 
(m - 2, n), implies IA m n + 2 I is generic. Equation (42') holds 
at (m - 2, n) and implies IBmn I is generic. 
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Case 4: This is identical to case 3 with m and n ex
changed. ThusiflA I and IB I aregenericonS, they are gener
ic on S'. Let S be a maximal connected subset of S such that 
IA I and IB I are generic on S. S contains at least two points 
(m I' n I) and (m2' n2), because we can choose any two points 
connected by, for example, uvA::J? mn~:J?m -2 n -2 and de
fine k by 

k = 64(m2 
- 1)(n2 

- 1)IAmn 12 - (m + n)2. 

IfS =l=S,A or B connects Sto S-SbecauseSis irreducible. We 
have just shown that I~I and J!11 would then be generic on 
the extended subspace S ' and S would not be maximal. Thus 
S = Sand IA I and IB I are generic on S, as asserted. D 

Lemma 2: Let A and B , given on S by the generic form 
(45) with parameter k, provide a unirrep with substratum Y 
given by (22). Then: 

(a) if (m, n )E.S, Amn (k ) = 0 if and only if (m - 2, 
n -2)EH-S; 

(b) if (m -2, n -2)E.S, Amn (k) = 0 if and only if (m, 
n)ElJ-S; 

(c)similarly, if (m -2, n)E.S, Bmn (k) = 0 if and only if 
(m, n - 2)eH-S; 

(d) if(m, n -2)E.S, Bmn (k) = 0 if and only if(m - 2, 
n)ElJ-s. 

In other words, if(ml' n l ) is in S, then any generic coef
ficient Amn (k) or Bmn (k) that would connect (ml' n I) to a 
second point (m 2, n2)ElJ vanishes if and only if (m2' n2)f=S. 

Proof If (m, n)E.S and (m - 2, n - 2)ElJ-S, or vice 
versa, then Amn must vanish in order that Q not map Y to 
:J? - Y. But, as was seen in cases I and 2 of the proof of 
Lemma 1,Amn appears in a valid equation with Bm'n' whose 
value is generic, and the equation implies that IAmn I is itself 
generic, that IAmn I = Amn(k). Thus Amn(k) = O. 

Analogously, if (m - 2, n)E.S and (m, n - 2)EH-S, or 
vice versa, then B mn = O. From cases 3 and 4 of the proof of 
Lemma I, we find that B mn appears in a valid equation with 
Am'n' whose value is generic, whence IBmn I is generic and 
Bmn(k) = 0, 

Conversely, if (m, n)E.S and Amn (k) = 0, then by the 
generic formula, (m + n f = - k, whence A m'n' (k ) = 0 for 
(m' + n'f = - k. Consequently, the representation con
nects no point (m', n') of S with (m' + n')2> - k to a point 
(m", n") with (m" + n"f < - k, Since S contains the point 
(m, n), it can have no point (m', n') with (m' + nf < - k, 
for if it had, then S would fall into two disconnected pieces, 
contradicting the irreducibility of the representation. Thus 
(m - 2, n - 2)f=S. 

The argument for B is again analogous. D 

8. Unitary equivalence 

We will consider unitary transformations U::J?~:J? 
which commute with the operators) and j{ and will observe 
that they lead to a symmetry ofthe recursion relations (42)
(44'). Any unitary operator U on :J? which commutes with 
the S04 subalgebra {j has the property that 

Uw = eili",,,w for wsYr' mn' 
which follows from Schur's Lemma and the fact that} and K 

1273 J. Math. Phys., Vol. 21, No.6, June 1980 

generate an irreducible representation of S04 on each sub
space:J? mn . The operator U can then be written in the form 

(53) 

with {} a real function of M and N. 
Given a representation of sl4 in which Oa p has the form 

(23), for some operators A and B, the transformation U fur
nishes a unitarily equivale~t rep~sentation of the same 
form, but with operators A and B defined by 

"" U uvA U- I = uvA, 

"" UvBu*U- I = vBu*, 

Using Eqs. (15), (16), and (53), we have 

A = i(8" 's 2 -1i"''')A, 

B = /(Ii" " 2 -Ii", 2 ")B. 

(54a) 

(54b) 

(55a) 

(55b) 

Because U commutes with) and K, and Oap satisfies the 
commutation relation (34), UOa

P 
U- I also satisfies (34), and 

"" "" therefore A and B satisfy the recursion relations (42)-(44') 
for a lattice S whenever A and B do so. 

This latter fact is easily verified directly as follows. 
Equations (42)-(43 ') involve only IA I and IB I and are auto-

"" "" mati cally satisfied, since IA I = IA I and IB I = IB I· Equation 
(44), 

(M + 3)A M + 2 N +2 BM+2 N+4 

= (M -I)AM N+4 BM N+2' 

implies, using (55), 

(M + 3)A e- ;(IiMN-IiM , 2N+2)B 
M+2 N+2 M+2 N+4 

xe- i((}M+2N+2 -OMN+4) 

_ (M-I)A'" -i(8M 2,V,2 -IiMN + 4 )B"" 
- MN+4 e MN+2 

Xe-iW",N-IiM 2N,') 

=>(M +3)AM+2 N+2 BM+2 N+4 
-" .A. 

= (M -1)AMN+4BMN+2' 

(The operator {} M _ 2 N + 2 that appears is undefined when 
m = 0 or 1, but points having m = 0 are excluded from the 
range of validity of (44), and when m = I, the expression 
containing (}.A1-2 N.*.2 vanishes.) Equation (44') is similarly 
satisfied by A and B when satisfied by A and B. 

We can now prove 
Lemma 3: Any unitary irreducible representation for 

which Oa pis of the form (23) and whose substratum is asso
ciated with a convex lattice S is unitarily equivalent to a 
representation of the form (23) with A and B generic. 

Proof Pick as a base point any (mo, no)E.S. SinceS can
not be a single point, (mo, no) will be connected by A or B to 
some other point of S, for example to (mo - 2, no - 2). (The 
other three cases are analogous.) Then, by Lemma 2, 
Amon" #0, and there is, according to (55a) a unique choice of 
{}m -2 n -2 whichrendersA mn positive,ifweset(Jmn =0. 
Th'~n, by Lemma 1, A mono wi11°b~ generic. Proceeding i~ this 
way from (mo - 2, no - 2) we can reach any point (m', n') of 
S and assign a unique {}m' n' such that eachAmn or Bmn corre
sponding to a "link" of the path has its generic value. 

Moreover, we claim the resulting {} is independent of 
path. For because S is convex, any path from (mo, no) to (m', 
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n') can be deformed into any other such path by a series of 
deformations, each of which simply changes the order of a 
pair of A and B steps. (Geometrically, this is changing the 
way the path connects one corner of a diamond to its oppo
site corner.) There are four different cases to consider, but 
because the argument is the same for each, we give only one 
explicitly. Suppose that a path ... (m, n), (m - 2, n - 2), (m, 
n - 4), ... is to be deformed into .. · (m, n), (m + 2, n - 2), (m, 
n - 4), .... We claim that for a given 0mn' both paths ,Rroduce 
the same Om n -4' According to (55), the reality of Amn is 
equivalent (calling the phases of A and B "a" and" (l", re
spectively) to 

o = amn = Om _ 2 n _ 2 - Omn + a mn (all phases mod 21T), 

::::::>0m_2 n-2 =Omn -amn · 

Then 13m n -2 = 0::::::> 

0mn-4 =Om-Z n-Z - {lm n-2 

= f)mn - a mn - Pm n -2· 

Similarly, t3m+2n =O=a",+z n-Z=? 

0m+2n-2 =Omn - {lm+2n' 

0mn_4 =Om+2n-2 -am+z n-2 

=(Jmn - f3m+2n. -am + 2n - 2 " 

(56) 

(57) 

The two paths produce the same Omn -4 if Eqs. (56) and (57) 
agree, namely if 

a mn + {lmn-z = {lm+Zn +am+z n-Z' (58) 

But this last equation, (58), follows immediately from Eq. 
(44) at (m, n - 4). Notice in this connection first that since 
(m, n - 4) is one of the points of one of our paths it lies in S; 
second, that (44) is not excluded there since the occurrence 
of (m - 2, n - 2) in a path implies m>2, hence m #0; and 
third, that m + 3 and m - 1 in (44) are necessarily positive 
at (m, n -4), since m>2. 0 

C. Classification of the generiC representations 

Let us begin with 
Case 0: Unirreps with min (m + n) = 0 have either 
(a) sublattice Loo and k = -4, or 
(b) sublattice 100 and k> -4. 
Proof min (m + n) = 0::::::>(0, 0)ES::::::>(2, 2)ESbecause (2, 

2) is the only point of H that can be connected to (0, 0) by A 
or B. Suppose (4, O)f:s [this will correspond to (a) above]. 
Then by Lemma 2, B4z(k) = O::::::>k = -4, by inspection of 
(45b)=?Bmm +z =OandBm +z m = o for all integers m, and 
thus Loo is not connected to H-Loo. Moreover, Amn #0 for 
m > 2, and therefore (0, 0) is connected to all of Loa by succes
si ve applications of A * u * v* (and hence of Q) to J¥' 00' Conse
quently, S = Loo and so (4, O)Es::::::>(a) above. 

If on the other hand, (4, O)ES, B4Z(k )#0 [otherwise we 
would have k = -4 and the representation would be (a)]. 
Since if k < -4, the generic representation does not furnish 
a real number B4z(k), we must have k> -4. Because 
Amn (k) and Bmn (k) are then nonvanishing on loa [in the 
sense that any Amn(k) or Bmn (k) which can connect two 
points of S is nonzero], Lemma 2 implies that S cannot be a 
proper subset of 100, Therefore S = 100, Because loa and Loa 
contain no points with m or n = 1, the generic form satisfies 
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all recursion relations and therefore provides a representa
tion of s14' on Loo when k = - 4 and on 100 for every 
k> -4. 

Case 1: Unirreps with min (m + n) = 1 have sub1attice 
Twor TOI and k = -1. 

Proof If min (m + n) = 1, either (1, 0) or (0, 1) are in S. 
If, say, (1, O)ES, Eq. (42) holds at (1, 0) and gives 

41Ad 2 = n,=?\Ad = k::::::>k = - 1. 

Then k = - I=?Bss + I = 0 for all integers s#O, 1 and 
B mn ,A mn # 0 on Tw. Therefore, by Lemma 2, all points in TlO 
must be in S, and, since Bs s + I = 0, TIO is not connected to 
H- T IO, whence TIO = S. The only point in TIO with m or 
n = 1 is (1, 0) and the only equations valid at (1,0) are (42) 
and (44). But (42) has already been verified and (44) holds 
because B34 = O. At all other points of T w, the generic form 
with k = -1 automatically satisfies the recursion relations 
(42)-(44') and thereby furnishes a representation. The case 
where (0, I)ES (S = ToI ) is symmetric. 

Case 2. Unirreps with min(m + n) = 2 have either 
(a) sublattice L II and k = -4, 
(b) sublattice Tzo or Toz and k = 0, or 
(c) sublattice lzo and k> O. 
Proof If min(m + n) = 2, either (1, 1), (0, 2), or (2, 0) 

are in S. If(1, I)ES, (42) holds at (1,1) and gives 

81A33\Z = n,::::::>k = -4. 

Thenk= -4::::::>B,s+2 =Bs+2s =Oforallintegerss#l 
and A" #0 for any integer s>3. Thus S = L II • Now (1, 1) is 
the only point of LII with m or n = 1, and so we need only 
check those equations valid at (1, 1), namely (42), (42'), (44), 
and (44'). But (42) was verified above and (42') is identical; 
(44) and (44') are satisfied whenB35 andBs3 vanish, which is 
the case here. Therefore the generic form with k = -4 fur
nishes a representation on L 11' 

If (2, O)ES, either B2Z or A 4Z must be nonzero in order 
that (2, 0) be connected to the rest of l zo. If BZ2 = 0, k = 0, 
which implies that B" = 0, s# 1, and hence that no point in 
T20 is connected to lzo - TZ()' Moreover, A and B are nonze
ro on the remainder of Tzo, so S = T20' Since neither m = 1 
nor n = 1 occur on T20, the generic form with k = ° fur
nishes a representation on Tzo (or on T02 by the m_n 

symmetry). 

If (2, O)ES but B22 > 0, then k > 0, in which case A and B 
are nonzero on the whole of 120, and so S = l zo. Again, be
cause m = 1 and n = 1 do not occur, the generic form fur
nishes a representation on lzo for all k> O. 

Case 3. Unirreps with min(m + n) = s> 3 have sublat
tice T IV or To, and k = - (s - 2)z. 

Proof We show first that the only possible points (m, 
n)ES for which m + n = s are (s, 0) and (0, s)-that is, that 
(s - t, t )f:s, for 0 < t <so For t = 1, if(s - 1, I)ES, then (44') 
holds at (s - 1, 1 )=?A s+ I 3 B :+3 3 = O::::::>As+ I 3 = 0 or 
BS+33 =0.lfA,+13 =O,k= -(s+4?=?IBs _ 13 12 <0, 
an impossibility. If B, +33 = 0, k = - s2=?IBs _131 2 < 0 
again. Thus (s - 1, I)Es. Similarly, (1, s - l)Es. For the re
maining cases, 2<t<.s - 2, the fact that min(m + n) = s re
quires As _ II = O::::::>k = - s2::::::>IB, _ I +2 t 12 < 0, an impossi
bility. Thus (s - t, t)Es for 0 < t < s as asserted. 
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Suppose then that (s, O)ES. (s - 2, 2)~S::::::'?Bs2 = 0 
~k = - (s - 2)2 Bs + t t + 2 = 0 for all t and A and B nonze
ro on T50~S = T"". Finally, because no point (m, n) with m 
or n = 1 occurs in T"", the generic form with k = - (s - 2)2 
furnishes a representation thereon. By the m-n symme
try, the generic form with k = - (s - 2)2 provides a repre
sentation on Tos as well. 

represented by an operator Q" p of the form (2 Q; we present 
the set of equations among the coefficients A, A, ... ,E that 
imply the commutation relation (12). It may be of interest 
that because we are not assuming unitarity here, this set of 
equations can be used to write the finite dimensional (tensor) 
representations of sl4 in the form (21). 

Case 0-3 exhaust the possible values ofmin(m + n). 
The only sublattices that arise in the above classifica

tion are convex. Hence, by Lemma 1 and 3, any mutiplicity
free unirrep is equivalent to one of the generic representa
tions whose classification we have just concluded. This es
tablishes the Theorem. 0 

In addition to Eqs. (15)-(20) of the text, the operator u 
satisfies the following relations, where parentheses about in
dices denote symmetrization and square brackets denote 
antisymmetrization. 

uta Ub I = 2i(M -l)€ab ejc u[a ut I = - 2i(M + 3) €ab eje' 
(AI) 
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U(aJb I = !:... (M +4)€ab cUc· 
4 

(A3) 

APPENDIX 

We first list the relations satisfied by the operators u and 
v, given initially by Ogievetskii and Sokachev.4 We then con
sider a general multiplicity-free representation of sl4 for 
which, as was noted in the text, the symmetric matrices are 

The operator v satisfies the parallel set of equations obtained 
from (Al)-(A3) by the replacements (33); for example (AI) 
becomes 

vtpVq 1= 2i(N -1)€ p/ i( v[ pV:1 = - 2i(N + 3) € p/ i(. 
(A4) 

To write the commutation relation (12) in terms of an operator Qap of the form (21), it is helpful to use the identity 

Sa Tb Up Vq - Sb Ta Uq Vp = 2S(a Tb) U[p Vql +2S[a Tb IU(p Vq)' (AS) 

By means of equations (15)-(20) of the text, together with (A 1)-(A3) and their counterparts for v, we find 

[Qa p ,Qbq ] + i€ab cjeg pq + i€ p/ i( gab 
__ _ A.-- __ /'... _ 

= (RJ!jg pq + RJKKK(pKq) + RJvvv pVq + v~v:RJVV + RJvKV(pKq) + K(pv;)RJVK )i€ab CJc 
+ (Ruog pq + RUKKKcpKq) + Ruvv v pV p + Ruvovov~V; + RUVKV(pKq) + RUVOKVtpKq»i€ab cUc 

/"'.. _ __ A "" /'... __ /'... .- /'... 

+ i€ab CU~(g pqRuo + K(pKq)RUKK + v~v;Ruvv + v pVqRUVOvo + K(pv":JR uVK + K(pVq)RuvOK) 
+ (above terms with the replacements a-p b+---+q c_r J-K u-v). 

Here 

1275 

RJb = -4(M +3)(N +2)2 AM+2 N+2AM+2 N+2 +4(M -1)N2 AMNAMN -4(M +3)N 2 BM+2 l'JiM+2 .'11 

+4(M -l)(N +2)2 BMN+2BMN+2 + (N +2)2CMN~N + N 2CMN _ 2 CMN - 2 + 1, 
~ ~ ~ 

RJKK = l6(M +3)AM+2 N+zAM+2 N+2 -16(M -l)A~NAMN + l6(M +3)BM+2NBM+ZN 

-16(M -1)BMN+2BMN+2 -4CMNCMN -4CMN _ Z CMN - 2 
~ ~ ~ 

-4(M +3)DMNDMN +4(M -1)DM_2NDM_2N +EMNEMN , 

RJ"v = -4(M +3)AM+2 N+2BM+2 N+4 +4(M -1)AMN+4BMN+2 + CMNCMN+2' 
~ ~ ~ 

RJuK = -4(M + 3)AM +2 N+2 DMN +2 +4(M -1)AMN+2DM_2N -4(M + 3)BM+2 N+2 DMN 

+4(M -1)B,'I1N+2 D M_2 N+2 + DMNEMN + CMNEMN+2' 

Ruo =!(M+4)(N+2)2A M+2 N+22,'I1+2N _!MN2AM+2N~N_2 
/'-. ~ 

- ~M(N +2)2BM+2N +2 CMN + !(M +4)N2BM+2NCM+2 N-2' 

~ ~ ~ 

RuKK = -2(M +4)AM+2 N+2 CM+2N +2MAM+2NCMN_2 +2MBM+2N +2 CMN 
-2(M +4)BM+2NCM+2 N-2 + !(M +4)DMN EM+2 N - ~MDMNEMN' 

Ruvt' = !eM +4)A M+2 N+2 CM+2 N+2 - ~MAM+2 N+4 CMN , 
/'... A A. /'... 

Ruvo"o = - !MBM+2N _ 2 CMN _ 2 + HM +4)BM+2NCM+2N_4' 

.RuvK = !(M +4)A M+2 N+2 EM+2 N+2 - !MA M+2 N+2 EMN + !(M + 4) CM+ 2NDMN - !MCMNDMN+2' 
A. A/'.../'... 

RuvOK = !(M +4)BM+2NEM+2 N-2 - !MBM+2NEMN + !(M +4)CM+2N _ 2 DMN - ~MCMN_2DMN_2' 
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(A8) 

(A9) 

(AlO) 

(All) 

(AI2) 

(AI3) 

(A14) 

(A15) 

(A16) 
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A A A 

The hatted coefficients, R Jvv ' RJuK, ••• ,Ruv*K' are ob-
tained for the corresponding unhatted expressions by the 
replacements 

A A " A 

A_A, B_B, C-C, D-D. 

The operators A, A. ... , E of a representation with sublat
tice S satisfy the equations 

P mn I [QapQbq] + i€ab cjcg pq + i€ p/ j(gab J = 0, (AI7) 

where P mn is the projection operator onto any subspace 
JY mn with (tzz, n)ES. Equation (A6) is equivalent to requir
ing that A, A, ... , E satisfy the following set of equations at 
each (m, n)ES, with the exclusions listed: 

RJIi = 0, m#O, n:;6 1; RJKK = 0, m = 0, n:;60,1; 

R Jvv = RJvv = 0, m#O; RJVK = RJvK = 0, m:;60, n#O; 
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A A 

Ruli = Ruli = 0, n:;6 1; RuKK = RuKK = 0, n:;60,1; 
A A 

Ruvu = Ruvv = 0; R uv' v' = R uv' v' = 0, n:;60,1,2,3; 
A A 

RuvK = RuvK = 0; n :;60, R uv' K = R uv' K = 0, n :;60, 1. 

Iy' Ne'eman, Proc. Nat. Acad. Sci. USA 74, 4157 (1977). 
2y' Ne'eman and Dj. Sijacki, TAUP 699-78 preprint. 
'Y. Ne'eman and Dj. Sijacki, Ann. Phys. 120, 292 (1979). 
'V.l. Ogievetskii and E. Sokachev, Teor. Mat. Fiz. 23, 214 (1975). 
'A. Kih1berg, Ark. Fys. 32, 241 (1966). 

(A18) 

"Equation (A4) of Kih1berg5 implies that for multiplicity-free representa
tions (Kih1berg's "degenerate series") no operator connects 2 rnn to sub
spaces other than ,;Y'm t 2" t 2 or oW'," t '." -;- ,. 
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The representations of spl(2,1 )-an example of representations of basic 
superalgebras 

M. Marcu 
Physikalisches Institut der Universitat Bonn, Bonn, West Germany 

(Received 27 September 1979; accepted for publication 21 January 1980) 

The example of spI(2, I) illustrates some important properties of the representations of basic 
superalgebras. Typical representations are most similar to the representations of semisimple Lie 
algebras. We argue that nontypical representations are a degenerate type of representation. The 
structure of not fully reducible nontypical representations is discussed in detail. As opposed to 
semisimple Lie algebras, spl(2,1) also admits representations with nondiagonal Cartan 
subalgebra. There is a one-to-one correspondence between the representations of spl(2, I) and 
those of the generalized superalgebra osp(2,0, I, I). The osp(2,0, I, I) counterparts of nontypical 
irreducible representations of spl(2, I) are unfaithful. 

1. INTRODUCTION 
A. Representations of basic superalgebras 

The structure of finite-dimensional superalgebras is by 
now well understood. 1-5 Many superalgebras are the semi
direct sum of a solvable superalgebra and a semisimple one. 
Although the algorithm according to which semisimple su
peralgebras are built out of simple ones is not as simple as in 
the Lie algebra case, it is known. Simple superalgebras have 
been classified into classical and Cartan-type superalgebras. 
Classical superalgebras that admit a nondegenerate metric 
(supertrace) tensor are called basic superalgebras6 (for the 
other simple superalgebras, including those of the Cartan 
type, the metric tensor is zero in every representation). Basic 
superalgebras resemble semisimple Lie algebras most close
ly. They admit a canonical form of the commutation rela
tions as follows: a o i = I, ... ,r, is a system of simple positive 
roots; Hi are the elements of the (r-dimensional) Cartan sub
algebra H; Xi are simple positive root vectors ("step-up oper
ators"), Yi are simple negative root vectors ("step-down op
erators"), and 

[Hi,H}] = 0, [Hi,xj] = (aj),Xj , 
(1.1) 

[H"Y,] = -(a)ilj, (Xi,lj)=HiO,j' 

a i are vectors in the dual space of H:ai Eli *. H * is called root 
space. All other root vectors are found by repeatedly form
ing (anti) commutators of the various Xi among temselves 
(the same with Y;) and all remaining structure constants are 
uniquely determined by the Jacobi identity once we have 
fixed the normalization of the simple positive roots. In par
ticular, each positive root is a linear combination of the sim
ple positive roots, all coefficients being positive integers. 
Each root vector has a well-defined grade. The correspond
ing roots are accordingly even or odd. < , ) means commuta
tion or anticommutation, according to the grades of Xi and 
lj. The Cartan subalgebra is entirely even. The matrix 
Ai} = (a)i is called the Cartan matrix. It uniquely deter
mines a basic subalgebra. I t has a very useful graphical repre
sentation in the form of Dynkin diagrams. 

The root space is endowed with a non degenerate bilin
ear form 

gij = str(Hi H), (1.2) 

which is the restriction of the metric tensor to the Cartan 
subalgebra. We denote the scalar product determined by gij 
by (, ). Except for the osp(I,2n) superalgebras, this bilinear 
form on H * is indefinite. The roots a obeying (a,a) = 0 ("on 
the light cone") are exactly those odd roots that are not co
linear to any even root. The existence of such roots will bring 
about the existence of a class of representations of basic su
peralgebras (called nontypical) that have no counterpart for 
semisimple Lie algebras. 

The representations of osp(1 ,2n) have all the nice prop
erties of representations of semisimple Lie algebras: every 
irreducible representation has a unique highest weight, all 
reducible representations are fully reducible (and therefore 
the Wigner-Eckhart theorem holds), the characters of a re
presentation have almost the same analytic form and play 
the same role as in the case of a semisimple Lie algebra, etc. 

Is there a class of representations of the other basic su
peralgebras which have similar properties? Kac answered 
this question. 6 All irreducible representations of basic super
algebras are obtainable from a highest weight. The Schur 
lemma holds under the usual form. A typical representation 
is an irreducible representation that can be encountered in a 
reducible representation with diagonal Cartan subalgebra 
only as a direct summand (it always "splits"). A necessary 
and sufficient condition for an irreducible representation to 
be typical is 

(A + p,a) =1=0 for all odd roots a obeying (a,a) = O. 
(1.3) 

(A is the highest weight and p is half the sum of all positive 
even roots minus half the sum of all positive odd roots.) If a 
representation is typical, the representation space 
V = VB EB VT (VB is the even subspace and VT the odd one) 
obeys 

dimVB = dimVT• (1.4) 

The heighest weight, the dimension, the characters, and the 
supercharacters are known for each typical representation.6 

Representations with diagonal Cartan subalgebra that 
do not obey (1.3) are called nontypical. Nontypical represen-
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FIG. I. Root diagram ofspl (2, I). 

tations are in many respects degenerate. There is, however, 
no theory to tell us exactly what this degeneracy means or 
what are all the nontypical irreducible representations. Re
ducible nontypical representations can occur as semidirect 
sums (read: "not fully reducible", "reducible and indecom
posable") of several nontypical irreducible representations. 
Note that as long as the Cartan subalgebra is diagonalizable, 
typical representations can only combine into direct sums. 
Of course, direct sums of nontypical representations are also 
possible. 

The even part of a basic superalgebra is either a semi
simple or a semisimple EB u(l) Lie algebra. In the latter case 
the u(l) is contained in the Cartan subalgebra. In an arbi
trary representation this u(l) maybe nondiagonalizable (i.e., 
it can at best be put under Jordan canonical form). It turns 
out that in general the supplementary constraints [imposed 
by the (anti) commutation relations, involving the odd gen
erators] are not strong enough to eliminate the possibility of 
not fully reducible representations with nondiagonal Cartan 
suba/gebra.7 By Schur's lemma the irreducible constituents 
will be either identical copies of one typical representation 
(and thus we exhaust all possible combinations of typical 
representations up to direct sums) or nontypical representa
tions. Since the nontypical representations are not always 
fully reducible, all nontypical constitutents need not be 
identical. 

The aim of this paper is to see in an example 
[spl(2,1);::::osp(2,2)] all these concepts at work. The next pa
pers calculates the Clebsch-Gordan series and the (unnor
malized) Clebsch-Gordan coefficients for the tensor prod
uct of two irreducible representations of spl(2, I) (both 
typical and nontypical), thereby getting a better understand
ing of the statement that nontypical representations are 
degenerate. 

In Sec. 2 we review all irreducible representations of 
spl(2, 1).9 In Sec. 3 we derive nontypical representations that 
are semidirect sums of respectively, 2, 3, and 4 irreducible 
nontypical representations. The knowledge of these particu
lar cases is important for the next paper. 8 We also explain the 
general mechanism for the computation of all nontypical 
representations. Throughout Sees. 2 and 3 we take the Car
tan subalgebra diagonal. 

Section 4 shows (by explicit construction) that there are 
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indeed representations of spl(2, 1) with nondiagonal Cartan 
subalgebra. We find all ways in which irreducible typical 
representations combine to not fully reducible representa
tions with nondiagonal Cartan subalgebra. Two irreducible 
nontypical representations cannot enter such a combination. 
However, this becomes possible if we start with more com
plicated nontypical representations (themselves not fully 
reducible). 

B. Representations of generalized Lie algebras and 
superalgebras 

In 1978 Rittenberg and Wyler generalized Lie algebras 
and superalgebras. 10.11 These generalized structures are T
graded 12 vector spaces (i.e., the set of grades is an Abelian 
group T) endowed with a graded multiplication law (i.e., a 
multiplication law consistent with the addition of grades) 
called generalized commutator and obeying the generalized 
Jacobi identity. Are all representations also r-graded? The 
answer is negative but all F-graded representations are 
known 12: for each generalized Lie algebra (superalgebra) 
there is exactly one Lie algebra (superalgebra) so that there is 
a one-to-one correspondence between their T-graded repre
sentations. The problem of finding the non-T-graded repre
sentations has not been solved. 

Along these lines we shall explain the connection be
tween the osp(2,0, 1,1) generalized superalgebra 11 and the 
spl(2, 1) superalgebra. This example will also throw some 
light on the properties of irreducible tensors of 
superalgebras. 

We get all representations of osp(2,0, 1,1). We prove 
that there is a one-to-one correspondence between all repre
sentations of osp(2,0, 1,1) and those of spl(2, 1), not only be
tween the r-graded ones (F = Z2 EB Z2 in our case). From 
this point of view the representations of osp(2,O, 1,1) are not a 
good example for studying the general properties of repre
sentations of generalized superalgebras. However, we find a 
surprising new feature for the irreducible nontypical repre
sentations of spl(2, 1): their osp(2,0, 1,1) counterparts are not 
faithful. We regard this fact as another aspect of the "degen
erate" properties of nontypical representations of spl(2, 1). 

2. TYPICAL REPRESENTATIONS OF sPI(2,1) 

The even part of spl(2, 1) is a su(2) EB u( 1) Lie algebra. 
Q + and Q3 generate the su(2) ("isospin") and B generates 
the u(l) ("hypercharge"). The odd part of spl(2, 1) contains 
two isospin \ tensors of sU(2): V * with hypecharge ~ and 
W ± with hypercharge -~. The commutation relations are: 

[Q3,Q ± ] = ± Q ±' [Q + ,Q _ ] = 2Q3' 

[B,Q ± ] = [B,Q31 = 0, (2.1) 

[Q3'V±]= ±W±, [Q3'W+]= ±!W±, 

[Q ± ' V + ] = V ±' [Q ± ' W '+- ] = W ± ' (2.2) 

[Q±,V± ]=0, [Q±,W± ]=0, 

[B,v±]=!V±, [B,W±]= -~W±, 
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I V ± ,V ± J = IV ±,v + I 
= I W ± ,W ± J = I W ± ,W + J = 0, 

(2.3) 

{ V + ,W ± J = ± Q ±' ! V ± ,W + ) = - Q3 ± B. 

An automorphism of spI (2.1) is: 

Q + ---+Q ±' Q3---+Q3' B-+ - B, V ± -+W ± ' 

W~ ---+V ± . (2.4) 

The commutation relations are already written in canonical 
form. The root diagram is shown in Fig. 1. 

The highest weight <Po of an irreducible representation is de
fined by 

Q + 4>0 = V + 4>0 = W + 4>0 = o. (2.5) 

The root diagram and (2.3) tell us that an irreducible repre
sentation has at most four su (2) Ell u (1) muItiplets. The 
actual form of all irreducible representations is known.9 An 
irreducible representation is labelled by the eigenvalues of B 
and Q3 on <Po (call them band q). The basis vectors of the 
representation space are uniquely specified by the su (2) 
Ell u(l) multiplet they belong to and by the eigenvalue of Q3 

I 

(b,q) (b + ~,q - D (b - ~,q - D 
0 0 EV q±q3+! 

±aV q+q3 0 0 

V± 

0 0 0 

0 0 ±b"V q+q3 - ~ 

0 rV q±q3 +~ 0 0 

0 0 0 0 

(an su (2) Ell u(l) multiplet is specified by its hypercharge and 
its isospin), in this order. Then 

4>0 = Ib, q, q) 

and the whole basis is given by (q3 = q3.max' Q3.max -1, 
···,Q3.min ): 

Ib -!, q -~, q3)' Ib, q -1, q3)' 

The matrix elements of Q3 and B are obvious; for Q ± 

(2.6) 

(2.7) 

Q ± Ib, q, q3) = V(q + q3)(q ± q3 + 1) Ib, q, q3 ± 1). (2.8) 

It is convenient to write V ± and W ± in block matrix 
form. The blocks will be labelled by the su (2) Ell u (1) multi
plets in parentheses. For a nonzero block all matrix elements 

in a column are zero except for the one in the line q3 + 1 (for 
V + and W + ) or q3 - ! (for V_and W _ ). The expression 
for these nonzero matrix elements is written explicitly in our 
formulas. This convention will be used throughout this work 
unless explicitly stated otherwise. The result is: 

(b,q -1) 

0 

TV q ±q3 

0 

0 
(2.9) 

±!3V q+q3 0 0 wV q±q3 

o ± 8V q + q3 - ~ 0 a 

This form was obtained using the Wigner-Eckart theorem 
for su (2) Ell u (1); a, ... ,W are the reduced matrix elements. 
Using (2.3) we get (q> 1) 

~)=o, 
q-b 

!3E=OT= --. 
2q 

q+b 
ay=b"w= --, 

2q 

(2.10) 

Note that b can be any complex number. From (1.3) a repre
sentation is typical if and only if b =1= ± q. We denote it by 
[b, q]. Equation (2.10) allows for three free constants. They 
give the relative normalization of the four su (2) Ell u (1) 
muItiplets. This means that [b, q] is unique, up to equiv
alence. If q = ~, b =1= ± ~, the representation obtained is still 
typical. There are only three su (2) Ell u (1) multiplets reb, 
q - 1) is missing]. In this case Eq. (2.10) reduces to 

; = 0 = w = T = 0, ay = ~ + b, !3E = ~ - b. (2.11) 
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We do not make a canonical choice for the reduced 
matrix elements because no such choice is known for arbi
trary b. Introducing a Hermitian scalar product in the repre
sentation space, every typical representation is equivalent to 
a symmetric one: 

V'+ = ± W _, Vl_ = + W + , 

(2.12) 

This is, however, of no great help. Hermitian representations 
are what we would like to have. On topofEq. (2.12), V ± and 
W ± have to be real in a Hermitian representation. This is 
possible only for real b obeying Ib I > q.9.J3 

For a representation uniquely characterized by the Ca
simir operators we can easily prove that it is a direct sum
mand in every reducible representation,1 as long as the Car
tan subalgebra is diagonal. Typical representations of 
spl (2,1) are indeed uniqUely characterized by their Casi-
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mirs.9 Thus we have explicitly seen that the typical represen
tations of spl (2,1) "split". 

3. NONTYPICAL REPRESENTATIONS (IRREDUCIBLE 
AND NOT FULLY REDUCIBLE ONES) OF spl (2,1) 
A. Irreducible nontypical representations 
l.b=q 

Equation (2.10) admits the solution 

P=8=E=;=r=w=O, ar=1, (3.1) 

the su (2) EI) u (1) multiplets (b - !, q - D and (b, q - 1) 
being absent. We shall denote this irreducible nontypical re
presentation by [q] + . 

2.b= -q 

Equation (2.10) admits the solution 

a = r = 8 = ; = r = w = 0, PE = 1. (3.2) 
(b +~, q - D and (b, q -1) are absent. Notation: (q] _ . 

B. Not fully reducible nontypical representations 
containing two Irreducible nontypical representations 

This type of representation is obtained from Eq. (2.10), 
with b = ± q [all four su (2) EI) u (1) multiplets are 
retained]. 

1. [q] + -f) [q -!] + 

" -f) "means semidirect sum (the representation space 
of the first summand is an invariant subspace of the whole 
representation). This representation is characterized by 

b = q, P = 8 = 0, ar = ;w = 1, aE + ;r = O. 
(3.3) 

We denote it by [q,q - !] + . 

2. [q - !] + -f) [ q] + 

This representation is characterized by 

b = q, E = r = 0, ar = ;w = 1, a8 + P; = O. 
(3.4) 

Notation: [q - !,q] + . 

3. [qL -f) [q -!L 
This representation is characterized by 

b = - q, a = ; = 0, p€ = 8r = 1, Pr + 8w = O. 
(3.5) 

Notation: [q,q - ~] _ . 

4. [q -!L -f) [qL 
This representation is characterized by 

b = - q, r = w = 0, p€ = 8r = 1, P; + 8a = O. 
(3.6) 

Notation: [q - !,q] _ . 
[q,q - U + and [q - !,q] + are representations of dif

ferent types. The automorphism (2.4) takes [q,q - !] + into 
[q,q -!] _ and [q - !,q] + into [q - !,q] _. Ifq =!, we 
have to use (2.11) instead of (2.10). 
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There are no other not fully reducible nontypical repre
sentations with two irreducible components. We can con
vince ourselves that this is indeed the case by explicitly try
ing to construct representations ofthe form [q\] -f) [q2]' 
where iql - q2i :;t+ 

The Casimir operators become identically zero for all 
the representations discussed in Sees. A. and B., thus no 
longer characterizing a particular representation. We get the 
feeling that nontypical representations are a kind of "degen
eration" of the typical ones. 

Note that for [q,q - !] ± the highest weight does not 
correspond to a cyclic vector. 

In Sees. C. and D. we are going to use these results as 
building blocks for more complicated nontypical 
representations. 

C. Not fully reducible nontypical representations 
containing three irreducible nontypical 
representations 

Equations (3.3H3.6) severely limit the nontypical re
presentations that can combine into a new type of represen
tation (Le., a representation that is not equivalent to a direct 
sum of representations already described in Sees. A. and B.). 

1. [q -!l ± -f) [q] ± Et- [q +!] ± 

The representation spaces of [q + !] ± and (q - n ± 

are invariant. In matrix form: 

o 
[q + !] ± 

o 
(3.7) 

The notation should be self evident: The diagonal blocks are 
the three irreducible nontypical representations. M and N 
are known from Eqs. (3.3H3.6). Notation: 
[q - !,q + !,q] + The plus and minus cases are related by 
Eq. (2.4). 

2. [q - !] ± Et- [ q] ± -f) [q + !] ± 

The representation space of [q] + is invariant. In ma
trix form: 

R 

[q - !] ± 

o 
S ) o . 

[q +!] ± 

Rand S are known from Eqs. (3.3)-(3.6). Notation: 

(3.8) 

[q,q - !,q + H ± . There is no other type of representation 
than those described. We might think that we have also to 
consider cases like [q] ± -f) [q - ! 1 ± Et- [q 1 ± . There is, 
however, an obvious basis transformation that leads to 
[q] ± EI) [q,q -!] ±. 

D. Not fully reducible nontypical representations 
containing four Irreducible nontypical representations 

Equations (3.3H3.8) severely limit the possible combi
nations of four irreducible nontypical representations. 
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The representation space of [q] + and that of 
[q ± 1] + are invariant. In block matrix form: 

o 
[q ± 1] + 

o 
o 

~ ). (3.9) 

[q±~J + 

The blocks A #0, B #0, and C #0 are known from (3.7), 
(3.8), and (2.3). Notation: [ q,q ± 1,q ± ~,q ± iJ + . By (2.4) 
we get the representations [ q,q ± 1,q ± M ± ~J _ . 

v, 

w. 

[qL 

a a 
±av' q=Fq, a 
a a 
a a 
a a 
a a 
a a 
a a 

a rv' q ± q, + \ 
a a 
a a 
a a 
a a 
a a 
a a 
a a 

The constants a, ... ,w obey 

ay = tw = J-lV = 17'U = 1, 

[q-IJ + 

Ev'q±q,+! 
a 
a 
±;-v'q=Fq,-1 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 

at + tr = 0, YD + v{3 = 0, WI + 17'A. = 0, 

a 
1'v' q±q, 
a 
a 
a 
a 
a 
a 

a 
a 
wv' q±q, 
a 
a 
a 
a 
a 

WV+UK=O, (3.11) 

r? = a 2
, 

2q(yp + 17'(}) = {317, 

2qtK + (2q + 1 ){317 = O. 

Notation: [q,q - ~,q + !,q] + . By (2.4) we get 
[q,q - i,q + i,q] - . Note that [0, - M,O] + 

= [0, - i,!,O] _ . Notation: [0, - !,!,O] . 

We had a good reason for explicitly writing down the 
matrices: This type of representation will play an important 
role in the study of the decomposition of the tensor product 
of two irreducible representations of spl (2,1).8 

The highest weight is a cyclic vector for no not fully 
reducible nontypical representations except [q - !,q] + . 

[q,q - !,q +!] ± and [ q,q ± 1,q ± !,q ±~) ± do not even 
have a cyclic vector. 

The task of finding all nontypical representations (with 
diagonal Cartan subalgebra) is now extremely simple in 
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/x) [q - ~] + '9, 
2. [q]+ 'Lq]+ 

~'9 [q + ~] + '9/ 
This is an entirely new type of representation. Up to 

now the requirement that the whole nontypical representa
tion should not be equivalent to a direct sum forced all irre
ducible nontypical components to be different from one 
another. 

By (3.7), (3.8), and by the Wigner-Eckart theorem for 
su (2) ~ u (1), we know all nondiagonal blocks up to some 
multiplicative constants. These constants are determined us
ing (2.3). Here we give the explicit form of V ± and W ± 

with the conventions from Sec. 2: 

[q+ IJ , [qJ, 

a a a a 
a a ±pv' q=Fq, a 
a a a a 
a a a a 
a a T/v' q±q, + 1 a 
±Ilv' q=Fq, + I a a A v' q±q, + I 
a a a a 
a a ±1Tv'q=Fq, a 

±pv' q=Fq3+1 a a ev' q ± q, + I 
a ± 15 v' q=Fq, a a 
a a ±Kv' q=Fq, a 
a a a ±vv'q=Fq,-! 
a vv' q ±q, + 1 0 a 
a a a 0 
a a a av' q±q, + I a a a a 

(3.10) 

principle: all difficulties that may appear are known from 
our examples. Given the diagonal matrix blocks (the irredu
cible nontypical constituents) we can easily decide whether 
we can find nondiagonal ones so that the whole representa
tion is not equivalent to a direct sum. On the other hand, the 
setting up of a list with all nontypical representations is a 
long and tedious affair. 

4. REPRESENTATIONS OF SPL (2,1) WITH 
NONDIAGONAL CARTAN SUBALGEBRA 

Each representation of su (2) ~ u (1) is a tensor prod
uct ofa representation ofsu (2) and one ofu (1). Any matrix 
is a representation ofu (1). It can be brought to Jordan ca
nonical form B = .I ~ Bi, where Bi are "Jordan boxes": 

bi 

o bi 

Bi = (4.1) 

bi 

o bi 

M. Marcu 1281 



                                                                                                                                    

Consider a typical representation with highest weight l/Jo and 
consider an additional vector tPo so that 

Bl/Jo = b¢o, 

BtPo = btPo + ¢o (4.2) 

[b,q]3¢o 

(b,q) (b + !,q - !)(b - !,q - D (b,q -I) 
b 0 0 0 
0 b +! 0 0 
0 0 b-! 0 
0 0 0 b 

B= 0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 iv' q ± q3 +! 0 

±aV q+q30 0 TV q ±q3 
0 0 0 0 

0 0 ±;V q+q3 -! 0 

V± 0 0 0 

0 0 0 
0 0 0 

0 0 0 

0 rV q±q3+! 
0 0 

±PV q+q3 0 

0 ±8V q+q3-! 

W -±- 0 0 
0 0 

0 0 

0 0 

a, ... ,OJ obey (2.11). The other constants are 

r' = 1/2qa, E' = - 1/2q{3, 

T' = - 1/2q8, OJ' = l/2qS'. 

0 

0 
0 

0 

0 0 
0 0 

0 OJV q ±q3 

0 0 

0 0 
0 0 

0 0 

0 0 

(4.4) 

Up to equivalence transformations there is only one repre
sentation [b, q] -B [b, q]. 

The representation [b, q] -B [b, q] -B [b, q] clearly ex
ists, all the matrix elements being known from (4.3) and 
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v + tPo = w + tPo = Q + tPo = O. 

Acting repeatedly with V _ , W _ , and Q _ on ¢o and t/!o' we 
obtain the representation ¢oE[b, q] +) [b,q] 3t/!o. The explic
it form of the generators is (Q ± ' Q3 are obvious): 

[b,q]3tPo 

(b,q) (b + ~,q - !)(b - !,q - 1) (b,q -1) 
I 0 0 0 
0 0 0 
0 0 1 0 
0 0 0 I 
b 0 0 0 

0 b +! 0 0 

0 0 b-~ 0 
0 0 0 b 

0 0 E'V q+q +1 _ 3 i 0 

0 0 0 T'V q ±q3 
0 0 0 0 

0 0 0 0 

0 0 EV q ±q3 + ~ 0 

±aV q+q3O 0 TV q ±q3 
0 0 0 0 

0 0 ±;Vq+q3-!O 

0 r'V q ±q3 +! 0 
0 0 0 

0 0 0 

0 0 0 

0 rV q±q3+! 0 
0 0 0 

±(3V q+q3 0 0 

0 ±8V q=t=q3-! 0 

(4.4). The Casimir operators are of course 
nondiagonalizable. 

(4.3) 

0 
0 

OJ'V q ±q3 

0 

0 
0 

OJV q ± q3 

0 

Thus we have finished the description of typical repre
sentations and have convinced ourselves of how similar they 
are to the representations of semisimple Lie algebras. 

For b = ± q Eq. (4.3) can "degenerate" to ¢oE[q - !, 
q]± -B [q-!,q]± 3t/!o. Our knowledge of nontypical re
presentations with nondiagonal Cartan subalgebra is, how
ever, not complete. 
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5. COMPARISON BETWEEN THE REPRESENTATIONS 
OF SPL (2,1) AND THOSE OF THE GENERALIZED 
SUPERALGEBRA SPL (2,0,11) 

spl (2, 1) is equivalent to osp (2,2): 

B 4iB 

(5.1) 

-iV+ +iW+ 

W osp(2.2) -iV_ +iW_ spl(2.1) 

(We retain the same notation for the generators in both 
cases, as no ambiguity is likely to occur.) The commutation 
relations for osp (2, 2) are: 

[Q3,Q ± ] = ± Q ±' [Q+,Q-]' = 2Q3' 

[Q + ,B] = [Q3,B] = 0, (5.2) 
[Q3~ W ± ] = ! W ± ' [Q ± ,W ± ] = 0, [Q ± ,W =F ] = W ± ' 

(5.3) 

[Q3' V ± ] = W ±' [Q ± ,V ± ] = 0, [Q ± ,V =F ] = V ± ' 
(5.4) 

[B,v±]= -W±, [B,W±]=V±, 

! V ± ,V ± I = ! W ± ,W ± I = ±!Q ± ' 

! V + ,v-I = ( W + ,W _ I = - !Q3' 

( V ± ,W ± I = 0, (V ± ,W =F I = ± aBo 

(5.5) 

(5.6) 

Q ± ' Q3' and V ± form an osp (1, 2) superalgebra. 1
•
9 Band 

W ± form an irreducible tensor of this osp (1, 2), transform
ing according to the three-dimensional "spin-!" representa
tion. B is even and W ± are odd [this assignment is deter
mined by the type of brackets occurring in (5.4) and (5.6)]. 
On the other hand, Q ± ,Q3' and W ± form an osp (1,2). B 
and V ± form an irreducible tensor, transforming according 
to the same representation. B is again even and V ± are odd. 
Now let us make some changes in the commutation rela
tions: (5.4) and (5.6) are replaced by 

! B, V ± I = W ±' ! B, W ± I = V ± ' (5.4') 

[V ± ,W ± ] = 0, [V ± ,W =t= ] = ± aBo (5.6') 

This amounts to interchanging the grades of Band W ± [as 
tensorofosp (1,2)] and of B and V ± . The algebraic structure 
thus obtained has a natural Z2 EB Z2 grading: 

generators: Q ± ,Q3 V ± W ± B, 

grade: (0,0) (1,0) (0,1) (1,1). 
(5.7) 

It is the generalized superalgebra osp (2, 0, 1, 1).10.11 
We can compute the representations of both osp (2, 2) 

and osp (2, 0, 1, 1) using the Wigner-Eckart theorem for 
osp (1, 2). The matrix elements will be the Clebsch-Gordan 
coefficients of osp (1,2)9 multiplied with some constants (the 
reduced matrix elements). The relevant coefficients differ 
[for osp (2, 2) and osp (2, 0, 1, 1)] only by some signs. Thus it 
is very plausible that there exists a one-to-one correspon
dence between the representations of osp (2, 0, 1, 1) and 
those of osp (2, 2) [spl (2, 1)]. We have explicitely [i.e., by 
computing the representations of osp (2, 0, 1, 1)] checked 
that this statement is true. During this computation an inter
esting point emerged: Both the Cartan subalgebra (Q3 and B) 
and the step operators (V + ± W + ,V _ ± W _ ) have no 
well-defined grade. 
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The Z2 EB Z2 gradable irreducible representations are 
the representations [0, q]: B has grade (1, 1), so for b #0 the 
relation BrPo = brPo (rPo is the highest weight) already de
stroys the Z2 EB Z2 grading. Any Z2 EB Z2 gradable represen
tation has to be symmetric with respect to the b = ° axis of 
the root space (remember, b is a complex number in general). 

Finally, we note that the representations of osp (2, 0, 1, 
1) corresponding to the irreducible nontypical representa
tions of spl (2, 1) are not faithful. We do not understand the 
origin of this fact. 

6. CONCLUSIONS 

Basic superalgebras are the superalgebras most closely 
related to (semi)simple Lie algebras. In their representation 
theory this similarity is reflected by the typical representa
tions. Nontypical representations are still to be studied. In 
the example of spl (2, 1) we saw that they are in many re
spects degenerate: The representation space is different from 
that of typical representations; the Casimirs have zero diag
onal; there are many not fully reducible nontypical represen
tations; the osp (2, 0, 1, 1) equivalent of an irreducible nonty
pical representations of spl (2, 1) is an unfaithful 
representation. Many basic superalgebras have a nonsemis
imple even part. Thus it is not entirely surprising that identi
cal typical representations of spl (2, 1) may combine into a 
not fully reducible representation with nondiagonal Cartan 
subalgebra. This is, however, the only type of representation 
where a typical representation is not a direct summand. By 
"degeneration" we get nontypical representations with non
diagonal Cartan subalgebra, but we don't know whether we 
get all of them. 
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The tensor product of two irreducible representations of the spl(2,1) 
superalgebra 
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The Clebsch-Gordan series and the unnormalized Clebsch-Gordan coefficients for the tensor 
p~oduc~ of two irreducible representations of spl(2, 1) are given. Special emphasis is laid on the 
discussion of the structure of the series when it contains several nontypical representations. 
T~ereby a better understanding of the "degenerate" properties of nontypical representations is 
gamed. 

1. INTRODUCTION 

Recently there have been a number of attempts to use 
the spl(2, 1) superalgebra in elementary particle theory. I 
This naturally raises the problem of the tensor product of 
two irreducible representation of spl(2, 1). 

There are two types of irreducible representations of 
spl(2, 1): typical and nontypical ones.2-4 Typical representa
tions are similar to the irreducible representations of semi
simple Lie algebras. In particular, they occur in reducible 
representations solely as direct summands (provided the 
Cartan subalgebra is diagonal, which is the case throughout 
the present paper). Nontypical irreducible representations, 
however, can combine in various ways into not fully reduc
ible nontypical representations. 3 

The existence of not fully reducible representations of 
spl(2, 1) raises the following question: Is it possible to derive a 
Clebsch-Gordan series? As opposed to the Lie algebra case 
[note that spl(2,1) is in many respects similar to su(3)] there 
is no mathematical scheme that tells us if the Clebsch-Gor
dan series contains direct sums of irreducible nontypical re
presentations or if it contains not fully reducible nontypical 
representations. Our main result is that we can always speci
fy what type of nontypical representations occur in the 
Clebsch-Gordan series. As far as we know, this is the first 
time that tensor products of irreducible representations of a 
superalgebra have ever been computed.' We are also able to 
give a graphical rule for the decomposition of the tensor 
product. 

In Sec. 2 we give the Clebsch-Gordan series for the 
"nongenerate" product of two irreducible representation of 
spl(2, I), by "nondegenerate" we are referring to a situation 
where the product decomposes into a direct sum ofirreduci
ble representations. Appendix I completes this section by 
explicitly giving the Clebsch-Gordan coefficients. The coef
ficients are not normalized because we still lack a satisfac
tory definition of orthogonality for the basis vectors of the 
representation spaces of superalgebras (this in turn stems 
from our inability to find a "canonical" form similar to the 
Hermitian representations of semisimple Lie algebras).2,},5 

Typical representations of spl(2, 1) bear two labels: a 
continuous one (call it b; note that b can be a complex num
ber!) and a discrete one (call it q). Nontypical representations 
are "degenerate cases of typical representations" (b = ± q). 
In Sec. 3 we examine what happens if we modify the continu-

ous label, such that some of the typical representations in the 
nondegenerate Clebsch-Gordan series degenerate into non
typical ones. Using our graphical rule, we show that two 
such situations can occur: Two typical irreducible represen
tations degenerate into four nontypical ones or four typical 
irreducible representations into eight nontypical ones. As 
shown in Ref. 3, we can build many kinds of non-
typical representations out offour (or eight) irreducible 
ones. The first idea would be as follows: Take the formulas 
for the nondegenerate tensor product and change the value 
of the continuous label; thus you might obtain the Clebsch
Gordan coefficients for the degenerate product and thereby 
know what kinds of nontypical representations occur. This 
does not work however, because some basis vectors of the 
representation spaces of the two (four) typical representa
tions which degenerate into nontypical ones, become linear
ly dependent. (Note that this is impossible for Lie algebras, 
where the basis vectors can always be chosen orthogonal). 
We have to introduce the missing basis vectors "by hand" 
(i.e., not using the concept of highest weight.) Thus we are 
finally able to give the Clebsch-Gordan series: it contains 
one or two not fully reducible nontypical representations of a 
rather complicated form (with four irreducible nontypical 
components); their explicit matrix structure is given in Ref. 
3. We call such a tensor product a "degenerate product." In 
Appendix 2 we give the corresponding Clebsch-Gordan co
efficients (un normalized), thereby proving our results. 

Throughout this paper the notation for the representa
tions of spl(2, 1) will be that of Ref. 3. 

2. NONDEGENERATE TENSOR PRODUCT OF TWO 
IRREDUCIBLE REPRESENTATIONS OF spl(2,1) 

The Cartan subalgebra is diagonal for every irreducible 
representation. It follows that it is also diagonal for a tensor 
product of two irreducible representations. Thus the tensor 
product decomposes into a direct sum of typical Ef1 a direct 
or semidirect sum of nontypical irreducible representa
tions. 3 Every irreducible representation is uniquely charac
terized by its highest weight.4 We can easily write down the 
su(2) Ef1 u( 1) content of the product representation. Using the 
above-mentioned facts it is very simple to determine what 
irreducible representations of spl(2, 1) occur in the product. 
It is, however, difficult to see whether a nontypical irreduci
ble representation comes in as a direct or as a semidirect 
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summand (the typical ones are always direct summands4
). If 

there is at most one nontypical irreducible representation, 
the tensor product is nondegenerate, i.e., a direct sum of 
irreducible representations. In what follows, we give the 
Clebsch-Gordan series (and a grpahical rule for them) for 
the product of two typical, a typical with a nontypical and 
two nontypical irreducible representations. 

A. Nondegenerate tensor product of two typical 
irreducible representations of spl(2,1) 

Let [bl,qIJ and [b2,q2J be two typical representations, of 
spl(2,I)(so bl # ± ql' b2# ± q2)' We assume ql #0 and 
q2 # O. Throughout this paper we make the following 
notations: 

b = bl + b2, q = ql + q2, q' = I ql - q21 ' 

q < = min(ql,q2) . 

The results are: 

(a) ql = q2 =~; b #0; b # ± I: 

(2.1) 

[bl,qIJ ® [b2,q2] = [b,I] Ell [b + ~,~] Ell [b - M] . (2.2) 

(b) ql> l;q2 = ~(or ql = !; q2> 1); b # ± q; b # ± (q - 1): 

[bl,ql] ® [b2,q2] = [bl,q] Ell [blq - 1] 
Ell [b + !,q - !] Ell [b - M - !] . (2.3) 

(c) ql> 1; q2>1; b # ± (q - n) for n = O,I, ... ,2q < : 

[bl,qIJ ® [b2,q2J 
2q<, 2q<-1 

= L EIl[b,q-n]EIl L Ell [b,q-n] 
n=O n=l 

2q. -1 

Ell L EIl[b+!,q-!-n] 
n=O 
2q -1 

Ell L EIl(b-~,q-~-n]. (2.4) 
n=O 

~~q , Ell [b,q - n] means that for q I = q2 we sum only from 
zero to 2q < - 1 {the representation [b,OJ, for b #0 as re
quired, simply does not exist J. Note that for the excluded 
values of b, the tensor product becomes degenerate. 

These formulas can be summarized in a graphical rule: 
Assume (without any loss of generality) that ql>q2' Draw 
the Band Q3 axes in the root space3 (B is a complex axis, but 
all weights of the product representation have the same 
imaginary part, namely 1mb). Then draw the weight dia
gram of [b 2,q2J centered around the highest weight of[bl,q IJ. 
Ifql = q2 eliminate the point on theB axis. Write the value of 
1mb near the diagram. Each resulting point is the highest 
weight ofa typical representation and [bl' qlJ ® [b2,q2J is 
equivalent to the direct sum of all these typical representa
tions. The restrictions on b say that the product is nondegen
erate as long as there is no point on the ± 45° axis and with 
1mb = O. We shall call such points: "points on the light 
cone." As an example consider: 

[ 2 + q] ® [ -1 + i,l] 
= [1 +2q] Ell [ 1 +2i'1] 

Ell [ 1 + 2i,~] Ell [ 1 + 2i,!] Ell [ ~ + 2i,2] 

Ell [ ~ + 2i, 1] Ell [! + 2i,2 ] Ell [~ + 2i, 1 ]. (2.5) 

Graphically, we can refer to Fig. 1. 
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FIG. \. The Clebsch-Gordan series for [2 + i,1[ ® [ -I + i,I]. 

B. Nondegenerate tensor product of a typical with a 
nontypical irreducible representation of spl(2,1) 

Let [bl,qa be a typical (b l # ± ql) and [q2J ± (see Ref. 
3) a nontypical irreducible representation (highest weight: 
b2 = ± q2)' The notations (2.1) are maintained, with 
b = b l ± q2' The Clebsch-Gordan series is: 

[bl,qIJ ® [q2J ± 
2q<-1 2q<-1 

= L Ell (b,q - n] Ell L Ell [b ± !,q - ! - n] 
n=O n=O 

Ell e (ql - q2)[b,q'] , 

(2.6) 

provided that none of the highest weights ofthe representa
tions on the left-hand side is on the light cone (i.e., on the 
± 45° axis and with 1mb = 0). 

We can give the following graphical rule: Draw the 
weight diagram of [q] ± ,centered around the highest weight 
of [bpqlJ. Again, all the weights of the product representa
tion will have the same imaginary part, namely 1mb. Write 
1mb near the diagram. Ifql = q2 eliminate the point on theB 
axis. If q I < q2 eliminate all pairs of points which are symmet
rical with respect to the B axis (including the point on the B 
axis). Each resulting point is the highest weight of a typical 
representation and the Clebsch-Gordan series is the direct 
sum of all these typical representations. The condition 
b l # ± ql implies that the only possibility for the nondegen
erate product to degenerate is for the highest weights of two 
typical representations to get simultaneously on the light 
cone (thereby four nontypical irreducible representations 
appear and in Sec. 3 we have to find out whether they are 
direct or semidirect summands). As a first example consider: 

[PJ ® BJ. = [q] Ell [~,lJ Ell [q] . (2.7) 

This can be graphically represented by Fig. 2. Another 
example: 

[q] ® [1]_ = [-1 + q] Ell [- ~ + i,I], (2.8) 

(See Fig. 3 for a graphical representation. There the "x" 
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denote the points which have been eliminated after drawing 
the weight diagram [1]- centered around the highest weight 
of[q].) 

C. Nondegenerate tensor product of two nontypical 
irreducible representations of spl(2,1) 

(a) Let [ql] + and [q2] + be two nontypical irreducible 
representations. With the notations from (2.1) [here 
b = ± (q\ + qz) = ± q] we obtain 

[ql] ± ® [q2] ± 
Zq. -I 

={q]± $ I $[±(q+!),q-~-n]. (2.9) 
n=O 

There is no graphical rule in terms of the weight diagram of 
one representation centered around the highest weight of the 
other one. This is another feature that distinguishes nontypi
cal from typical representations. An example: 

[1]. ® HJ. = [~]. $ [3,2] $ [3,1] . (2.10) 

Graphically, one has Fig. 4. 
(b) Consider [ql]' and [q2]- (then b = ql - q2)' With the 

notations from (2.1) we obtain: 
2q -I 

[qlJ.®[q2]-=[q']± $ I $[ql-qz,q-n]. (2.11) 
"=0 

The first term on the left-hand side is [ql - q2]' if ql > q2, 
[q2 - q 1]- if q I < q2 and [0] if q I = q2' Again, there is no 
graphical rule similar to that from Secs. 2.A and 2.B. An 
example: 

[1]. ® m- = m- $ [ - M] $ [ - !,~] . (2.12) 

Graphically, we have Fig. 5. 

We see that in both cases (a) and (b) there is no continuous 
label left. The product of two nontypical irreducible repre
sentations is always nondegenerate. 

3. DEGENERATE TENSOR PRODUCT OF TWO 
IRREDUCIBLE REPRESENTATIONS OF spl(2,1) 

In this section we give the results for the degenerate 
tensor product and explain in principle how they were de
rived. The actual proof is given in Appendix 2. 

B 

/ 

/ 
e/ 

e " e 
/ 

/ 

// 1m b : a 
/ 

------------~~~-+------ Q3 

FIG. 2. The Clebsch-Gordan series for n,!] ® (H •. 
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FIG. 3. The Clebsch-Gordan series for [q] ® [1]- . 
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A. Degenerate tensor product of two typical 
representations 
1. b= ±q 

The highest weights of [b,q] and [b +!. q - n are now 
the light cone (the ± 45° line, with real b), so these represen
tations cease to be typical (all the other representations in the 
Clebsch-Gordan series remain typical). An analysis of the 
su(2) $ u( 1) content of the product representation shows 
that the series contain the following nontypical irreducible 
representations: [q] ± once, [q - !] ± twice and [q - 1] ± 

once. In Appendix 1 we calculate the basis vectors of the 
typical representations in the decomposition of the nonde
generate tensor product. We take from there the explicit ex
pressions for the 16q -4 basis vectors of 
[b,q] $ [b + !,q - n and replace b ...... ± q. As a result, we do 
not obtain the explicit form of the 16q -4 dimensional non
typical representation from the decomposition of the degen
erate tensor product. What we obtain is the 12q -3 dimen
sional representation [q - !, q - 1, q] ± 

[ = [q -1] ± (t-[q - U ± -B [q]3± l . Its representation 
space is invariant because the representation space of 
[b,q] $ [b +!, q - !] is, trivially, invariant in the nondegen
erate case. The second [q -!] ± ,denoted from now on 
[q - !] '± ' is not here because some basis vectors which 
were linearly independent for b of ± q become colin ear for 
b= ±q! 

In deducing the formulas for the nondegenerate prod
uct we have sought and found all vectors with the property 
that the action of the step-up operators on them gives zero 
(they were the highest weights ofthe typical representations 
in the Clebsch-Gordan series). When b = ± q, these vec
tors are contained in [q - ~.q - 1 ,q] ± and not in 
[q - !] '± . As a consequence there is at least one step-up 
operator that takes us from [q - !] '± to [q - ~,q - l,q ] ± 

It follows that the representation space [q - ~] '± • is not 
invariant in any basis! 

To sum up, the four nontypical irreducible representa
tions combine into a not fully reducible representation of the 
form [q - !,q - 1,q] + -B [q -!] ± . In Ref. 3 we showed 
that the only representation of this structure is 
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FIG. 4. The Clebsch-Gordan series for!!]. ® I ~l' . 

[q - ~,q - l,q,q - !] ± . Its explicit matrix form is given 
there. It replaces [b,q) ~ [b + !,q - H in (2.2)-(2.4). 

2. b = I q'~O: (so ql ~q2) 
Using exactly the same arguments as before, we can 

show that the Clebsch-Gordan series is given by replacing, 
in (2.3) and (2.4), [b,q') ~ [b ± ~, q' + !) by 
[q',q' - !,q' + !,q'] ± . 

3. b=q'=O:(SOql =q2) 

By the same arguments, we change (2.2) and (2.4) by 
replacing [b + ~, !) ~ [b - ~, !] with [0, - ~,!,o] I note that 
[0, - !,!,O]. = [0, - !,!,O]_ = [0, - !,!,O] J . 

We note that the tensor product [O,!) ® [O,!) was com
puted in Ref. 2. 

A representation of the type [q,q - !,q + !,q] ± is the 
most complicated not fully reducible nontypical representa
tion containing [q) ± twice, [q + !] ± and [q - !] ± (i.e., the 
only combination these four nontypical irreducible repre
sentations in which none of them is a direct summand). 

4. b = I (q - n) for n = 1, ... ,2q < -1: 

The highest weights of the following four typical repre
sentations get simultaneously on the light cone: [b ± !, 
q + ! - n] once, [b,q - n] twice, and [b +!, q - ! - n] 
once. From the su(2) ~ u(l) content of the product represen
tation, we see that these four typical representations are re
placed by eight nontypical irreducible ones: [q + ! - n] + 

once, [q - n] ± three times, [q - ! - n] ± three times, and 
[q - I - n] L once. Trying to obtain the same result by 
changing the value of b [b-+ ± (q - n)] in the formulas for 
the nondegenerate product we end up with a nontypical re
presentation of smaller dimension: 
[q - ! - n,q - 1- n,q - n] ± ~ [q - n,q +! - n] + . Its 
representation space is invariant in any basis. The represen
tation space of each of the remaining three nontypical irre
ducible representations is not invariant. These pieces of in
formation, together with the knowledge of all types of 
nontypical representations with 2, 3, and 4 irreducible com
ponents, are sufficient to determine the Clebsch-Gordan se
ries: We have to replace, in (2.4), 
[b ± !, q + ! - n] ~ [b,q - n] 
~ [b,q - n] ~ [b + !,q - ! - nJ by 
[q - ! - n,q - 1 - n,q - n, 
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q -! - n] ~ [q - n,q -! - n,q +! - n,q - n] ± . 

B. Degenerate tensor product of a typical with a 
nontypical irreducible representation of spl(2,1) 

For simplicity, we shall discuss only the case 
[b),q)J ® [q2]" The results for [b),q)] ® [q21- are obtained us
ing Eq. (2.4) of Ref. 3. 
1. b = - (q- n) torn = 0, 1, ... ,2q< -1 

The same thing as in Sec. 3.A happens. As a result, we 
have to change (2.6) by replacing 
[b,q - n] ~ [b +!, q - ~ - n] with 
[q -! - n,q -1 - n,q - n,q -! - nJ-. 

2. b = q - n torn = 1, ... ,2q< (n =2q< on/ytorql> q2) 

Again, by the same mechanism, we have to change (2.6) 
by putting [q - n,q - ! - n,q +! - n,q - n]. instead of 
[b,q - n] ~ [b + !,q +! - n]. 

4. CONCLUSIONS 

By now, it is a proven fact that we can write down the 
Clebsch-Gordan series for the case when the tensor product 
decomposes into a direct sum of typical representations plus 
eventually one nontypical irreducible representation4 (we 
called this a "nondegenerate tensor product"). We con
vinced ourselves once again that typical representations are 
indeed very similar to the representations of semisimple Lie 
algebras. 

The fact that we can write the Clebsch-Gordan series in 
a closed form even if it contains several irreducible nontypi
cal representations is by all means nontrivial (the "degener
ate tensor product"). In order to give the proof, we first had 
to classify the not fully reducible nontypical representations 
containing 2, 3, and 4 irreducible nontypical ones and then to 
do the unpleasant job of explicitly computing the Clebsch
Gordan coefficients. 

. The way in which we obtained the formulas for the de
generate tensor product, starting from the nondegenerate 
one, was surprising, because such a phenomenon does not 
occur in the Lie algebra theory. We believe that this is related 
to the lack of a viable concept of orthogonality for the basis 
vectors of the representations of superalgebras. 

The not fully reducible nontypical representation oc
curring in the Clebsch-Gordan series for the degenerate 
product has the most complicated structure possible. It is 

B 

2 3 

FIG. 5. The Clebsch-Gordan series for OJ. ® / 1/· . 
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one representation of the type [q,q - !,q + !,q) ± or a direct 
sum: [q - !,q - l,q,q - !] ± Ell [q,q - !,q + !,q] ± (with the 
given irreducible nontypical representation content all other 
alternatives are direct sums of smaller representation). 

The even part of spl(2, I) is not semisimple. Representa
tions of nonsemisimple Lie algebras bear both discrete and 
continuous labels. The (anti)commutation relations involv
ing the odd generators are not strong enough to provide dis
crete labels for all representations. There is, however, a class 
of superalgebras with semisimple even part. The labels of 
their representations are accordingly discrete, but they still 
have nontypical representations [except osp(I,2n)].1t would 
be interesting to study the properties of these representations 
and compare them to those of the nontypical representations 
of spl(2, 1). 
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APPENDIX 1: EXPLICIT DECOMPOSITION OF THE 
NONDEGENERATE TENSOR PRODUCT OF TWO 
IRREDUCIBLE REPRESENTATIONS OF spl(2,1) 

First we are going to do the decomposition of the prod
uct of two typical representations: [b"q,] ® [b2,q2]. Each of 
them has four su(2) ® u(l) multiplets (for ql> 1, q2> 1), 
namely: 

(b;,q;), (b; + !,q, - D, 
(b; - !,q; - D, (b;,q; - 1), i = 1,2. (Al.1) 

The basis vectors of[ b; ,q;] are: 

Iboq;,m;) , Ib; + !,q; - !,m;) , 
(Al.2) 

Ib; - !,q; - !,m;), Ib;,q; - I,m;) , 

m; being the third component ofisospin. Ibl'q"q,) has the 
grade Al and Ib2, q2,q2) the grade A2. For q; = !, the multi
plet (b;, q; -1) is absent (i = lor i = 2 or both). 

The action of the even generators of spl(2, 1) is obvious 
and the action of the odd generators is given by Eq. (3.20) of 
Ref. 2 [or (2.9) of Ref. 3]. The definition of the tensor prod
uct for two representations of a superalgebra is also given in 
Ref. 2. 

A typical representation of spl(2.1) is characterized by 8 
constants, 3 of which are independent [see Eqs. 

Now we give the results of our computation. 

1. The representations [b + j, q - j - n](n = O, ... ,2q < -1) 

I [b + !,q - ! - n l,b + !,q - ! - n,q - ! - n) 

(2.9) - (2.11) of Ref. 3]: a o /3i' Yi' 8" €;. t;, 1';, and OJ; 

(i = 1,2). We do not make a canonical choice for these con
stants because we don't know how to generalize the concept 
of Hermitian representation to superalgebras [for spl(2.1) 
this has been done only for typical representations with b 
real and Ib I >q].2.3 

We do not have to make an extra computation for 
q; = ! (i = 1 or i = 2 or both). In this case we simply take the 
formulas for ql> 1, q2> 1 (which we are going to present), 
eliminate all terms containing Ibi' q; - 1, m;) and put 8; 
== t;i' == 'T i , == Wi' == O. 

Let us now consider all su(2) Ell u(l) tensor products of 
pairs of su(2) Ell u( 1) multiplets (for q I> 1, q2> 1 there are 16 
different pairs). To do this we use the su(2) Clebsch-Gordan 
coefficients (with the notation from Goldberger and Wat
son). The resulting vectors will be labeled by the labels of the 
two multiplets we started with and the eigenvalues of Q 2 and 
Q3 [B and Q3 have additive eigenvalues and the usual su(2) 
convention is used for the eigenvalues of Q 2]. For example: 

I (b l,ql),(b2,q2),b,q - n,ml + m 2) 

= L C~,--:n7,q::n; m, Ib"q"m,) ® Ib2,q2,m2). (Al.3) 

By analyzing the quantum numbers of the resulting 
su(2) Ell u(l) multiplets we can immediately derive (2.2)
(2.4). 

The basis vectors of a typical representation on the 
right-hand side of (2.2)-(2.4) will be labeled by the corre
sponding representation label [e.g.,[b,q] J and the eigenval
ues of B, Q 2, and Q3' These vectors will be linear combina
tions of vectors of the type (Al.3), having the same 
eigenvalues for B, Q 2, and Q3' In order to find them, we first 
look for the highest weight vectors of each irreducible repre
sentation from the Clebsch-Gordan series. Thus the first 
step is to find all vectors which obey the condition that the 
action of V+ and W+ on them gives zero (everything concern
ing the action of the even generators is by now settled). After 
having obtained all highest weight vectors we act on them 
with V_ and W_ in order to obtain the other basis vectors, 
exactly as in Eq. (3.20) of Ref. 2. We shall not attempt to 
normalize the basis vectors because, as said before, we don't 
have a useful definition of orthogonality. Instead, we shall 
give the values of the constants a, ... ,OJ for each irreducible 
representation [again, these constants obey Eqs. (2.10) and 
(2.11) of Ref. 3]. 

= Y2Y (2q - n)(2q2 - n) I(b, + !,ql - D,(b2,q2),q -! - n,q -! - n) 

+ ( -I)'" + 'y,Y (2q - n)(2q, - n) l(b"ql),(b2 + !,q2 - D, q -! - n,q -! - n) 

+ ( -1)"'8 IY n(2q2 - n) I(b"q, - 1),(b2 + !,q2 - D,q -! - n,q -! - n) 

+ 82Y n(2ql - n) I(b, + !,ql - !),(b2 ,q2 -1),q -! - n,q -! - n) . 

I [b + !,q -! - n], b + l,q -1 - n,q -1 - n) = I(b l + !,ql - !),(b2 + !,q2 - V,q -I - n,q -I - n) . 
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I [b + ~,q - ~ - n],b,q -1 - n,q -1 - n) = YIY2V (2q - n)(n + 1) l(b l ,ql),(b2,q2),q -1 - n,q -1 - n) 

+ 61Y2V (2q2 - n)(2q1 -1 - n) I(bl,ql -1),(b2,q2),q -1 - n,q -1 - n) 

- y I62 V (2q1 - n)(2q2 - 1 - n) l(b l ,ql),(b2,qz - 1),q -1 - n,q - 1 - n) 

+ {)1{)2V n(2q -I - n) I(bl,ql -1),(b2,q2 -l),q -I - n,q -1 - n) 

+ (-I)'" + I 2qz,OzY21(b l + !,ql - !),(b2 - !,qz - !),q -I - n,q -1 - n) 

+ ( - 1)'" + 12qtPIYII(bl - !,ql - !),(b2 + !,q2 - D,q - 1 - n,q -1 - n) . 

I [b + !,q - ~ - n],b + !,q - ~ - n,q - ~ - n) 

= Y2V (n + 1)(2q1 -1 - n) I(bl + !,ql - !),(bZ,q2),q - ~ - n,q - ~ - n) 

+ (-l)"'YIV (n + 1)(2q2 -1 - n) I (bl>ql),(b2 + ~,q2 - !),q - ~ - n,q - ~ - n) 

+ ( -1)"'{)Iv' (2q -1 - n)(2q1 -1 - n) I(bl,ql -1),(b2 + !,q2 - !),q - ~ - n,q - ~ - n) 

- {)2V (2q - 1 - n)(2q2 - 1 - n) I(bl + !,q\ - !),(b2,q2 - 1),q - ~ - n,q - ~ - n) . 

a=(-I)"'+)(b+q-n)( q-n )112, /3= ( q-n )112, 6=(-I)"'[2(q-l-n)(2q-1-2n)]-1/2. 
q-~-n q-!-n 

2. The representations [b - j,q - j - n] (n = O, ... ,2q < -1) 

I [b - !,q - ! - n],b - ~,q - ! - n,q - ! - n) 

= E2\/ (2q - n)(2q2 - n) I(b) - !,ql - P,(b2,q2),q - ~ - n,q -! - n) 

+ ( _1)'" +) E)V (2q - n)(2q) - n) Ibl> q)),(b2 - !,q2 - D, q -! - n,q -! - n) 

+ ( - 1)"';)V n(2q2 - n) I(b),q) -1),(b2 - !,q2 - !),q -! - n,q -! - n) 

+ ;2V n(2q) - n) I(b) - !,q) - D,(b2,q2 -1),q -! - n,q -! - n) . 

I [b - !,q -! - n],b -1,q -1 - n,q -1 - n) = I(b) - ~,q) - ~),(b2 - !,q2 - ~),q -1 - n,q -1 - n) . 

I [b - !,q - ! - n] ,b,q - 1 - n,q - 1 - n) 

= EIE2V(2q - n)(n + 1) l(b),ql),(b2,q2),q -1 - n,q -1 - n) 

+ ;)E2 V (2q2 - n)(2q1 - 1 - n) I(b),ql - 1),(b2,q2),q - 1 - n,q - 1 - n) 

- E1;2\1 (2ql - n)(2q2 -1 - n) l(b l ,q)),(b2,q2 -1),q -1 - n,q -1 - n) 

+ ;1;2\1 n(2q -1 - n) I(bhql -1),(b2,q2 -1),q -1 - n,q -1 - n) 
+ (-1)'" + 12q)a)E11(bl + !,q) - D,(b2 - !,qz - !),q -1 - n,q -1 - n) 
+ (-1)'" +12q2a2E21(bl - !,q) - ~),(b2 + !,q2 - D,q -1 - n,q -1 - n) . 

I [b - !,q -! - n],b - !,q - ~ - n,q - ~ - n) 

= E2\1 (n + 1)(2q1 -1 - n) I(b) - !,ql - D,(b2,q2),q - ~ - n,q -! - n) 

+ (-I)"'E)V (n + 1)(2q2 -1 - n) l(b l,ql),(b2 - !,q2 - D,q -! - n,q - ~ - n) 

+ ( -1)"';1\1 (2q - 1 - n)(2q1 -1 - n) I(b),ql - 1),(b2 - !,q2 - !),q - ! - n,q - i - n) 

- ;2\1 (2q -1 - n)(2q2 -1 - n) I(b) - !,q) - D,(b2,q2 -1),q - i - n,q - ~ - n) . 

(A 1.4) 

a= , /3=(-I)".+I(-b+q-n) , ;=(-l)"·[2(q-l-n)(2q-1-2n)]-)/2. ( 
q -n )1/2 ( q-n )112 

q-!-n q-!-n 
(A 1.5) 

3. The representations [b - n,q - n] (for n = 0 and n = 2q < the multiplicity is one and for n = 1, ... ,2q < -1 it is two) 

For n = 1, ... ,2q < -1 we could not find a "canonical" way to specify the two equivalent representations [b - n, q - n]. 
So we give the basis vector in terms of two additional constants Mn and Nn. Putting, e.g., Mn = 0, Nn = 1, we obtain one 
[b - n, q - n] and then putting Nn = 0, Mn = 1 we obtain the other [b - n, q - n]. There is, however, an infinity of choices. 
We obtain: 

I [b,q - n ],b,q - n,q - n) 

1289 

= a l l(b),q)),(b2,q2),q - n,q - n) + a21(b l ,q) - 1),(b2,q2),q - n,q - n) 
+ a3 1(b l ,q)),(b2,q2 -1),q - n,q - n) 
+ a4 1(b),ql - 1),b2,q2 - 1),q - n,q - n) + asl(b) + !,ql - D,(b2 - !,q2 - !),q - n,q - n) 
+ a61(b) - !,ql - D,(b2 + !,q2 - !),q - n,q - n) 
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for n = 0: 

a, = 1, a2 = a3 = a4 = as = a6 = 0; 

n = 1, ... ,2q< -1: 

( 
2q - n + 1 )112 

a, = - n (y,E2 Mn + E,Y2N n) , 

_ (2q, - n + 1)112 a3 - - (Y';2M n + E,D2Nn), 
2q2 -n 

as = ( - 1)"'Mn , a6 = ( -1)"'Nn ; 

a2 = - H2(q, - q2)]-1J2 (!'!..! + b2), a3 = 0, 
q, q2 

as = ( - 1)'" 7J32' a6 = ( - 1)'" + 'lU,a2 ; 

n = 2q< ;q, <q2: 

a,= - (2q2+1)'12E2lU2, a2=0, a3 = -H2(q2-q,)]-'/2(!'!..!+ b2), 
2q, q, q2 

a4 = a,D" as = ( - 1) 'a,lU2' a6 = ( - 1)'" + '[3,72; (
2q , -1 )112 " 

2q2 

n = 2q < ;q, = q2: 

a, = a2 = a3 = a4 = as = a6 = O. 

I [b,q - n],b + !,q -! - n,q - ~ - n) = c,l(b, + !,q, - D,(b2,q2),q - ~ - n,q -! - n) 

+ c21(b"q,),(b2 + !,q2 - D,q -! - n,q -! - n) 
+ c3 1(b"q, - 1),(b2 + ~,q2 - D,q - ! - n,q - ~ - n) 

+ c4 1(b, + !,q, - ~),(b2,q2 - 1),q - ! - n,q - ! - n) ; 

for n = 0: 

( 
2q )112 

C, = a, 2q ~ 1 ' 

n = 1, ... ,2q < 1: 

c, = - [n(2q, - n)]-'/2[E2(q, + b, - n)Mn +2q,a,E'Y2Nn]' 
C2 = (-1)'" +1 [n(2q2 - n)]-'/2[2q2y,a2E2M n + E1(q2 + b2 - n)Nn ], 

c3 = (-1)'" [(2q - n)(2q, - n)]-'/2[2q2D,a2E2Mn + ;1(q2 + b2 - n +2q,)Nn ], 

C4 = - [(2q - n)(2q2 - n)]-'/2[;z(q, + b, - n +2q2)Mn +2qlaIEID2Nn]; 

n = 2q< ;ql >q2: 

C1 = - ~71(b + ql - q2)[q2(ql - q2)]-'/2; C2 = 0, 

C3 = ( - 1)'" + 1 ~az(b + ql - q2)[ql(ql - q2)]-'/2; C4 = 0; 

n=2q<;q2>ql: 

C1 = 0; C2 = (-I)"'!72(b + q2 - ql)[ql(q2 - ql)]-1/2, 

C3 = 0; C4 = - !a,(b + q2 - ql)[q2(q2 - q,)]-1/2. 

I [b,q - n],b - ~,q -! - n,q -! - n) = d,l(b, - !,q, - !),(b2,q2),q -! - n,q - ~ - n) 
+ d21(b"q,),(b2 - ~,q2 - ~),q -! - n,q -! - n) 
+ d3 1(b"q, - 1),(b2 - ~,q2 - D,q - ~ - n,q - ~ - n) 
+ d4 1(b, - !,q, - ~),(b2,q2 - 1),q - ! - n,q - ! - n) ; 

for n = 0: 

d = [3 (3.L)1I2. d - ( 1)"'[3 ( 2q2 )112. d - d - O' 
1 I 2q+l ' 2- - 2 2q+l ' 3- 4- , 

n = 1, .. ,2q< -1: 
d, = - [n(2q, - n)]-'/2[2qJ3,y,E2M n + Yiq, - b l - n)Nn] , 
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d2 = ( -1),.\' + I [n(2q2 - n)]-1/2 [YI(q2 - b2 - n)Mn + 2q2E/32Y2Nn ] , 

d) = (-1),.\' [(2q - n)(2q1 - n)]-1/2[8,(q2 - b2 - n +2qI)Mn +2q~.f32YzNn] . 

d4 = - [(2q - n)(2q2 - n)]-'/2[2q,P'Y';~n + 82(q, - b, - n +2q2)Nn], 

n = 2q < ;q, > q2: 

d l = !Ct>,( - b + q, - Q2)[q2(q, - qZ)]-IIZ; 

d2 =0, 

d) = (-I)"\'~Pi - b + ql - q2)[q)(q) - q2)]-1/2; 

d4 =0; 

n = 2q < ;q) <q2: 

dl=O 

d2 = ( - 1),.\' + I ~Ct>2( - b + q2 - ql)[q)(q2 _ q,)]-1t2, 

d)=O, 

d4 = lj31( - b + qz - q)[qZ(q2 - ql)]-1/2 q. 

I [b,q - n],b,q -1 - n,q -1 - n) = i l l(b l,ql),(b2,q2),q -1 - n,q -1 - n) 

+ i21(b l,ql - 1),(b2,q2),q - 1 - n,q - 1 - n) 

+ i) I (b),q)),(b2,q2 - 1),q - 1 - n,q - 1 - n) 

+ i4 1(b),ql -1),(b2,q2 - 1),q -1 - n,q -1 - n) 

+ isl(b l + !,ql - !),(b2 - !,q2 - !),q - 1 - n,q - 1 - n) 

+ 16 1(b l - !,ql - !),(b2 + !,q2 - !),q - 1 - n,q -1 - n) ; 

II = E1dl [(n + 1)(2q2 - n)] 1/2 + ( - 1)'" + IE2d2[ (n + 1)(2q, - n)] 1t
2, 

12 = ;Idl [(2q - n)(2q1 -1 - n)] lIZ + ( _1)'" + 1€2d3[n(2q1 -1 - n)] '/Z , 

I) = ( -1)"';zd2[(2q - n)(2q2 -1 - n)] 1/2 + Eld4 [n(2qz -1 - n)] 1/2, 

14 = ( -1)"\';zd3 [(2q -1 - n)(2q2 - n)] 1/2 + ;ld4[(2q -1 - n)(2q1 - n)] 1/2, 

15 = a ld2[(2q - n)(2q1 - n)p/2 + 1')d3 [n(2q2 - n)p/2, 

16 = (-1),.\' +la2d l [(2q - n)(2q2 - n)]1!2 + (-I)"\'1'2d4[n(2q1 - n)p/2; 

a= (q+i-n)l12 =p, 8= -H(q-!-n)(q-n)]-1/2. 
q-n 

The complete su(2) multiples are obtained by repeatedly acting with Q_ on the vectors written here. 

(A 1.6) 

If somebody will ever find a canonical form for the representations of spl(2, 1), he can still use our formulas. All he has to 
do is to shift some multiplicative constants from the basis vectors to a, ... ,Ct>. 

Let us now consider the case [bl,ql] ® [q2] ±. The explicit decomposition can be obtained from the same formulas as 
above, with I ± (Q2 - D,q2 - !) and I ± q2,q2 - I) missing and a 2Y2 = 1, P2 = 82 = E2 = ;2 = 1'2 = Ct>2 = 0 {for [qz]. J or 
P2E2 = I, a2 = Y2 = 82 =;2 = 1'2 = Ct>2 = 0 (for [Q2]-]' 

Doing the same thing for [bl,ql]---+[qIJ ± ' we can also particularize our formulas for [ql] ± ® [q2] ± and [q,]. ® [q2]- . 

APPENDIX 2: DECOMPOSITION OF THE DEGENERATE TENSOR PRODUCT OF TWO IRREDUCIBLE 
REPRESENTATIONS OF spl(2,1) 

We shall treat the cases discussed in Secs. 3.A.l and 3.A.4 in order to explain how the degeneration occurs. The fomulas 
for all other cases can be derived along the same line, starting from the formulas in Appendix 1. As a matter of fact we 
explicitly did the calculations for all cases, but nothing new can be learned from the ones omitted here. The explicit matrix 
elements of the representations of the type [q,q - !,q + !,q] ± which we are going to encounter are in agreement with Ref. 3, so 
we won't write them once again here. 

1. [b1,Qlbs [b2,Q2i for b = Q 

The following pairs of vectors [and with them their whole su(2) multiplets] become colinear: 

I [b,q],b - !,q - !,q -!) with I[b - !,q - !],b - !,q - !,q -!), I [b,q],b,q -1,q -1), 
with I [b - !,q -i],b,q -l,q -1) . 

Using (AU) and (A1.6) we obtain the basis vectors for [q - !,q -l,q,q -! ].( [q -!] '+ is as in Sec. 3.A.l) J: 
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I [q - ~]+,q - ~,q - !,q -!) = €2Y 2q21(b) - !,q) - D,(b2,q2),q - ~,q - p 
+ (-I)'" +)€)Y 2q) l(b),q),(b2 - !,q2 - !),q - !,q -!) . 

I [q - !]+,q,q - I,q -1) 

= €)€2Y 2q l(b),ql),(b2,q2),q -l,q-1) 

+ (;1€2Y 2q2(2q1 -I) I(bl,ql -1),(b2,q2),q -I,q -1) - €1{;2Y 2q1(2q2 -I) l(b l ,ql),(b2,q2 -I),q -1,q-1) 

+ (-I)'" + 12qla l€ll(b l + !,ql - !),(b2 - !,q2 - !),q -1,q-1) 

+ (-I)'" +12q2a2€21(bl - !,ql - !),(b2 + !,q2 - D,q -I,q -1) . 

I [q - 1 ]+,q - I,q - I,q -1) = I(b l - !,ql - !),(b2 - !,q2 - D,q - I,q -1) . 

I [q -I ]+,q - !,q - M -~) = €2Y 2q1 -I I(b l - !,ql - !),(b2,q2),q - M -~) 
+ (-l)"'€IY 2q2 -I l(bl,ql),(b2 - !,q2 - D,q - M -~) 
+ ( -I)"'{;IY (2q - 1)(2q1 - I) I(bl,ql - 1),(b2 - !,q2 - D,q - M -~) 
- {;2Y (2q -1)(2q2 -I) I(b l - !,ql - D,(b2,q2 -I),q - ~,q -~) . 

I [q]+,q,q,q) = l(b l ,ql),(b2,q2),q,q) . 

I [q]+,q + !,q - ~,q -!) = alY 2ql I(b l + !,ql - D,(b2,q2),q - ~,q -!> 
+ a 2Y 2q21(b l,ql),(b2 + !,q2 - !),q - !,q -!) . 

I [q - U'+ ,q - !,q - !,q -!) = €2Y 2q2 I(b l - !,ql - ~),(b2,q2),q - !,q -!) 

+ ( -I)"'€IY 2q1 l(b l,ql),(b2 - !,q2 - D,q - !,q -!) . 

I [q -!]'+ ,q,q -I,q -1) = 2€1€2(ql - q2)(\.I2;Y I I(b l ,ql),(b2,q2),q -I,q -1) 

- (;1€2Y 2q2(2ql -1) I(bl,ql -1),(b2,q2),q - l,q-1) 

- €1{;2Y 2q1(2q2 -1) I (b l ,ql),(b2,q2 -1),q -1,q-1) 

+ (-1)'" +12qla l€ll(b l + !,ql - !),(b2 - !,q2 - D,q -1,q-1) 

+ (-I)"'2q2a2€21(bl - !,ql - !),(b2 + !,q2 - !),q -1,q-1) (A2.2) 

2. [b"q,j ® [b2,q2i for b = q - n,n = 1, ... ,2q < -1 

The following basis vectors become colinear: 

I [b + !,q +! - n],b,q - n,q - n) 

with one of the 

I [b,q - n],b,q - n,q - n) , 

I [b + !,q + ! - n],b + !,q - ! - n,q - ! - n) 

with one of the 

I [b,q - n],b + !,q -! - n,q -! - n) , 

I [b - !,q - ! - n],b - !,q - ! - n,q - ! - n) 

with both 

I [b,q - n],b - !,q -! - n,q -! - n) , 

I [b - !,q -! - n],b,q -I - n,q -I - n) 

with both 

I [b,q - n],b,q -I - n,q -1 - n) . (A2.3) 

Using Appendix 1 we found that b-q - n implies: 

1292 J. Math. Phys., Vol. 21, No.6, June 1980 

[b + !,q +! - n] (f) [b,q - n] 
(f) [b,q - n] (f) [b - !,q -! - n]-[q - n,q +! - n]+ 
(f) [q - ! - n,q - 1 - n,q - n]+ . Its representation space is 
invariantwhereasthoseoftheremaining[q -! - n]+(twice) 
and [q - n]+ (once) are not. By explicitly considering all re
presentations of this form and all possible basis transforma
tions we have been able to show that the result is indeed 
[q - ! - n,q -1 - n,q - n,q -! - n]+ 
(f) [q - n,q -! - n,q +! - n,q - n]+. 
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An infinite class of finite-dimensional irreducible representations and one particular infinite
dimensional representation of the special linear superalgebra of an arbitrary rank is constructed. 
For every representation an orthonormal basis in the corresponding representation space is 
found, and the matrix elements of the generators are calculated. The method we use is similar to 
the one applied in quantum theory to compute the Fock space representations of Bose and Fermi 
operators. For this purpose we first introduce a concept of creation and annihilation operators of a 
simple Lie superalgebra and give a definition of Fock-space representations. 

1. INTRODUCTION 

After the concept of supersymmetry was introduced in 
particle physics,' its physical consequences2 as well as the 
underlying mathematical structure were investigated in sev
eral studies. It was soon recognized that the new symmetry 
was based on a mathematically known, however almost un
studied, algebraical structure, the so-called graded Lie alge
bras or Lie superalgebras (LS'S).3 During the last years much 
attention was devoted to the classification4

-
1O and the repre

sentation theory 11-'8 of the LS's. The biggest success is the 
full classification of all finite-dimensional irreducible repre
sentations of the so-called basic classical LS's. '6 In contrast 
to the simple Lie algebras, however, these representations do 
not exhaust all finite-dimensional representations. The sim
ple LS's possess in general finite-dimensional representa
tions that are not completely reducible. The theory of these 
representations, as well as of the infinite-dimensional repre
sentations, is still far from being complete. The study of the 
known representations, including those with highest weight 
(and hence all finite-dimensional irreducible representa
tions), is also not yet on the corresponding level for the Lie 
algebras. In particular, the physically important problem of 
computing the matrix elements of the generators within a 
fixed basis of the classified modules have been solved only for 
the lowest rank LS's (see Refs. 5, 15, 18). 

In the prsent paper we study one class offinite-dimen
sional irreducible representations and one particular infi
nite-dimensional representation of the basic classical Lie su
peralgebralO A (O,n) for any value of n. The results hold also 
for the infinite-rank algebra A (0,00). In every irreducible 
module we construct an orthonormal basis and calculate ex
plicitly the matrix elements of the generators. The method 
we use is similar to the one applied in quantum theory for 
finding the Fock space representations of the Bose and Fer
mi operators. The guiding idea comes from the observation 
that for a given simple LS .91 one can choose a finite set 
a ,± , ... ,a;;; E.9I of root vectors such that, on one hand, they 
generate through multiplications and linear space oper
ations the algebra .91 and, on the other hand, a,± , ... ,a';: al-

"'Present address: Institute of Nuclear Research and Nuclear Energy, boul. 
Lenin 72, 1184 Sofia, Bulgaria. 

low construction of Fock-type representations in the usual 
way for quantum physics, so that the corresponding repre
sentations of.91 are irreducible. Because of the last property, 
we call the elements a,± , ... ,a';: creation and annihilation op
erators (CAO's). The Bose and Fermi operators and also 
their generalization, the paraoperators,20 fit into this 
scheme. Any n pairs of para-Bose operators generate the 
simple LS B (0,n)2; similarly n pairs of para-Fermi operators 
generate the simple Lie algebra Bn of the orthogonal group 
SO(2n + l)Y·23 

In the terminology of Ref. 16 the finite-dimensional re
presentations we obtain are typical representations induced 
by trivial representations of the subalgebra 

P = Ao(O,n) + A ,(O,n). Here 

A (O,n) = A_,(O,n) + Ao(O,n) + A ,(O,n) (1) 

is the distinguished Z-gradation. In general, the finite-di
mensional irreducible A (O,n)- modules are labelled with 
n + 1 numbers (a"a " ... ,an ), where asEC and a " ... ,an are ar
bitrary nonnegative integers, aiEZ •. We study a sequence of 
A (O,n)- modules with signature (p,O, ... ,O),pEZ •. The restric
tions on the allowed modules come from the definition of the 
Fock space, which requires that the whole space be generat
ed out of the highest weight (= the vacuum) by means of 
only odd negative roots, (i.e., of the creation operators). The 
infinite-dimensional representation of A (0,2n - 1) corre
sponds to a representation with highest weight induced from 
a trivial representation of a subalgebra generated from 
glen) + gl(n)CAo(0,2n -1) and a certain system of positive 
root vectors [whose linear envelope is noncommutative and 
hence different from A ,(0,2n - 1)]. 

The representations we consider are star representa
tions (introduced in Ref. 15) corresponding to an adjoint 
operation which is natural for the quantum theory: 

(a i±)* = ai~ . (2) 

We introduce a Hilbert-space structure in the representation 
spaces in such a way that the *-operation (2) is a Hermitian 
conjugation. In principle one can construct the irreducible 
modules without defining a metric. For this purpose, howev
er, one has first to determine the maximal submodule I in the 
A (O,n)-module Vinduced by the trivial representations of 
the subalgebra P and then past to the quotient V = V /1. '6 In 
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our case the metric singles out automatically an irreducible 
sub module of V which is isomorphic to Vand thus simplifies 
all calculations considerably. 

We wish to point out that the CAO's of A (O.n) can be 
defined also from purely physical considerations as an alter
native way for quantization of a scalar field in the framework 
of the Lagrangian quantum field theory which leads to a 
generalization of the quantum statistics different from the 
parastatics. 24 In this respect it is important that the results 
hold for infinite and even continuum number of CAO's as 
this is the case in the quantum field theory. In this article we 
follow an algebraical approach. The CAO's are defined in a 
way that is more suitable for construction of representations. 
We first give a definition ofCAO's and their Fock space 
representations (Sec. 2) and point out that the definition does 
not determine the operators uniquely within the LS. In Sec. 3 
with one possible realization of CAO's we construct a class 
of finite-dimensional representations of the LS A (O,n - 1) 
and calculate the matrix elements of the generators in a 
proper basis. In Sec. 4 we write down the matrix elements of 
an infinite-dimensional representation of A (0,2n - 1) that is 
due to another realization of the creation and annihiliation 
operators. 

2. DEFINITION OF CAO'S AND THEIR FOCK-SPACE 
REPRESENTATIONS 

Definition 1: The minimal set of root vectors af , ... ,a~ 
5 = ±, from the (semi) simple LS .sf with product [ , ] are 
said to be creation ( 5 = +) and annihilation ( 5 = -) op
erators of ,r;j' if the following conditions are fulfilled. 

1. The second order polynomials of aJ± , ... ,a;; with re
spect to [ , ] generate .sf, i.e., (lin.env. = linear envelope), 

.sf = lin.env.! af,[al,a~ ]Ii,j,k = 1, ... ,m;S,1j,E = ± 1. 
(3) 

2. The ordering of the basis in the Cartan subalgebra H 
of.w' can be chosen such that the root of af is sh i, where h i is 
a negative root [i.e., all at , ... ,a:; (a ,- , ... ,a;;;) are negative 
(positive) root vectors]. 

This definition makes sense. It is known that the second 
order polynomials of para-Fermi (and hence of Fermi) oper

ators b ,± , ... ,b n± generate the simple Lie algebra Bn of the 
orthogonal group.22.23 To show that the second condition 
holds we recall that by definition20 these operators satisfy the 
relation 

[[b Sb"] bE]-I( _ )2£ bS_J(!-_ )2£ bTl 
i' j , x -:2 1j E Ujk i :2 ~ E Uik j' (4) 

Here and throughout the paper 5, 1j. E, /j = ± or ± 1, 
[x,y] = xy - yx; and! x,y 1 = xy + yx. Bya space and an op
erator we always mean a linear space and linear operator. An 
ordered basis in the Cartan subalgebra He B n can be chosen 
to be25 

hi = ~[b i- ,b /]. i= 1, ... ,n. (5) 

From (4) we have 

[h;.b f] = - SDijb f. (6) 

Here b} is a root vector and the corresponding root OJ*} in 
the dual basis h * .... . ,h * n of the conjugate space H * of His 
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n 

OJ*} = I ( - SDi)h *'. 
i= I 

Therefore the first nonzero coordinate of OJ*/ is + 1 and 
b / (b j -) is a negative (positive) root vector. 

For another example take the Bose or, more generally, 
para-Bose operators b ,± , ... ,b ni.. They span a basis in the odd 
part of the LS B (0,n).2' In this case 

B(O,n)=lin.env.[bf,!bl,b~ 1 li,j,k = I, ... ,n;S,1j,E= ± J 
(7) 

and the product between the odd and even elements is deter
mined through the three linear relations of the para-Bose 
operators 

[!bf,b)'Lb1] = (E - s)Dikaj' + (E -1j)Dkj af. (8) 

If the basis in the Cartan subalgebra is chosen to be 

h i = -!!b/,bi'j, i=l, ... ,n, (9) 

then (6) holds and hence both conditions ofDer. 1 hold. The 
examples show that the Bose and Fermi operators and also 

their generalization, the paraoperators, are CAO's in the 
sense of Def. 1. 

There are different possible choices of CAO's for a giv
en LS. Without going into a detailed discussion we remark 
that up to transformations from the Weyl group the roots 
corresponding to the CAO's are defined uniquely. For in
stance, in the case of classical Lie algebras the only possible 
choice of the roots so that the corresponding root vectors are 
CAO's is the following24 (i = 1, ... ,n,1j = ±): 

An a/_+(hO-h i
), 

Bn bi±_+h i, 

en _, c,t - + (h ° - 1jh i), 

Dn _, d ;~ _ + (h 0 + 1jh i) . 

For a construction of representations via CAO's we de
fine a Fock space through some of the main properties of the 
ordinary Fock space of Bose and Fermi CAO's. 

Definition 2: The irreducible ,r;j' -module (= irreduci
ble representation space of the LS .sf) W is called a Fock 
space of .# if CAO's can be chosen such that 

(1) W contains a vector 10), called a vacuum, so that 

(a) a i-1°) = 0, i = l, ... ,n, (10) 

(b) ai- a/10) = DijPi 10), Pi are constants; (11) 

(2) W is a Hilbert space with metric ( , ) defined in the 
usual way (see also Lemma 1), 

(a) (a i7 a/ ... ai : 10), a/ at ... a/ 10» = 

(Ola,: ···a,:::- ai-: aj ,+ a/ ... a/ 10), (12) 

(b) For any polynomial PofCAO's 

(Ola i+ P 10) = 0, i = l, ... ,n, 

(c) (1°),1°»)-(°1°) = I. 

For the Bose and Fermi operators allpi in (II) are equal 
to 1. In the parastatistics, p, = pz = ... = p" = P is a positive 
integer called an order of the statistics. For different values 
of P one obtains different irreducible representations of B n or 
B (O,n). For instance, the representation of Bn with order of 
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the statistics p has a signature [that is, coordinates of the 
highest weight 10) in the basis (5)] (p/2, p/2, ... , p/2).25 

The following property of the Fock space of .sf is a 
consequence of (10) and (11) only. 

Lemma 1: A Fock space W is the closure of the linear 
envelope W I of all possible vectors 

a+a+ ... a+IO) m=OI2···. 
t 1 l~ I",' , , , 

(13) 

Proof Let, for some values ofj,k;1/,E, af, i = I, ... ,n, and 
[aj',aU be the generators of .sf. The proof is based on the 
Poincare-Birkhoff-Witt theorem,z6 stating in our case that 
the basis in the universal enveloping algebra of.sf is given by 
all monomials 

(14) 
r,s 

Here A;), B k' Cl' Dpq ' Ers and F m are arbitrary nonnegative 
integers; the products are to be taken over all possible values 
of i,j, ... ,m. Any vector IX)EW' is a linear combination of 
vectors P (A , ... ,F) I 0). The latter is different from zero only 
for Dpq = E rs = F m = 0. To complete the proof it remains to 
remark that due to (II) the non-zero vectors II/[a;- ,a;+ ]c, 
X 10) are proportional to 10). 

Lemma 2: Up to a multiplicative constant the vacuum 
is unique. 

Proof Suppose there is another vacuum 10.). Without 
loss of generality we can accept that 10.) is orthogonal to 10) 
(aIO.) + (310) is also a vacuum). Let Ix) be an arbitrary vec
tor from the dense domain W'. According to Lemma 1 there 
exists a polynomial P (a+) of the creation operators such that 
Ix) = P(a+)IO). Since (Olla,+ Q 10) = 0, for every IX)EW' 

(OIIP(a + )10) = (Ollx) = 0. 

Therefore 101) = 0. 
For the Hermitian conjugate L * of L in W we obtain 
Corollary: On the dense subspace W' C W(a 1+)* = a;- . 

3. FINITE-DIMENSIONAL FOCK REPRESENTATIONS 
OFA(O,n -1) 

In order to choose CAO's of the Lie superalgebra 
A (O,n - 1), it is convenient to introduce first the general lin
ear superalgebra gl(I,n). The latter is given by the set of all 
(n + I)-dimensional square matrices. Let ea(J' a,/3 = O,I, ... ,n 
be a matrix from gl(l ,n) with 1 in the ath row and (3 th col
umn and zero elsewhere. The even and the odd parts Go and 
G I of gl(l,n) = Go + G I are 

G I =lin.env.feoj,e;oli= I,2, ... ,nj, 

Go = lin.env.! eOO,eij Ii,) = l, ... ,n). 

(15) 

(16) 

The multiplication in gl(l,n) is obtained by linear extension 
of 

[a,b] = ab - (-I)a(Jba, aEGa, bEG(J' a,/3 = 0,1, (17) 

where ab is the usual matrix product of a and b. 
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The LS gl(I,n) is not simple since it contain as nontri
vial ideal the sub algebra of all matrices that are proportional 
to the unit matrix. The special linear Lie superalgebra 

A (O,n -1) = Ao(O,n -1) +AI(O,n -1) (18) 

is subalgebra of gl(I,n) with 

A I(O,n - 1) = lin.env.' eo;,e;o Ii = 1,2, ... ,n j, (19) 

Ao(O,n -I) = lin.env. f eoo + ekk,eij lii=j,i,j,k = I, ... ,n ).(20) 

The Cartan subalgebra H of A (O,n - 1) can be chosen to be 

H= !eoo+ekklk= I, ... ,nJ. (21) 

Now we define the CAO's of A (O,n - 1). To obtain a 
representation independent choice we follow the method of 
Ref. 27. Take the algebraE offormal polynomials of in deter
minates al± , ... ,an± with additional algebraical relations 

[la;+ ,aj - ),ak+ ] = 8jk a;+ - 8ijak+, 

[l a;+ ,aj- j ,ak- ] = - 8;k aj - + 8'jak- , 

fa/ ,a/ J = fa;- ,aj- J = 0. 

Consider the linear subspaces Ao and A I from E, 

A I = lin.env.! afls = ± ,i = 1, ... ,n j, 

Ao = lin.env·{fa/ ,a)- J Ii,} = I, ... ,n}, 

(22) 

(23) 

and letA = Ao + AI CEbe the direct space sum ofAoandA I' 
For any elements aa,baEA a , a = 0,1, we define a product 
[ , ] in A as a linear extension of the relations 

[al,b l] = !al,b l ), [ao,ba ] = [ao,ba ]. (24) 

Proposition 1: The above elements af , ... ,a~ are creation 
(S = +) and annihiliation (S = -) operators of 
A (O,n -1). 

Proof Because of (22) and (24) A is a LS with an even 
partAo and an odd part A I' Let 8be a one-to-one linear map 
of A (O,n - 1) onto A, 

i,j = I, ... ,n. (25) 
eij + 8ijeoo-fa/ ,a)- j, 

A simple, however, somewhat lengthy calculation shows 

[8 (x),8 (y)] = 8 ([x,yD. (26) 

Therefore 8 is an isomorphism. Thus the second order poly

nomials (3) of n pairs al± , ... ,an± generate A (O,n -1). To 
show that the last requirement of Def. 1 holds, we obtain 

[h,af] = w*f(h )af, hER,S = ±, i = 1, ... ,n. (27) 

Therefore, a I± , ... ,a n± are root vectors of A (O,n - 1) with 
roots w*f that are linear functionals (i.e., elements from the 
dual to the Cart an subalgebra H space H *, (JJ*fER *). It is 
possible to consider (JJ*f always as a negative (S = +) or a 
positive (S = -) root by choosing the ordered basis in Has 

i = 2,3, ... ,n. (28) 

From (22) we have 

[hl,af] =S(8Ik +82k -2)a~. (29) 
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Therefore 

w*%(h l ) = 5' (b 1k + b2k - 2). (30) 

Since w*Hh I) is the first co-ordinate of the root w*s in the 
dual basis, from (30) we have ' 

w*/(h l)< -1, w*;-(hl);;d. (31) 

Hence a;+ (a;-), are negative (positive) root vectors. This 
completes the proof. 

Now we give a class of finite-dimensional representa
tions of A (O,n -1). Because of Def. 2 we postulate that 

ai-at 10) = b,jpIO), (32) 

(i.e., we consider the case P 1 = P2 = ... = P n = P with p28 be
ing positive integer, p = 1,2,.··). In this case the metric in the 
Fock space is positive definite. For para-Bose and para-Fer
mi statistics (32) also holds for the representations of the 
CAO's of B (O,n) and B n' respectively. Therefore in this pa
per we call the integer p an order of the (A-super) statistics. 

Let us denote by W(n,p) the Fock space of A (O,n - 1) 
with an order of the statistics p. Since 1 a/ ,a;+ J = 0, the 
square of every operator (a/)2 = 0. A related statement is 
given in the following lemma. 

Lemma 3: Let q = min(n,p). The product of arbitrary 
q + 1 creation operators is the zero operator in W(n,p), i.e., 

(33) 

Proof (1) If p> n, then q = n and the product (33) has 
to contain at least one operator, say a;+ , twice. Since the 
creation operators anticommute and for n > 1 (a;+ y = 0, 
(33) holds. So the representation space W(n;p) is finite for 
any p. 

(2) For the case n >p (i.e., q = p) we first show that 

- + + + 1°) -a· a· · .. a .. ·a· 
f)l JA 1 ... 

= (p - m + 1) ~ (_I)k + 115 a+ · .. a+ a+ · .. a+ 10). L- Ill.. 11 he I ik ~ t 1 ... 
k~1 

(34) 
We prove by induction. For m = 1 the above equation re
duces to the Fock space defining relation (32). Suppose (34) 
is true for m <p + 1 and consider J m + 1 , 

Jm +1 = a;-aj~at .. ·aj: 10) = [la;- ,aj,; J,aj7- .. aj: ]1 0 ) 

+ a+ · .. a+ la.- ,a+ J 10) - a+ a·- a+ · .. a+ 10). 
111m l}() Jo I Jl JII' 

Using (34) and the identity 

[Ia.- ,a+ J, a+ · .. a+ · .. a+ ] 
I J 11 h.. 1m 

m 

= '" b· a+ · .. a+ a+ a+ · .. a+ £.." Ill< JI 11< I J 1J. I t 1m 
k=1 

- mb;jaj~ ... aj : ' (35) 

we obtain 

Jm + I 

= ~ 8··a+ .. ·a+ a+a+ .. ·a+IO) 
~ 'h. 11 11" I Jo h. 111m 

k=1 

+ (p - n)b;. a+ · .. a+ 10) 
j" j, jm 
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=(p-n) f (-I)k+18;.a+a+ ... a+ a+ ... a+IO). 
k = 0 h.}() J! h 1 if. I t 1m 

Thus Eq. (34) holds also for m + 1 and hence for any 
m<p + 1. For m = p + 1 Eq. (34) gives 

Jp + 1 =a.-a+ .. ·a+ 10) =0. (36) 
I JI J, • • I 

(3) For any vector at ".a;: 10), m = 1,2, .. ·, 

K (a;+ · .. a+ 10), a+ · .. a+ 10» = O. (37) 
I I", 11 Jp t I 

This is evident for m = 0 because of (12b). If m > 0, we have 
from (12) and (36) 

K= (Ola.- ... a.-a+· .. a+ 10) =0. 
I,.. 'I 11 )1' I I 

Since an arbitrary vector is a linear combination of vectors 
a;; a;7 ... a;: 10) we find that for any xEW(n;p) 

(x,a+ · .. a+ 10) = o. ). J,. -I I 
(38) 

Therefore, 

a+ · .. a+ 10) = 0, (39) 
11 1

" 
, I 

This immediately implies that for arbitrary vector 
a+· .. a+ 10) 'I 'r 

a+ · .. a+ a+ · .. a+ 10) = ° 
)1 i,. , 1'1 ',. , 

Hence for alII Y)EW(n;p) 

a+ · .. a+ I y) = ° and therefore a+ · .. a+ = 0, (40) 
11 JI.,I 11 i p !-) 

which completes the proof. 
We remark that if a/ is interpreted as an operator cre

ating a particle in a state Hi", Eq. (39) means that an arbitrary 
particle ensemble cannot contain more than q = min(n,p) 
particles, which because of (a;+)2 = 0 must be in different 
states. To calculate the matrix elements, we first prove the 
following theorem. 

Theorem 1: The set of all vectors 

li]>i2 , ... ,i
m

) = (p!yI/2«p - m)!) 1/2at a;7 ... a;: 10), (41) 

where i l <i2 < ... <im , m = 0,1,2, ... ,min(n;p) build an orth
onormal basis in W(n;p). 

Proof Suppose that in 

S -(a;; ... a;: 10), at ... at 10» 

the index ik is not contained in the index set (jp ... ,jr)' Then 

S = (- l)k -I (Ola.- .. ·a·- a·- .. ·a·- a+ · .. a+ 10) = 0 'm 'k I t Is. I 'k JI lr ' 

sincea;~ aj ,+ • .. at 10) = 0. ThusS ,t:Oifandonlyifm = rand 
(il, ... ,im) and (jl, ... ,jr) coincide. To calculate the norm of 
a/ ... a/ 10) we use Eq. (34) repeatedly. 

I '" 

(a+ · .. a+ 10), a+ .. ·a+ ]0» 'I I", '. 1m 

= (Ola:- · .. a- a+ · .. a+ 10) 
I", 'I II 'm 

= (p - m + 1).(01 a- · .. a- a+ .. ·a+ 10) 
1m '1 '2 /", 

= (p - m + 1)(p - m + 2) ... (p - 1) P 

= p!/(p - m)!. 

This proves the theorem. 
To calculate the matrix elements of the CAO's it is con

venient to use the occupation number representation. Let 

(42) 
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where OJ, = OJ, = ... = OJ,,, = 1 and all other OJ = 0. From 
(22) and (34) one obtains 

a,-I···,Ok'··) 

= Ok( - l)e, + ... +8, '( P - + OJ + 1 Y/\ .. ,Ok -I, .. ), 

(43) 

a/I···,O,,") 

=(1-0k)(-I)e,+ ... +8, ,(p- +OjY/\ .. ,O, +1,··). 

This yields immediately the matrix elements of the other 
generators of A (O,n - 1). 

It is interesting to note that the structure relations (22), 
as well as Lemma 3, Theorem 1, and Eq. (43), are valid also 
for infinite number of CAO's and hence for A (0,00). In this 
case any finite subset a i~ , ••• ,a i~ of CAO's determines, 
through (43), an irreducible representation of A (O,n - 1). 

The following theorem characterize the representations 
obtained so far. 

Theorem 2: The representation of the LS A (O,n - 1) in 
W(n;p) and W(n;p') are equivalent ifand only ifp =p'. 

Proof We first calculate the dimension of W (n;p). Call, 
for simplicitly, the basis vector 101,02, ... ,On )EW(n;p) an m
state if 01 + O2 + ... + On = m. Since in (OI,. .. ,On)' with 
OJ = ° or 1 and the restriction ~jOj = m, the OI' ... ,On can be 
distributed in en) different ways, the subspace Wm (n;p) of 
all m-states has a dimension 

dim w'n (n;p) = (:) . (44) 

Taking into account that m = 0, 1,2 ... ,q = min(n,p), we find 

(45) 

Hence all W(n;p) withp = 1,2, ... ,n have different dimen
sions and the corresponding representations are inequiva
lent. Spaces withp;>n have the same dimension, 

dimW(n;p) = i (n) = 2n, p;>n 
m~O m 

(46) 

So we have n irreducible representations with different di
mensions and an infinite sequence of irreducible representa
tions realized in a space of dimension 2". To show that the 
latter are pairwise inequivalent, we calculate the character 
Trl of the central element from the even part glen) of 
A (O,n - 1). In terms of the CAO's, I reads as 

n 

I = I [a/ ,ak- J, 
k~1 

From (43) we obtain that for any m-state 101,. .. ,On)m 

[a/ ,ak-lIOI, ... ,On)m = (p - m + 0k)IOI, ... ,On)m' 

Therefore 
n 

11 01,···,On)m = I [a/ ,ak-IIOI, .. ·,On)m 
k~1 

(47) 

(48) 

Since the number of all m-states is C'n) and O<;m <;n, for p;>n, 
we obtain 
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Trl = mto(:) (np - nm m) = C1(n)p + C2(n), (49) 

where CI(n) = 2 nn and C2(n) = - (n -I)~;:' ~om(;:'). So 
any two representations realized in W (n;p) and W (n;p') have 
different characters for p =j=p' and are inequivalent. 29 

As an example we consider the Fock space representa
tions W(2;p) of A (1,0) for p;>2. All such representations are 
four-dimensional. Ifwe order the basis in W(2;p) to be 10,0), 
11,1), 11,0), 10,1), we obtain the following matrix realization 
of the generators. 

Odd generators: 

a 1-- = p1/2el3 + (p -1)1/2e42, at = pl/2e31 + (p -1)1/2e24, 
(50) 

a
2
- =/12eI4 - (p -1)1/2e32, a

2
+ = pl/2e41 - (p -I)1/2e23, 

Even generators: 

A I-generators, 

H + = [at ,az-l = e34 , H _ = [a2+ ,al-l = e43 , 

Center: 

I = [at ,al-j + [at ,az-l 

(51) 

= 2pe ll + (2p - 2)en + (2p - l)e33 + (2p - l)e44. 

(52) 

The above expressions show that for p;>2 the Fock space 
contains two spin-zero and one spin-1I2 representations, 
l.e., 

W(2;p)IA, = (0) + (0) + (112). (53) 

This is the well known four-dimensional boson-fermion re
presentation, which accomodated for the first time within 
one irreducible multiplet particles with integer- and half
integer-spin and later on led to the invention of the 
supersymmetry.1 

4. INFINITE-DIMENSIONAL FOCK SPACE 
REPRESENTATIONS OF A (O,2n -1) 

Within a given LS the definition of the CAO's is not 
unique. With a rearrangement of the basis in the Cartan sub
algebra it is always possibe to turn any of the positive root 
vectors into a negative one. If we choose a new basis to be 

h: = 77 j ho 77j = ± 1 (see Eq. 28) then the operators a?' be
come positive root vectors. It turns out that even such a 
simple replacement of some of the creation operators 
through annihilation ones and vice versa leads in general to 
nonequivalent Fock representations of the corresponding al
gebra. As an example of this kind we shall review (without 
giving any proofs) results obtained in Ref. 30. 

We consider the even rank LS's A (0.2n - 1) for 
n = 1,2,· ... The CAO's are labelled with three indices as, 

'7, 

where 77 = ±. i = 1,2, .... n and as before 5 = + (5 = -) 
corresponds to creation (annihilation) operator. The struc
ture relation between the CAO's reads as 

['as . '1. I v ] - I ( _ ) .<:: I; l _<!:t,a<TjJ ,a/1vk -zV 77 U -<j,/1k a -<i;j 
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+ !(v - S)O€i'f'kairU + ~(5 - 7])f-lEOija~vk' 

!a~,;i,airU l = O. (54) 

The operators a;i satisfy all the requirements of the Defini
tion 1. The Fock spaces W(n;p,q) in this case are labelled 
with two nonnegative integers p,q = 0,1,2,.·· and are com
pletely determined from the conditions 

a;; 10) = 0, ai- a/ = pOij 10), a = ia:t:j 10) = qOij 10). 
(55) 

Here we consider only the simples representation 
W(n;I,O), i.e., we putp = 1, q = O. 

Theorem 3: The product a'l; a; ,7] = ±, i,j = 1, ... ,n is 
a zero operator in W (n; 1,0). The representation space is infi
nite-dimensional. It is spanned on all possible vectors 
(ik = 1, ... ,n) 

a+a+ .... a+.a+.a+.a+IO) £-=(_I)m+1 
#;1", - gl", I -'4 - I, - '1 'I ':' • 

(56) 

The state (56) is symmetric with respect to arbitrary permu

tations of creation operators a'l; with 7] only + or -. 
Because of this symmetry every vector (56) is complete

ly determined by the number of the creation operators a;i; in 
the state 7]i. This justifies the notation 

(57) 

for every vector (56), generated from 10) by means of a mon
omial which is a homogeneous function of order Pi (resp.q;) 
of a,+ (resp.a:t: i) and z is 

n 

Z = I (Pi - q;) = 0 or 1. (58) 
i= I 

It is not difficult to calculate the matrix elements of the 
CAO's in the basis (57). For this, represent the space 
W (n; 1 ,0) as a direct sum of its subspaces with z = 0 and 
z = I, denoted as Wo and WI resp. W (n; 1 ,0) = Wo + WI' 
Then 

a/ 10;""Pi'''') = 11;""Pi + 1, ... ), 

a:t: j 10; ... ,qj,") = 10; ... ,qj + I, .. ), 
ai-Il;""pi''') = Pi 10;""Pi -1, ... ), 

a=jIO, ... ,qj,") =qj ll; ... ,qj -1,. .. ) 

holds. The orthonormalized basis in W (n; 1 ,0) is 

(59) 

IZ;PI, ... ,qn) = (PIl"·Pnlqll .. ·qnltI/2Iz;PI, .. ·,qn)· (60) 

The representation is obviously irreducible. It is infinite-di
mensional since Pi and qi are arbitrary nonnegative integers. 
The only constraint on them is that z = 0 or 1. 

5. CONCLUDING REMARKS 

The method outlined in this paper can be applied for 
construction of representation also for other Lie superalge
bras. For the simple Lie algebras an explicit construction 
was carried out in Ref. 24. 

The mathematical frame ofCAO's presented above can 
be motivated also on more physical background. In fact, the 
realization (54) was derived in Ref. 30 as a possible general
ization of the statistics of charged tensor fields. In this case z 
is the charge of the ensemble of particles being zero or 1. 

Definition 1 reflects some of the properties of the Bose 
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and Fermi operators. For the representation theory of the 
LS's it could be also useful to postulate some of the other 
features of the ordinary CAO's and this could lead in general 
to other irreducible representations. For instance, one can 
require that the creation operators a l+ , ... ,an+ (and hence the 
annihilation operators a 1- , ... ,a n- ) are (anti) commuting root 
vectors generating a LS of rank n. This is compatible with 
the multiplication of any simple LS, however, in general it 
may lead to higher than three-linear defining relations for 
the CAO's. We shall study elsewhere this possibility as well 
as the physical consequences of the considered statistics. 
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A simple theory of the spin or representations of the complex orthogonal group O(d,C) in the d
dimensional Euclidean space V(d) is presented via a basic lemma on involutional transformations 
and Cartan's theorem on O(d,C). The arbitrary gauge factors of the representations are reduced to 
± signs by introducing appropriate phase conventions. The concept of an axial involution is 

introduced. The plane rotations in V(d) are introduced and used to construct the representations 
of the proper orthogonal group O+(d,C). 

The Lorentz group is treated as a subgroup of O( 4,C). The general expression for the basic 2 X 2 
irreducible representations A (Lo) of the proper orthochronous Lorentz group G(Lo) is obtained 
by direct reduction of the 4 X 4 spin or representation S (Lo) by means of the basic lemma on the 
involutional transformations. It is completely parameterized by the angle and the axis of the 
spacial rotation and by the velocity of the pure Lorentz transformation. The finite dimensional 
irreducible representations of the Lorentz group G(L ) are discussed. The transformations of 
electro-magnetic field under G(L ) are discussed in the most general form. 

1. INTRODUCTION 

Recently, the author has developed a general theory of 
matrix transformations 1.2 which gives an explicit form of the 
transformation matrix which connects two square matrices 
A and B satisfying a given polynomial equation. In a special 
case whereB is a diagonal matrix equivalent toA, the theory 
yields a general theory of matrix diagonalization. The theory 
takes a particularly simple form when the matrices A and B 
are involutional matrices, which are defined to satisfy a qua
dratic equation of the form3 

x 2 = const X 1, (1.1) 

where 1 is the unit matrix. The Pauli spin matrices and Dirac 
y-matrices4 are simplest examples. The general d X d matrix 
solution of the equation has also been studied. 3 It has been 
recognized that involutional matrices have deep roots in var
ious problem of mathematical physics. 

We shall state the simplest special case of the transfor
mation theory developed in Ref. 1 as a lemma, since it will be 
used throughout of this work. 

Lemma: Let A and B be involutional matrices of a given 
order satisyfingA 2 = B 2 = 1. If their anticommutator is a e
number, 

[A,B]+ = AB + BA = 2el, e=j:. -1, (1.2) 

then, 
(i) there exists an involutional transformation which 

interchanges A and B via 

YA Y = B; y2 = 1, (1.3) 

where 

(1.4) 

(ii) There exists an additional transformation which 
connects A and B through a similarity transformation 

(1.5) 

where 

VAB =AY= YB; VAB -
1 = VBA • (1.6) 

The direct proof of the Lemma is also very simple. 
When e = -1, it is obvious that A can be transformed into 
- B. A general condition 1 which allows to transform - B 

into B has also been discussed. The effectiveness of the 
lemma in the Dirac theory of an electron can be seen from 
the fact that any linear combination of the generalized Dirac 
y-matrices in d-dimensions is involutional. It has been 
shown 1 that almost all the existing transformations involved 
with the y-matrices are special cases of the lemma. It is also 
noted here that there exists an involutional transformation 
which interchanges two comm uting sets of spin like matrices 
(see 5.35). 

In the present work, the lemma will be used to construct 
the spinor representations of the group of orthogonal trans
formations O(d,C) in a d-dimensional Euclidean space V(d) 

over the complex field. Then the result will be specialized to 
the Lorentz group G(L ) which may be regarded as a sub
group of O( 4,C). It will be shown that the 4 X 4 spinor repre
sentation of the proper orthochronous Lorentz group is di
rectly reduced to a direct sum of 2 X 2 irreducible 
representations by means of the lemma. This then gives the 
complete parametrization of the 2 X 2 representations. In 
this respect, the present approach is different from the ordi
nary methods which are based on the infinitesimal operators 
in constructing the irreducible representations.s Despite the 
numerous works on spinors by many workers, especially by 
Cartan,6 by Brauer and WeyV by van der Waerden,8 and by 
Bargman and Wigner,9 it seems that there still exist some 
simple aspects of the representation theory of the Lorentz 
group which are not well recognized. 

The basic transformation introduced in the present 
work may be called the axial involution R (h ) about a unit 
vector h in V(d) (see 2.6). It describes the inversion of the 
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d - I dimensional subspace orthogonal to h; for example, it 
describes a coordinate transformation x i- - Xi (i =1= d), 
Xd-Xd· Thus, it is proper or improper according as d is odd 
or even. One may call R (h ) the two-fold rotation about h in 
V(d). The author, however, prefers the term "axial involu
tion" over the term "two-fold rotation". The author recog
nized the basic importance of the axial involution R (h) as a 
member ofO(d,C) from the fact that its spinor representa
tion is given by the linear form of the vector defined by Yh 
= ~h," Y v where YI'YZ"'Yd are the generalized Dirac Y
matrices. 

The axial involution R (h) followed by the total inver
sion describes a reflection j[ (h) in the hyperplane 1T h orthog
onal to the vector h of V(d). It is simply given by 
j[ (h ) = - R (h ), and always an improper rotation. It was 
Cartan who first recognized the basic importance of the re
flection as a fundamental brickstone of the group of orthogo
nal transformations O(d,C). His basic theorem may be stated 
as follows lO

: "Any proper (improper) rotation REO(d,C) is 
given by a product of an even (odd) number ( <d) of reflec
tions." Here a reflection means Cartan's reflection j[ (h) de
fined above. The basic importance of the theorem in the 
spinor representations is obvious. One can construct whole 
spinor representations ofO(d,C) from the spinor representa
tion of j[ (h ). In particular, the proper rotation group O+(d,C) 
in any dimensions or the rotation group in an even dimen
sion may be represented by a product of axial involutions 
instead of Cartan's reflections. Cartan adapted a convention 
that Y h represents j[ (h) which, however, does not leave the 
Dirac equation covariant. 6 

Following the Dirac procedure for a spinning electron 
generalized by Brauer and Weyl7 we shall first define the 
spinor representations for O(d, C). Then, based on the lemma 
we shall show that there exist two elementary transforma
tions, an axial involution and a plane rotation, which trans
form a given unit vector in V(d) into another unit vector 
(Theorem I, Sec. 2). 

In Sec. 3, the mathematical properties of an axial in
volution R (h ) and its spinor representation S (h ) will be dis
cussed. Based on Cartan's theorem we shall achieve the dou
ble valued spinor representation S (R ) of REO(d,C) by 
introducing the proper phase convention to S (R ). In Sec. 4, 
the general properties of the plane rotations in V(d) will be 
presented and used to construct the representations of the 
proper orthogonal groups O'(d,C) and O+(d.R) over the 
complex and real fields respectively. 

In Sec. 5, the finite dimensional irreducible representa
tions of the Lorentz group will be discussed. The direct re
duction of a 4 X 4 spinor representation of the proper Lo
rentz group to a direct sum of two 2 X 2 irreducible 
representations gives the complete parametrization of the 
latter in terms of the angle and axis of the spacial rotation 
and the three components of the velocity of parallel transla
tion. The transformation of the electromagnetic field I) un
der the full Lorentz transformations will be discussed. 

The theory developed here applies in any dimensions 
over the complex field in general even though important ap
plications are on the Lorentz group. One of the points 
stressed in this work is the parametrization of the elementary 
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transformations (axial involutions and plane rotations) by 
two vectors connected by the transformations. Another 
point is to emphasize the fundamental role played by involu
tional transformations in the theory of group representa
tions. Further applications of the involutional transforma
tion to physical problems will be presented in forthcoming 
papers. 12 

2. BASIC THEOREMS 

Let O(d,C) be the group of orthogonal transformations 
R, 

d 

xv' = I R""x", v = 1,2, ... ,d, 
,,~I 

(2.1) 

of the d-dimensional Euclidean space V(d). We shall first 
operate within the continuum of all complex numbers until 
we apply the theory to the Lorentz group with certain re
striction. The general Dirac procedure is to turn the scalar 
square X2 = ~Xo' 2 of a vector XE V(d) into the square of the 
linear form of x defined by 

Yx = X1YI + X2Y2 + ... + XdYd' 

where YI'Y2'''''Yd must satisfy the anticommutation 
relations, 

[Yo"Y" J+ yO' Y1" + Y1" yO' = 200'1"' 

v,/.l = 1,2, ... ,d, 

(2.2) 

(2.3) 

00'" being the Kronecker delta. Brauer and Weyf gave the 
general Hermitian expression of the matrix representation of 
I yO' 1 which, however, may not be needed in the basic devel
opment. It is customary to use 1 for the unit matrix in the 
spin or space. 

Under the influence of the orthogonal transformation R 
of (2.1), the linear form Y x transforms according to 

or 

Yx' =SRyxSR-' (SR,independentofx) (2.4) 

IYaRav =SRYvSR-
1
, 

(7 

and a spinor ¢(x) as a function of x transforms through 
¢'(x') = SR ¢(x). The existence of the spinor transformation 
S R which represents R has been shown by Brauer and Weyl. 
The general expression S R due to Pauli exists for the Lorentz 
group. 13.14 This expression, however, is not very convenient 
to determine SR for a given R. 

It is evident from (2.4) that the transformation R is 
uniquely determined by a given S R through 

R'll = Hy",SRYIIS R-
1

] t' V,/.l = 1,2, .... d, (2.5) 

while S R is determined up to an arbitrary gauge factor for a 
given R. This should be kept in mind until we reduce the 
gauge factor up to ± signs by a proper phase convention. It 
is an immediate consequence of (2.5) that the linear form Yh 
ofa unit vector hEV(d) represents an axial involution R (h), 

R (h ) = 2hh - 1, (2.6) 

where hh is a symmetric tensor written in the diadic nota
tion. Then the group property yields that any product 
S (hl,hz, ... ,h,,) = y(h I)y(h l) .. ·y(hn ) where y(h,) is the linear 
form of hi' represents R (h l,h2, .. h,,) = R (hl)R (h 2 ),··R (h n ), 
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which is an orthogonal matrix belonging to O(d,C) since 
each factor is an orthogonal matrix. According to Cartan's 
theorem stated in Sec. 1 this then completes the basic spinor 
representations of O(d,C) when d = even. When d = odd, 
we need the spinor representation of the total inversion Ui 

which, however, will be discussed in the next section. 
In stating the basic theorem, a scalar product of two 

vectors u and v in V(d) is denoted by (u·v) ( = 'i./iyVy), and 
the second rank tensor constructed by two vectors u and v is 
denoted by uv using the diadic notation. The following theo
rem may be regarded as a geometric interpreation of the 
lemma introduced in Sec. 1. 

Theorem 1: Let u and v be two unit vectors in V(d) with 
(u,v)=I= - 1, and h be a unit vector in the u-v plane which 
bisects the angle 0 between u and v. Let Y u , Y v and Y h be their 
respective linear forms with the set! yy J. Then there exist 
two elementary transformations which bring Yv and Yu via 
similarity transformations. 

yu=SiYvSi-l, ;=1,2, 

where 

SI==S(h)=Yh' 

(2.7) 

(2.8) 

(2.9) 

Regarded as the spinor representations of the orthogonal 
transformations which bring v into u, S (h ) represents the 
axialinvolutionR (h )abouth andS (u,v) represents the plane 
rotation in the u-v plane given by two successive involutions, 

Rz=R (u,v) = R (u)R (h) = R (h)R (v). (2.10) 

The proof is elementary, except for the geometric inter
pretation of R z as a plane rotation, which will be given sepa
rately in Sec. 4. To prove (2.7) we need the definition of the 
unit vector h given by 

h = (u + v)/(2 cos(O/2», 

where U Z = v2 = 1 and the "angle" 0 is defined by 
d 

cosO = U·V = L UyVy =1= - 1. 
v=l 

(2.11) 

(2.12) 

It should be noted here that there exsits no ambiguity in the 
definition of cosO if one takes the same normalization con
stant for u and u as one should while h has double values for 
the given vectors u and v which affectSI andS2 but notR (h) 
and R z. In the limit u + v-o, h is given by any unit vector 
which is orthogonal to u or v. With the definition of h, equa
tion (2.7) follows immediately from the lemma since Yu' Yv 
and Yh are an involutiona1. Then the group property of SR 
leads to (2.10). 

The orthogonal transformations R I = R (h ) and 
R2 = R (u,v) constitute a kind of a complete set in the sense 
that the second rank tensor uv is given by 

uv = UR (h) + R (u,u)], 

which is rewritten in the form 

R (u,v) = 1 + 2(uv - hh ), 

(2.13) 

(2.14) 

and may be used to express the matrix elements of R (u,v). 

1301 J. Math. Phys., Vol. 21, No.6, June 1980 

3. AXIAL INVOLUTIONS AND THE PHASE 
CONVENTION 

A. Basic properties 

We shall first discuss some of the elementary properties 
of the axial involution R (h ) of (2.6) represented by 
S (h ) = Y h , then propose a phase convention which may re
duce the arbitrary gauge factors of the spinor representation 
S (R ) up to the signs. 

We may quote (2.6) here for convenience, 

2(h ) = 2hh - 1. (3.1) 

Then, it is immediately obvious that R (h) is an lOS (involu
tional, orthogonal and symmetric) matrix. Its characteristic 
roots are -1 and 1 with the degeneracies d - 1 and 1, re
spectively. The trace and the determinant are 

trR(h)=2-d, detR(h)=(-I)d-l. (3.2) 

Accordingly, R (h) is proper (improper) rotation when 
d = odd(even).Cartan'sreflectionR(h)( = - R (h »inthe 
hyperplane 1rh orthogonal to the vector h is always an im
proper rotation, a point which is of the basic importance in 
Cartan's theorem stated in the introduction. It is evident 
from the definition that all the axial involutions (Cartan's 
reflections) belong to the same conjugate class of O(d,C). 

If we introduce a new coordinate system by means of a 
complete set of orthonormalized vectors h (I" h (2', ... ,h (d) in 
V(d), we can define a set of axial involutions! R (h (J) J about 
the new coordinate axes. It can be easily shown that 

(-I)P-1 IT R(h<J)=(p-I)I+ f R(h(J), 
j=1 j=1 

(3.3) 

regardless of the order of the factors on the left-hand side. 
Thus, all R (h (j) in the set commute with each other. In 
particular when p = d, we have 

d _ 

II R (h (j) = - 1. (3.4) 
j=1 

Accordingly the product of d-Cartan's reflections R (h (j) 
describes the total inversion Ui' while the product of d-axial 
involutions R (h (j) describes Ui only when d = even. 

It is obvious that the above results may be described 
analogously by their spinor representations. Let ! yj) J be Y
matrices referred to the new coordinate system defined by 

(3.5) 
y 

Then these satisfy the same set of anticommutation relations 
as (2.3), 

(3.6) 

The anticommutation of y') and yJ}(i =1=;) corresponds to the 
commutation of R (h (I) and R (h (j). As a result, the double 
valuedness of the representation Yh of R (h) is essential. The 
products of ! yJ) J satisfy 

(3.7) 

where the coefficients a(i I ,i 2'''' ,i p) are the elements of a skew 
symmetric tensor composed of the components of the p vec-

Shoon K. Kim 1301 



                                                                                                                                    

tor(h' I ),h (2), ••• ,h (P». Inparticularwhenp = dwithd = 2nor 
2n + 1, we have 

± yd )y'2)".yd) = YIY2'''Yd-LYd+I' (3.8) 

where L is 1 or i according as n is even or odd. By definition, 
Yd + I is involutional, (Yd + 1 )2 = 1. The proper correspon
dence between (3.4) and (3.8) will lead us to the spinor repre
sentation of the total inversion U i as well as the phase con
vention for the double valued representation. 

When d = 2n, Y d + I anticommutes with all Y v and 
hence from (2.5) we may represent U, by gYd+ I wheregis a 
constant factor limited to ± 1 or ± i, if (gy d + 1 ? = ± 1. 

When d = 2n + 1, Yd + I commutes with all Yv so that it 
is a constant equal to ± 1. For definiteness we take a repre
sentation such that Yd + I = 1. Then we have 

± y' I 'y(2) .. .yd) = YIY2"'Yd = t; (d = 2n + 1). (3.9) 

This identity reduces the order of the algebra engendered by 
the set (y v J from 2d to 2d -I = 2" X 2" which enables us to 
introduce 2"X2" matrix representations for (Yv J as it has 
been achieved by Brauer and Wey1.7 At the same time, it 
leads to the conclusion that there exists no member of the 
algebra which anticommutes with all (y v J. To remedy this, 
Brauer and Weyl simply extended the spinor representation 
by assigning ± 1 to the total inversion Ui> which commutes 
with all the members of the group. 

Now, we can state in general (d = even or odd) that the 
total inversion Ui is represented by gy d + I with g = ± 1 or 
± i, if (gy d + 1 )2 = ± 1. 

B. The phase convention for 0(0; C) 

Based on the foregoing arguments, we shall determine 
the phase convention of the spinor representations 
S (R )EO(d,C) which ensures the double valued representa
tions such that 

(3.10) 

for any members of the group. This is simply achieved by 
assigning a proper phase for the spinor representations of a 
Cartan's reflection on account of Cartan's theorem stated in 
Sec. 1. In view of the identity (3.9) we propose the following 
convention: 

if (h ) ........ ± ty d + I Y h' (3.11) 

where ty d+ I is defined by (3.8). Then, from (3.4) and (3.8), 
U i and hence R (h) are represented by 

Ui ........ ±tYd+I' R(h) ........ ±Yh (d=2n), 
(3.12) 

U, ........ ± 1, R (h) ........ ± tYh (d = 2n + 1). 

It should be noted here that the factor L is essential only when 
d = odd on account of the identity (3.9). Thus, it is possible 
to introduce an alternative convention for d = even. It is 
also noted that when d = even, the total inversion Ui is prop
er and can be given by a product of axial involutions. Thus, 
one can make the basic phase convention like (3.11) in terms 
of axial involutions instead of Cartan's reflections for this 
case. 

The convention (3.11) is in accordance with the well
known convention in three dimensions that the reflection in 
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the 1T x plane and the two-fold rotation R (x) about the x axis 
are represented by ± iCTx where CTx is a Pauli spin matrix. In 
four dimensions, Cartan's reflection if (h) and the axial in
volution R (h ) are represented by 

if(h) ........ ±YSYh' R(h) ........ ±Yh' (3.13) 

and the total inversion Ui' the time inversion U" and the 
spacial inversion U, are represented by 

Ui ........ ± Ys = +Pl' 
(3.14) 

U, ........ ± Y4 = ±P3' 

provided that the first three coordinates describe space and 
the fourth describes time. These Dirac matricesPI,ip2' P3 are 
all real in the Dirac standard representation. As a result, 
these commute with the Wigner time reversal operation 
r( = - i2.2K with K being complex conjugation). Alterna
tive conventions will be discussed with respcet to the Lo
rentz group. 

C. Axial involutions and the phase convention of the 
Lorentz group G(L) 

In the spirit of the present formalism the full Lorentz 
group G(L) may be regarded as a subgroup ofO(4,C) as it is 
frequently encountered. II, 14 It is defined by the group of or
thogonal transformations which leave invariant the scalar 
square ofa vector x in V(4) with three real space components 
x I,X2,X3 and an imaginary time component X 4 = iet where e 
is the light velocity and t is the real time. Since x I,X2,X3 and t 
are all real, the scalar square x 2 is positive or negative unless 
it is isotropic (i.e., x 2 = 0). The vector x is called space-like if 
x 2 > 0 and time-like if x 2 < O. As a result, one can show from 
Theorem 1 that a unit vector h which defines an involutional 
transformation R (h )EG(L) must be either a space-like unit 
vector h S or a time-like unit vector h ' defined by 

h S = (h = real, h4 = imaginary or zero), h s.h S = 1, 
(3.15) 

h' = (h = imaginary or zero), h4 = real), h '·h' = 1, 

h being the respective spacial components. The unit vector 
h ' is not a Lorentz space vector owing to the normalization, 
which is introduced as a matter of convenience to use the 
lemma and Theorem 1 freely. Actually, three is no need for 
h ' to be a Lorentz space vector since it is introduced to de
scribe the transformations of the Lorentz space vectors. The 
same comment applies for the unit vectors u and v in Theo
rem 1. The axial involutions corresponding to (3.15) are 
characterized by 

R (h ')44< - 1, R (h ')44# 1, (3.16) 

and hence R (h ') is antichronous and R (h') is orthochron
ous. These may be called the space-like and the time-like 
axial involutions respectively. Analogously, if (h') and 
if(h ') are called the space-like and time-like reflections re
spectively. It has been stated that all the axial involutions 
(reflections) belong to the same conjugate class ofO(d,C). In 
the Lorentz group G(L ), however, the space-like and time
like axial involutions (reflections) belong to two different 
conjugate classes. 
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Following Cartan 15 one can show that any member of 
G(L ) is given by a product of the space-like axial involutions 
R (h') and the time-like involutions R (h I). Thus, it is possi
ble to give different phase conventions for R (h') and R (h I). 
There exist three other phase conventions besides (3.13) 
which ensures the double valued spinor representations of 
G(L ). For convenience, we may summarize here all of them 
including (3.13): 

Conv.l R (h)_ ± Yh' 

Conv. 2 R (h )- ± iYh' 

Conv. 3 R (h')_ ± Yh " R (h 1)_ ± iYh " 

Conv.4 R(h')-±yh " R(h')-±iyh,. 

(3.17) 

Convention 1 has already been discussed. Convention 2 is 
also applicable to O(d,C). Convention 3 is interesting since it 
is only one which gives the spinor representations which 
commute with the charge conjugation C ( = Y2K in the stan
dard representation with Kbeing complex conjugation). The 
rest of the conventions (1,2, and 4) give the representations 
which commute or anticommute with C. This should not 
create any difficulty since the spin or representations are 
double valued anyway. According to Convention 3, the total 
inversion Ui , the time inversion UI and the spacial inversion 
U, are represented by 

Ui-±iPI' Ui-±iP2' Us -±ip3' (3.18) 

These have previously been introduced based on unsatisfac
tory physical ground 16, 17 that they should commute with the 
charge conjugation C. A convention similar to Convention 3 
has also been proposed by Watanabel8 in a pseudo-Euclid
ean space. Conventions 1-4 will be discussed again in con
nection with the higher-dimensional single-valued represen
tations (see Sec. 5C). The author prefers Convention 1 for its 
simplicity and its general nature. Hereafter, this will be used 
unless otherwise stated. 

D. Examples 

For later use, let us consider some simple examples of 
the spinor representations S (h ) of R (h )EG(L ). 

1. An axial involution about a space-like vector h in x 1-

X2 plane. Let 

U = (sinO,cosO,O,O), v = (0,1,0,0). 

Then, from Theorem 1, 

h = (sin(O /2) cos(O /2),0,0). (3.19) 

With a real 0, the vectors u, v and h are all space-like unit 
vectors in the Lorentz frame. We have 

S(h) = Yh = sin(O /2)YI + cos(O /2)Y2 

= exp«O /2)YIY2)Y2' 

[

-cosO 

R(h) ~ 'r sinO 

cosO 

° ° 

° 
° -1 

° 
° ] ° ° . 

-1 

(3.20) 

(3.21) 

We did not put ± signs in S (h) since Yh is double valued 
anyway for a given R (h ). It is seen from (3.20) that the prod-
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uct Yh Y2 of two space-like involutions (reflections) describes 
a spacial rotation of the Lorentz frame. 

2. An improper Lorentz transformation. Let 
p = (PI,P2,P3) be a unit spacial vector and set 

u = (sinep, cosO), v = (0,0,0,1), 

with an obvious abbreviation for the spacial components of 
u. We take any imaginary angle for 0 such that 

0= iX = i tan-I (vo/c), 

where Vo is the velocity of the parallel translation of the mov
ing coordinate frame along the direction ofp. Then, the vec
tors u, v and h are all time-like unit vectors and 

h = (i sinh(~)p, cosh(~». (3.22) 

Accordingly, 

S(h) = Yh = exp[ - !x(p.a)]Y4' 
(3.23) 

R (h ) = 2hh - 1, 

where aj = - iYjY4,j = 1,2,3, and p·a = Pial + PP2 
+ PP3' It is seen from (3.23) that a product of two time-like 

involutions Yh Y4 represents the pure Lorentz transforma
tion, which will be discussed again in Sec. 5 by a more gener
al consideration. 

Further important examples of involutional transfor
mations linear in Y matrices have been considered in the 
previous work I in connection with the transformation of the 
Dirac Hamiltonian for an electron, and the field Hamilto
nians in solid state physics. 

4. PLANE ROTATIONS IN d-DIMENSIONS 

A. Basic properties 

It has been stated in Theorem 1 that a product of two 
axial involutions given by R (u,v) of(2.1O) describes a plane 
rotation in the u-v plane which brings a unit vector v into 
another unit vector u, 

u = R (u,v).v. (4.1) 

We shall now prove this statement from the fact that the 
spinor representationS (u,v) of(2.9) andR (u,v) of(2.1O) can 
be written in the forms, 

S(O,CU)=±S(u,v) = ±exp[~o I CUyp.uyp.], (4.2) 
2 y<p. 

R (O,cu)=R (u,v) = exp[Ocu] 

= 1 + cu sinO + cu2( 1 - cosO ), (4.3) 

where uvp. are the generalized Pauli spin matrices7
,19 andcu is 

a skew symmetric tensor with elements cuyp.; 

uvp. = (YVY,l - Yp. Yv)l(2l), cuyp. = (uyVp. - Vvup.)/sinO, 

'V, J..l = 1,2, ... ,d. 

It is more convenient to express cu in terms of the diadic 
notation, 

cu = (uv - vu)/sinO = I CUyp.I(V'P.); 
y<p. 

(4.4) 

'V,,u.A = 1,2, ... ,d, 
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where tv) is the unit vector in the vth coordinate axis, and 
1 (V.I') describes the infinitesimal rotation in the i(V)_I"0') plane, 
while W describes the infinitesimal rotation in the u-v plane 
since w is independent of e as one can see immediately. Thus 
one can show that S «(J,w) and R (e,w) represent a plane rota
tion in a plane defined by w through an angle (J where e can 
be complex in general. 

The proof of (4.2) follows from (2.9) with use of the 
identities, 

Yu Yv = (u·v) + i I (UVvl' - Vv ulJ U"I' , (4.5) 
V<I' 

(4.6) 

The proof of (4.3) can be achieved by substituting (4.2) into 
(2.4) or directly from (2.10) with use of the fact that the skew 
symmetric tensor w of (4.4) satisfies 

w 3 + w = 0, 

trw2 = -2, 

(4.7) 

(4.8) 

WVI' W"A + WI(VWI'A + wl'l(W VA = 0, V,J-l,K,A =f. (4.9) 

The last two equations follow directly from (4.4) or from 
(4.6) and the commutation relations of U VI' • 

The skew symmetric tensor W is a familiar one in three 
dimensions,20 eventhough it has never been parameterized 
by two unit vectors as in (4.4). One can easily show that the 
form of W given by (4.4) is invariant for any two unit vectors 
on the u-u plane and hence is independent of e except for the 
sign. 21 Thus, one may conclude that W defines a plane. Fur
ther analytical properties of W follows from (4.7) and (4.8). 
The characteristic roots of the secular determinant of ware i, 
- i and 0 with multiplicities 1, 1 and (d - 2) respectively. 

The multiplicity of the zero eigenvalues signifies that there 
exist (d - 2) independent directions normal to the W plane in 
d-dimensions. Since (4.7) can be regarded as the reduced 
characteristic equation of W with three distinct roots, there 
exist three projection operators I, for which it is most conve
nient to take w, - w

2
, and 1 + w 2

• Their matrix ranks are 2, 
2, and (d - 2), respectively. Let x be an arbitrary vector in 
V(d). Then, x' = W'X, XII = - w2·x and x! = (1 + ( 2)·x de
fine a set of three orthogonal vectors where x' is a vector on 
the w plane orthogonal to x, the vectors XII and Xl are the 
projections of x onto and normal to the w plane. In a special 
case where x is an eigenvector of w, x becomes self-orthogo
nal or isotropic. The geometric significance of these proper
ties is evident: Suppose that the vector x transforms accord
ing to R «(J,w) of(4.3), i.e., x = R «(J,w).xo with a constant 
vector xu, then the normal component x 1 is invariant for the 
rotation and so is (x ll )2 = (X')2. In fact, x', XII andxJ provide 
the rate, arm and axis of rotation for x respectively. It should 
be noted that the direction of x 1 depends on x except in three 
dimensions. 

Next, we shall show that all the plane rotations defined 
by R «(J,w) through the same angle (J belong to the same con
jugate class ofO(d,C). Firstly, under an orthogonal transfor
mation OEO(d,C), R (e,w) transforms as follows. 

OR «(J,w)O = R «(J,w'), (4.10) 
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where 0 is the transpose of 0 and w' defines the transformed 
plane of rotation, 

w' = 0 wO = (lI'V' - v'u')!sin8 

= "w I (V./l)' = "w' 1("'1') L I'll L..t III , 
(4.11) 

\'<f..1. 

with u' = O·u, v' = O·V, {-"I' = O·!'·,,). Conversely for a given 
pair of wand w', one can always find an orthogonal transfor
mation which connects them (see below). 

Frequently, it is necessary to bring the plane rotation 
R (8,w) into its canonical form. To this end, lete' II,e,2 1

, ... ,e (d) 

be an orthonormalized complete set of vectors in V(d). The 
first two vectors are constructed from the column vectors of 
w, then these are on the w plane. The remaining vectors are 
constructed from the columns of the idempotent matrix 
1 + w 2 = (= 1 - e' lie' I J - e' 2Ie'2J). We choose e' I J and e,2 1 

such that e,2, = - w.e' I " then 

(4.12) 

which is a special case of(4.4). Now, we define an orthogonal 
matrix 0 by its transpose 0 in terms of the column vectors as 
follows 

0=(e,I'e,21 o(d»·O =e (jl) 
, , .•• ~ 'P\' 1'-

Then, we have the canonical form of w by 

O(u' 1. 210 = I' 12" 

where 1,1,21 represents the infinitesimal rotation on 

(4.13) 

(4.14) 

i' I '_it 2, plane defined by (4.4). It is an immediate consequence 
of (4.14) that the orthogonal transformation 0 defined by 
(4.13) brings R (Ow' 1.2') = exp[Ow' 1.21] into a canonical form 
of a plane rotation, 

C I i(J )-0 exp[8w' 1.2'JO = exp[(JI' 1.2,] 

= diag(<P(e),[IJ d-2), (4.15) 

where [1] d - 2 means that the diagonal element 1 appears 
(d - 2) times consecutively and 

<p(e) = (CO~O() SinO) (4.16) 
- Sill cos8' 

One may also rewrite the spinor representationsS (8,w' 1.2,) in 
the form, analogous to (4.15), 

S (e,(U' 12,) = exp[(i/2)8u' 1.2,], 
(4.17) 

The analytical definition of a plane rotation in any di
mensions may be given by a matrix which can be trans
formed into a canonical form of (4.15) through an orthogo
nal transformation. Then, one may conclude that any plane 
rotation can be written in the exponential form of(4.3) and 
hence its spinor representation is given by (4.2). The re
quired skew symmetric tensor wand the angle e of a plane 
rotation R are determined from the following relations 

2 sin(Jw = R - ii, tr R = d - 2 + 2 cos(J, (4.18) 

inverse to (4.3) and (4.8). The matrix R = R «(J,w) satisfies a 
cubic equation, 

(4.19) 

corresponding to (4.7). To obtain the factorized form of 
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R (0,(1) given by (2.10) as a product of two axial involutions, 
we construct two orthogonal unit vectors e( 1 ) and e( 2) from (1) 

as in (4.12). Then, the required unit vectors u, v, and h for the 
factorization are given by 

u = ell) cosO + el I) sinO, v = e(2), 

(4.20) 
h = ell) cos(O 12) + e( 1) sin(O 12). 

We may summarize some of the results obtained in this 
section in the following theorem: 

Theorem 2: A plane rotation in V(d) is represented by an 
orthogonal matrix R in V(d) whose reduced characteristic 
equation is cubic with three distinct roots, one of which is 1 
with degeneracy d - 2. It can be written in the exponential 
form of (4.3) or in the form of a product of two axial 
involutions. 

This theorem is not trivial even in three dimensions, 
where any proper orthogonal matrix (real or complex) is a 
plane rotation. One can state that any orthogonal matrix in 
three dimensions (proper or improper, real or complex) can 
be brought into a canonical form by an orthogonal transfor
mation. For later use we shall write down (4.2) in the special 
case of three dimensions, where some minor simplifications 
set in 

S (O,~) = ± exp[(il2)e~'(J], 
R (O,~) = exp[O,~.I] 

'" '" '" = 1 cosO + w·I sinO + w w(1 - cosO), (4.21) 

where 
/'-

(1) i = (1)jk,Ii = / (j,k), i, j,l =/=, cyclic. 

It is noted here that the unit vector;;; may be defined alterna
tively by the vector product ~ = [u X v]/sinO of the unit vec-

.A. .A. 

tors u and v and also that [w.l}x = - [wXx]. 

B. The representations of orthogonal group O(d, C) 

We shall discuss some of the basic aspects of the group 
of orthogonal transformations in a d-dimensional vector 
space V(d) over the complex field based on the plane rota
tions developed in this section. For simplicity, we shall re
strict the discussion to the proper orthogonal group O+(d,C) 
since any member ofO(d,C) is trivially related to O+(d,C). 

From Cartan's theorem stated in Sec. 1 and Theorem 1 
we can represent any member R ofO+(d,C) by a product ofa 
number (<,d 12) of plane rotations. Let k th plane rotation be 
characterized by any angle (complex) Ok> and a skew sym
metric tensor oP) given by two orthogonal vectors on the 
plane analogous to (4.12) 

(1)(k)=e(2h -1)e(2k)_e(2k)e(2k~I), 

(4.22) 
(e(2k-l)·e(2k» =0, k= 1,2, ... ,[dI2], 

where [d 12] is the integral part of d 12. The set I elY) ) as a 
whole is not an orthogonal set in general except for d = 3. It 
should be noted that (e(\') I depends on R. From (4.2) and 
(4.3) we can write for R and its spinor representationS (R ) as 
follows 
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Id /21 
S(R) = ± n exp[(i/2)Ok a(k)] , (4.23) 

k~l 

where 

d 

'0J) = L e y (})yy, 

v=l 

['0'\ '0J)]+ = (e(<)·e(J). 

It is understood that a definite order ofthe factors in the 
products of (4.23) has been assumed since different oP )'s 
(a(k )'s) do not commute in general. In a special caSe of d = 3, 
(4.23) reduces to (4.21). 

In the case of the real orthogonal group O(d,H) a fur
ther simplification sets in since the set I elY) ) can be taken to 
be an orthogonal set and all the (1)'S (a's) commute with each 
other. Consequently (4.23) can be rewritten as 

(4.24) 

S(R) = ± exp{(iI2) ~~IJOkcrk)} , 

where Ok are real angles of rotations. ThusS (R ) is a unitary 
representation of R with a Hermitian set I y v), It is also 
noted that R of (4.24) can be reduced into a product of ca
nonical forms of plane rotations as given by (4.15) through 
an orthogonal transformation with the orthogonal matrix 
given in the form of (4.13). We shall next specialize these 
general results to the representations of the Lorentz group. 

5. THE REPRESENTATION OF THE LORENTZ GROUP 
G(L) 

A. Introduction 

We shall describe the finite-dimensional irreducible re
presentations of the Lorentz group G(L), in particular, the 
subgroup G(Lo) of the proper orthochronous Lorentz trans
formations Lo. The basic 2 X 2 irreducible representation 
A (Lo) will be introduced by directly reducing the 4 X 4 spinor 
representation S (Lo), or the Lorentz matrix Lo using the 
lemma introduced in Sec. 1. This then gives the complete 
parameterization of A (Lo) by the angle and axis of the spacial 
rotation and the three components of the velocity of the par
allel translation of the Lorentz frame. 

To begin with, let us consider a plane rotation belonging 
to the complex orthogonal group O( 4,C) in four dimensions. 
We set 

- '<" /U.J1_/(k) (1) -(1)' iJ'k=/=' au -"::"k' - 'ij - k' " , 

ak4 = a k , [(k,4) = J(k), W k4 = Pk' k = 1,2,3, 

1,2,3 cylic, 
(5.1) 

where [(k) and J (k) are 4 X 4 tensors of infinitesimal rota
tions. Then, from (4.2) and (4.3), the general plane rotation 
in V(4) is represented by 

S (0,(1) = ± exp[(iI2)e (w·l: + p.a)], 
(5.2) 

R (O,w) = exp[O(w·I + p.J)], 

Shoon K. Kim 1305 



                                                                                                                                    

wherero·I = ~kwkI(k), p.J = ~kPk J(k), and ro and p satisfy 

ro·ro + p.p = 1, ro·p = 0, (5.3) 

corresponding to (4.8) and (4.9). 
When p = 0, ro become a unit vector ro and (5.2) repre

sents a spacial rotation about the axis ro through an angle O. 
When ro = 0, p becomes a unit vector p and we can write the 
skew symmetric tensor w in the form of (4.12) 

(5.4) 

with 

e( p) = (ft I ,PZ,P3'0), e' 4) = (0,0,0,1). 

Thus, (5.2) describes the plane rotation in the e(p) - e(4) 

plane through an angle O. We may specialize this to the Lo
rentz transformation in the space-time coordinate frame, x I' 
Xl' X3 and X 4 = ict by introducing an imaginary angle of 
rotation, 

0= iX = i tanh-I (vo/c). 

Then we arrive at the representation of the pure Lorentz 
transformation in the direction of the unit vector p, 

SLor = ± exp[ - !x(p.a)] = ± YhY4' 
(5.5) 

R Lor = exp[iX(p·J)] = R (h )R4' 

where use has been made of (2.10) and h is a time-like unit 
vector given by (3.22) and R4 = diag( -1, -1, -1,1). The 
factored forms of SLor and R Lor are very convenient for the 
algebraic operations of the transformations. These coincide 
with the previous result (3.23). 

Now, according to Cartan,6 any member Lo of the prop
er orthochronous Lorentz group G(Lo) is given by a product 
of an even number «2) of space-like reflections (or axial 
involutions) and an even number «2) of time like reflections 
(or axial involutions). Alternatively, one can state that Lo 
can be represented by a product of a spacial rotation and a 
pure Lorentz transformation.5 Thus, we can write 

S(Lo) = ± exp[(i/2)e(ro.:I)] exp[ - (1I2)x(p·a)], 
(5.6) 

Lo = exp [0 (ro. I)] exp [iX(p·J) ] , 

where ro and p are three-dimensional unit vectors. These two 
expressions may be regarded as special cases of (4.23) and 
are the bases of the whole arguments which follow. For the 
simple explicit proof that (5.6) satisfies the group property, 
see Appendix. 

In the theory of matrices, 10 the above form of S ==.S (Lo) 
is called the polar form of the matrix S since the first factor is 
unitary while the second factor is positively Hermitian. It is 
well known that the factorization is unique for any given 
nonsingular matrix. The two factors of S are essential in the 
sense that they cannot be reduced to a single plane rotation 
even as a member ofO(4,q. Thus, the equivalence of two 
Lorentz transformations require the same set of angles 0 and 
iX as well as the same mutual orientation ofro and p. The 
equality of the traces gives only the necessary condition for 
the equivalence. In a special case when (ro.p) = 0, S equals 
two successive pure Lorentz transformations which leads to 
Einstein's addition formula for the velocities as well as the 
general expression for the accompanying spacial rotation, a 
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limiting case of which gives the Thomas half (see Appendix). 
It is evident that the argument given above holds for the 
Lorentz matrix Lo as well. 

Some of the elementary properties of S ==.S (Lo) 
= S(ero,Xp) which stem from (5.6) are as follows: 

1. trS= ±4cos(O/2)cosh(r/2), detS= 1; (5.7.1) 

2. S commutes with the charge conjugation C and ± PI 
which represents the space-time inversion Uj> (3.14); 

3. Let S T be the time reversed S in the Wigner sense, S * 
the complex conjugate, S the contragradient, Sthe trans
verse, and S t the Hermitian conjugate. Then, we have the 
following equivalences, 

ST = ~zS*~z =PZSp2 =P3Sp3 = S* = S(Oro, - xp). 
(5.7.2) 

Accordingly, st, S, and S-I are also equivalent. 

~lS~2 = P1S tp2 = P3S Tp3 = S -1. (5.7.3) 

The corresponding properties of Lo = Lo(Oro,Xp) are 

1'. tr Lo = 4 [cos\O /2) cosh2(X/2) 

+ sin2(O/2) sinh2(x/2)(ro.p)2] ; (5.7.4) 

2'. Lo commutes with Uj ; 

3'. io = L o' and Lo and L t are equivalent: 

U,LoU, = U,LoV = L ~ = Lo(ero, - Xp). (5.7.5) 

Accordingly, L 6 and L 0-
1 

( = La) are also equivalent. 

It is noted from (5.7.2) and (5.7.5) that L t is represent
ed by S T instead of S * if one follows the basic correspon
dence Lo+-+S (La). The properties given above are basic to 
understand the relations between the various subgroups of 
the full (homogeneous) Lorentz group G(L ). Let G(Lo'j), 
G(Lo,J and G(Lo.s) be the proper, antichronous and orth
ochronous Lorentz groups consisting of Lo combined with 
U" U, and Us, respectively. Then, from 2' and 3' it follows 
that G(Lo) is an invariant subgroup of these subgroups as 
well as ofG(L ). In particular, the property 3' establishes the 
isomorphism of two subgroups G(Lo.t) and G(Lo.,). The re
presentations of these subgroups and G(L ) will be discussed 
in Sec. 5.C. 

B. The 2 x 2 irreducible representations of G('-o) based 
on 5('-0) 

The spinor representation S (La) of (5.6) is easily re
duced if one uses the lemma introduced in Sec. 1. To this end, 
let us assume the standard representations for :I and u given 
by Dirac and note the fact that a = P I~' Let 12 be the 2 X 2 
unit matrix. Then, the involutional transformation 

(

10 
~) = (l/V2)(PI + P3) = (lIY2) -

I;> 
(5.8) 

which interchangesp I andp3' reduces S (L ) into a direct sum 
of a 2 X 2 matrix A and its time reversal A T 

~,S(Lo)Yp = ± (~ AO
T

) , (5.9) 

where 
A = exp [(i!2)ero·(J'] exp [ - !,rP'(J'] ==A (Oro,Xp), 

(5.10) 
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A 7 = u~ *U2 = A (0(;), - Xp). (5.11.1) 

Let A be the contragradient matrix of A, then it follows that 

A = U~U2' A -I = u7u2, (5.11.2) 

which are valid for any matrices belonging to SL(2,q, the 
2 X 2 unimodular group over the complex field with six pa
rameters. The 2 X 2 matrices ± A or ± A 7 exhaust all mem
bers of SL(2,C) having six parameters and give the double 
valued irreducible representations ofthe proper orthochron
ous Lorentz group G(La). The form of A explicitly parame
terized by O,w,X and p has never been reported previously 
and gives the starting point of the whole finite dimensional 
irreducible representations of the full Lorentz group G(L ). 

Traditionally,8.20 the representation theory of the Lo
rentz group is based onAESL(2,q and its complex conjugate 
A *, without giving the parametrized forms of A andA *. Ac
cording to (5.11.1), A T and A * are equivalent so that S (La) 
can directly be reduced into A G1 A *. We prefer, however, to 
base our arguments on A and A 7 because of the simplicity of 
the involutional transformation Yp and also simple physical 
meaning of A 7. It should be noted here that the involutional 
transformation Yp is a real lOS matrix and it brings the four
component Dirac theory of a neutrino into the two compo
nent Weyl theory, i.e., Yp(a.p)Yp =(J(~.p). 

The parameterization of the matrix elements of A in 
terms of 0, w, X, and p may explicitly be given as follows, 

A = r1 2 + q'(1, 

r = cos(O /2) cosh(r/2) - i(w·p) sin(O /2) sinh(r /2), 

(5.11.3) 

q = iW sin(O /2) cosh(r /2) - P cos(O /2) sinh(r /2) 

+ [wXp] sin(O /2) sinh(r /2). 

When X = 0, it reduces to the Euler-Olinde-Rodrigues par
ametrization,6 and when 0 = 0, it reduces to the parametri
zation of the pure Lorentz transformation. In practical ap
plication, it may be better to use the Caley-Klein 
parametrization 14.22 for the part of the spacial rotation 
exp[i/2)Ow.(1]. The determinant and the trace of A and A 7 

are given by 

detA = detA T = ? _ q2 = 1, 
(5.11.4) 

trA = 2r, trA T = 2r*. 

Accordingly, A is not equivalent toA T in general. In a special 
case when trA = real, A and A 7 are equivalent; in fact, A T 

= (w'(1)A «(;)'(1) with (w·p) = 0. According to Theorem 4 of 
Ref. 1, the 2 X 2 matrix A can be brought into a triangular 
form by a similarity transformation with an IUH (involu
tional, unitary and Hermitian) matrix. This property be
comes important when we discuss the eigenwert problem of 
the higher dimensional representations of A. 

In view of(5.9) the basis of the representation A G1A 7 of 
the proper orthochronous Lorentz group G(La) is given by 

5v = YpXv, v = 1,2,3,4, (5.12) 

where ~) is the involutional transformation and X v is the 
Dirac spinor basis for the standard representation; (Xv)!' 
= O,,!'. Explicitly, 
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s,~~m, s,~~m, s'~~[~l 
S,~ ~ UJ (5.13) 

The symmetry properties of the basis are as follows: Under 
the charge conjugation C and Wigner time reversal T, 5v 
transforms as 

5I
C

=54' 52C = -53' 
51

7 = 52' 5/ = 54' 

(5.14.1 ) 

(5.14.2) 

Under the space inversion U" the time inversion Ur and the 
total inversion Uj represented by ± P3, ± ip2 and ± P I re
spectively it transforms as 

P351 = ip~1 = 53' P352 = ip~2 = 54' 

PI51 = 51' PI52 = 52' PI53 = - 53' 

PI54 = -54' 

(5.14.3) 

(5.14.4) 

These transformations can be shown to be compatible with 
the transformation properties of S (La) given by (5.7.2) and 
(5.7.4). As one can see, the charge conjugation, the space 
inversion and the time inversion mix two subspaces (51,52) 
and (53,54) belonging to A and A 7 respectively, while the 
Wigner time reversal mixes the bases in each subspace and 
the total inversion affects only the signs of 5 v' As a result, the 
4 X 4 spinor representation! S (Lo), ± P3S (L ) I of the orth
ochronous Lorentz group G(Las) is irreducible. This can be 
seen alternatively from the fact that it is impossible to bring 
more than fourofthe Dirac matricespI> P2,P3' and"!\'~2'~3 
into the form of an even operator in the Dirac sense. A simi
lar statement holds for the extended Lorentz groups G(La.t ) 

and G(L). 

C. The finite dimensional representations of G(L) 

Once 2 X 2 irreducible representation A is properly par
ametrized, the construction of the higher dimenisonal finite 
representations are a matter of routine, except for their rela
tion with the phase convention. Let r be a vector with com
ponents, (x,y) and let 

f;!)(r) = x 2
} - VyV /[ (2j - v)!v! ]1/2, v = 0,1, ... ,2j,(5.15) 

be a set of 2j + 1 monomials of two variables x and y withj 
being an integer or a half integer. We define the (2j + 1) 
dimensional irreducible representation, D(J)(A) 
= D (h(Ow,Xp) of AESL(2,q by 

f (j)(A r) = ~ D (h(A) J(j)(r) 
\' fJ l'~ Ii • (5.16) 

This representation3 previously proposed by the author is 
different from the conventional representation due to 
Wigner,22 which is the inverse transpose of the present repre
sentation. Evidently, both representations are equivalent 
and connected by an involutional transformation since A 
= U~U2 from (5.11.2). The present representation D (j)(A ) 

is more convenient in general since it does not require the 
calculation of A -I. A convenient general expression of 
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D (h(A ) is available in terms of a hypergeometric function. 3 

The symmetry properties, the eigenwert problem of D (j)(A ) 
are also worked out. It has been shown that if A is triangular, 
then its representation D (D(A ) is also triangular in shape 
similar to A. Thus, in general, D (j)(A ) can be brought into a 
triangular form by an IUH (involutional unitary and Hermi
tian) matrix. I We shall give here3 the trace of D (J)(A ) 

trD(;)(A) = I 2 I 2' 
{
(E2J + 1 _E2J+I)/(E -E) 

(2) + 1)~J+ I, (5.17) 

where EI and E2 are the characteristic roots of A. In special 
cases where () = 0 or X = 0, we have the well known result: 

( '() {sin(J + !)() Isin«() 12), for X = 0, trD ;, A = 
sinh(j + D X Isinh(x 12), for () = o. 

It is also well known that D (j)( ± A ) = ( ± 1 )2J D (J\A ). 

The (2) + 1) dimensional representation of A ~ 
= A «()w, - Xp) is given by D (D(A ') = D (;)«()w, - Xp). Ac

cordingly, the general (2) + I)X(2j' + 1) dimensional irre
ducible representation of G(Lo) is given by 

D (jj')(Lo) = D (;)«()w, - Xp) ® D (J')«()w, - Xp). (5.18) 

Here it is noted again that this representation is different 
from the ordinary representations8

.
23 which are based on A 

and A *. Both representations are, however, equivalent. 
Thus, trD (J)(A ') = [trD (D(A )]* and hence the trace of 
D (M(Lo) is real and positive. For example, 

trD('/21/2)(Lo) = 4rr*, (5.19) 

where r is given by (5.11.3). From this result, trLo has been 
obtained and given by (5.7.4) since Lo is equivalent to 
D('/21/2)(Lo)' 

We may express the basis of the representation D (jj') in 
terms of the basis ts,. 1 of A GlA T given by (5.15) formally as 
follows, 

x [(j + m)!(J - m)!(j' + m')!(j' - m')!] 112, 

(5.20) 
m = j,) -1, ... , -), m' = j',j' -1, ... , - j'. 

This formal expression is particularly convenient to discuss 
the representations of the full Lorentz group G(L). Under 
the space-time inversion Vj' the time inversion V t and the 
spacial inversion V represented by ±PI' ± ip2 and ±P3 
respectively with Convention 1 given by (3.13), the basis vec
tors transforms as follows, 

(5.21) 

where use has been made of (5.14.3) and (5.14.4). It follows 
immediately that the sets t 1JIf"",. J and ( lJ11:,m" 1JIij,'m ;j#ll 
provide the bases of the irreducible representations D (h\L) 
and D (il + j'J) of G(L ) with the dimensions (2j + 1)2 and 
2(2) + 1)(4i' + 1), respectively. The representations 
D (jJ)(L ) are always single valued while D (JJ' + j';)(L ) are sin-
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gled valued when and only when) + j' = integers. Accord
ing to (3.17) and (5.21), these single valued representations 
for Vj ' U t and U, do depend on the arbitrary phase conven
tion when) + j' = odd [or 2j = odd for D JJ(L )]. This unex
pected feature is easily understood from the fact that there 
exist additional irreducible '7"x.23 representations ofG(L) 
and the set of the single valued irreducible respresentations 
as a whole is invariant for the different choice of the phase 
conventions. We shall discuss this point in some detail, for it 
has never been properly recognized. 

The additional irreducible representations ofG(L ) stern 
from the fact that the four group V (E = identity, V j ' V t and 
V,) is isomorphic to the factor group of G(L ) with respect to 
G(Lo). The four one-dimensional representations Do, D

" 
D2 , 

D 3 , and one double valued (2 X 2) representation D 4 of Vare 
given by 

E V j V t V, 

Do 1 1 
D, -1 -1 
D2 -1 1 -1 

D3 1 -1 -1 
D4 ± 12 ± 0'1 ± i0'2 ± 0'3 

(5.22) 

where D 4 is obtained by reducing the 4 X 4 representation 
(14' ±PI' ± ip2' ±P3)of Vwith Convention 1 by the invo
lutional transformation P of (5.35) which interchanges pj 
and ~j' Each Dr defines an irreducible representation Dr(L ) 
ofG(L ). These are trivial representations by themselves but 
their direct products with D (h1(L ) or D (h' + j';)(L ) yield fur
ther representations of G(L ). Let us define a set of direct 
products, 

(5.23) 

where r = 0, 1,2, 3, and D (a)(L ) stands for D (h1(L) or 
D (h + /J)(L ) with) + j' = integers. Then, these give four 
types of single valued irreducible representations for a given 
D (al(L ). As it has been mentioned before D (a)(L ) depends 
on the phase convention introduced in (3.17) whenj + j' = 

odd [or 2j = odd for DJJ(L )]. However, this dependence 
gives a trivial consequence since different conventions give 
the same set of four types as a whole. In fact, one can show 
from (3.17) and (5.21) that 

D :(lJ)j (L) = DiL ) ® D ~a.ri (L ) 

= DiL) ®D~a.r~ (L) = D,(L) ®D ~a.r~ (L), 
(5.24) 

where r = 0,1,2,3, and the suffices (c - 1)-(c - 4) denote 
Conventions 1-4. 

It should be noted here that one can show from (5.21) 
and (5.23) that the four D (JJ.r)(L ) are all inequivalent while 
only two of D (J/ "j'j,r) are inequivalent for a given conven
tion. For the latter the ones with r = 0 and 3 are equivalent 
and so are the ones with r = 1 and 2. This then leads to the 
equivalence of Conventions 1 and 2 and also of Conventions 
3 and 4. It is also noted here that it is impossible to choose 
any single phase convention which makes all the basic repre
sentations D (a.O)(L ) equivalent to the regular tensor repre
sentations; for example, it can be shown that the 4 X 4 repre-
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sentation based on (x I,X2,X3,X4 = iet) is equivalent to 
D ~1~221/2,O)(L ) while the 6 X 6 regular tensor representation is 
equivalent to D ~1~:t0I,O)(L) (see Sec, 5,E), Thus, one may 
conclude that there seems no essential difference between 
different choices of the phase conventions, 

Finally, from the direct product of the 2 X2 double val
ued representation DlL ) of (5,22) and (D (jJ)(L ), 
D (jj' + j'J)(L );j =1-/1 one obtains further double valued repre
sentations of G(L ). 

D. The Infinitesimal Method 

There exists an alternative approach to the irreducible 
representations which is more traditional than the one pre
sented hitherto. It is based on the generalized spin matrices 
:r and a corresponding to the infinitesimal operators I and J 
respectively. Let us define two commuting spin-like vector 
matrices a and b by 

a = !(:r + a) = W + PI):r, 
(5.25.1) 

b = !(:r - a) =!(1 - PI):r· 

Then, by definition, a and b are the projections of:r belong
ing to the eigenvalues 1 and -1 of PI respectively.2 Thus, 

ajbj = bja j = 0, i,j = 1,2,3. (5.25.2) 

The involutional transformation 1'" of(5.8) connects a and b 
with the Pauli spin matrices as follows: 

~) , 
(5.25.3) 

~), 
Hence, the set of simultaneous eigenvectors of a 2

, az , b2
, and 

bz are again given by [tv], One may easily extend this to the 
higher dimensional basis given by (5.20). This approach, 
however, may not lead to the parameterization of the basic 
2 X 2 matrix A as given by (5.10). 

E. Three-dimensional representation R(3}EG(Lo} 

As an example of the higher dimensional representa
tion, we shall explicitly work out the 3 X 3 matrix representa
tion R (3) [= R (3,Lo)] of the proper Lorentz group, equiv
alent to D ( 1.0 '(A ). This is particularly important in the 
transformation of the field quantities of electricity and mag
netism. Suppose that there exists a three dimensional vector 
X = (XI,x2,x3) whose scalar square is invariant under a 
proper Lorentz transformation. Then one can write 

X 2=X/+X/+X/ 

= (O'IXI + 0'2X2 + 0'~3)2 = invariant, (5.26) 

where 0', are the Pauli spin matrices. Then a 3 X 3 orthogo
nal transformation R (3) which leaves X 2 invariant must be 
related to the corresponding spinor transformation S R by a 
special case of (2.4) for d = 3, 

I O',.R (3,Lo)"I' = SRO'IISR -I, J.l = 1,2,3. (5.27) 

Substituting A of (5, 10) into S R of (5.27) we have 

R (3;Lo) = exp(ew·I] exp[itp·I), (5.28.1) 
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where I = (1 ( 1),1 (2),1 (3» describes the infinitesimal rotations 
in 3-D. More explicitly, with use of(4.21) one can write, 

X' = R (3,Lo).X 

= exp[OW.I) {XII + coshX(Xl - i[voXX])}, (5.28.2) 

where XII and Xl are the parallel and perpendicular compo
nents of X to the direction p of motion of the coordinate 
frame respectively and vo = e tanhxp. 

Any antisymmetric tensor of second rank which trans
forms under the Lorentz transformation gives rise to a vec
tor in 3-D which satisfies the invariance condition (5.26). 
The well known examples of such tensors II are provided by 
the field tensors in electricity and magnetism; e.g., 2F = (B, 
- (i/C)E) and 2G = (H, - ieD) where B the magnetic in

duction, E the electric field, H the magnetic field, and D the 
electric displacement. One may take X = B - (i/e)E or H 
- ieD. Then, (5.28.2) describes their transformations under 
the full Lorentz transformations L. To see this we separate 
the real and imaginary parts of (5.28.2) and describe the 
transformations of Band E, say, in terms of 6 X 6 matrix, 

( 
B') (R '(3) R "(3») ( B ) 

E'/e = - R "(3) R '(3) E/e' 
(5.28.3) 

where R (3,Lo) = R '(3) + iR "(3) and R '(3) and R "(3) are 
the real and imaginary parts respectively, 

R '(3) = exp[OW.I] [coshX 13 + pp(1 - coshX )], 
(5.28.4) 

R "(3) = exp[effi.l] sinhX (p.I). 

The transformation (5.28.3) is the most general form of 
the well known transformation law II of Band E: It can be 
shown that the 6 X 6 tensor of (5.28.3) is equivalent to 
D ~IO iOI.I)(L) defined by (5.24) and hence the above trans
formation law of(5.28.3) holds for the full Lorentz group. It 
should be noted that if one takes A T of (5, 11.1) for S R of 
(5.27), one obtaines the time reversed transforamtion de
scribed by R 7(3) = R (3)*. In a special case when ffi is paral
lel to p, R (3,Lo) takes a particularly simple form 

R (3,Lo) = exp[(e + ix)ffi.I]. (5.28.5) 

This special case has previous,ly been derived by 
Kur§unoglu. 24 

F. The 2x2 irreducible representations based on R(Lo} 

It is well known that the Lorentz matrix Lo given by 
(5.6) is irreducible. It is equivalent to D(1i2.1i2)(OW,Xp) 

A ® A T so that one may arrive at 2 X 2 irreducible repre
sentations A and A T by establishing the equivalence explicit
ly. To this end, we introduce two commuting sets of vector 
matrices N = (N1,N2,N3) and M = (MI ,M2,M3) by the lin
ear combinations of the infinitesimal transformations I and 
J, analogous to (5.25.1), 

N = - i(1 + J) = (P~I' - P2I3' I 2), 
(5.29) 

M = - i(1 - J) == ( - P II 2 , - P2' P3I2)' 

where on the RHS the three components ofN and Mare 
expressed by the Dirac matrices in the standard representa
tion. It can be easily shown that Nand M commute with 
each other and are equivalent to the Dirac spin matrices :r 
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(see below). This property can also be used to construct all 
the finite dimensional irreducible bases of G(Lo) by means of 
the ladder operator technique. 8 

In order to achieve the equivalence of Lo to A ® A T we 
may rewrite Lo in terms of Nand M, 

Lo = exp[~ieffi·N] exp[ - !xp.N] expWOO>·M] 

xexp[!xp·M]. (S.30) 

Then, using the basic lemma of Sec. 1 repeatedly we may 
bring Nand Minto 1: and p respectively through unitary 
transformations 

TNTt = 1:, TMTt = p, (S.31) 

where T is a unitary matrix defined by 

T= 2
3/2

plp2 +P3) (~ ~) (.2'2 +.2'3)(P2 +P3)' 

(S.32) 

From (S.lO), (S.30), and (S.31) and using that 1: = 1 ® cr, 
P = cr ® 1, we establish the equivalence 

TLoTt = AT ®A. (S.33) 

We can easily interchange A and A T in the direct product by 
a further transformation through a matrix P 

PTLoTtp = A ®A T, (S.34) 

where P is an IVH (involutional, unitary, and Hermitian) 
operator defined by 

P = HI + p.1:], (S.3S) 

which interchanges p and 1: through PpP = 1:. The explicit 
form of the overall transformation matrix PT is remarkably 
simple 

PT= 

[ 

1 

I 0 

\1'2 0 
-1 

-i 

o 
o 
-I 

o 
-1 
-1 
o 

~.J ' -I 

o 

(S.36) 

which is unitary. Thus, from (5.34) and (S.36) the coordinate 
basis which transforms according to A ® A T is given by 

PTx = (XI - iX2' - X3 + iX4' - X3 - iX4' - XI - ix2), 
(S.37) 

where X and the RHS should be read as column vectors. This 
basis could be obtained directly from the differential opera
tors corresponding to Nand M and their eigenwert problem. 
Starting from (S.34) and (S.37) one can reconstruct whole 
irreducible representations of G(Lo) in the analogous man
ner as the classical work of Murnaghan. 20 This approach, 
however, may not lead to the parametrization of the 2 X 2 
matrix A as given by (S.lO). 

6. CONCLUDING REMARKS 

It has been shown that involutional transformations 
playa fundamental role in the theory of group representa
tions on account of the lemma introduced in Sec. 1 and Car
tan's basic theorem on the orthogonal transformations. The 
effectiveness of the lemma has been exhibited by the proof of 
the basic Theorem I and the reduction of 4 X 4 spin or repre
sentation of the Lorentz matrix itself (Secs. S.B and S.F). 
Further applications of the involutional transformations to 
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physical problems will be presented in forthcoming papers. 
In the present work it has been stressed that any d X d or
thogonal matrix can be expressed by a product of a number 
(<,d) of lOS (involutional, orthogonal, and symmetric) ma
trices of a special typeR (h) = 1 - 2hh which Cartan called a 
reflection in a plane 1Th perpendicular to the vector h. On 
acount ofthis theorem it was possible to introduce the phase 
convention for the spinor representation. 

A reasonable extension of Cartan's theorem would be 
that a unitary matrix may be given by a product of IVH 
(involutional, unitary, and Hermitian) matrices. The general 
proof of this statement is lacking at present. However, there 
exists an interesting example given by the spinor representa
tion S (R) of (4.24) which represents REO (d,IR) since 
Yh = };y"h" is an IVH matrix with the Hermitian set I y" l. 
Another interesting example of such factorization of a uni
tary matrix has been considered in the diagonalizations of 
the field Hamiltonians in solid state physics. I 

APPENDIX: THE GROUP PROPERTY OF G(LoJ 
It has been well established5 that any element of the 

proper orthochronous Lorentz group G(Lo) is given by a 
product of pure Lorentz transformation and a spacial rota
tion. A simple explicit proof of this statement based on (S.6), 
however, is worthwhile since it directly leads to Einstein's 
addition formula for velocities as well as the transformation 
property of the Lorentz transformation itself. For the proof 
it is sufficient to prove the following two statements: 

1. The spacial rotation of a pure Lorentz transforma
tion in a direction p gives another pure Lorentz transforma
tion in the direction p' given by the spacial rotation of p: 

exp[8(;).I] exp[ixp·J] exp[ - 8(;).1] = exp[ixp'·J], 

p' = exp[00>.I(3)]p, (AI) 

where 1(3) is the three-dimensional vector matrix of an in
finitesimal rotation. This is a special case of (4. 10). 

2. Two successive pure Lorentz transformations in the 
direction of PI and P2 give a pure Lorentz transformation 
followed by a spacial rotation in the PI-P2 plane: 

where 

p sinhX = P2 sinhX2 + PI sinhX) 

X [coshX2 + tanh(x/2) sinhXl cos4J], 

cosbx = coshX) COShXl + sinhXI sinhX2 cos¢, 

cos¢ = (P2'P), 

tan(8/2) = tanh(x1/2) tanh(x/2) sin¢ I 

X[I + tan(x2/2) tanh(x1/2) cosh¢], 

(;) = [pz·p)]!sin¢. 

(A2) 

(A3) 

(A4) 

The proof is simplified if one uses the spinor representation 
of (A2). Equation (A3) is the Einstein formula. In the limit
ing case where only the direction of the transformation 
changes infinitesimally with respect to time, we have 
e = ~ (coshX -1) withXI = X2 = X. This is essentially the 
well-known formula for the Thomas precession. 25 
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We construct the minimal-size infinite-dimensional "supergauge" algebras containing sl(3,R ) 
and spinorial generators, with the possibility of having a central term as in the Heisenberg algebra. 
The results describe the spin-excitations of a membrane and may provide [when extended to 
sl(4,R)] the framework for an infinitely supersymmetric (renormalizable?) gravity. 

1. PHYSICAL MOTIVATION: MEMBRANES, LUMPS, AND 
THE RENORMALIZATION OF GRAVITY 

In two previous publications l
,2 we have explored alge

bras containing both sl(3,R ) and giso(3), the graded exten
sion of the inhomogeneous orthogonal group ISO(3). Since 
the sl(n,R ) have no finite double-valued representations, we 
found no finite solutions. I In Ref. 2 we presented a minimal 
solution gsl(3,R ), involving in addition to sl(3,R )two infinite 
sets of generators S ~ and E ~ behaving under sl(3,R ) as the 
irreducible bandors, 1»(!;0) and 1»(1;0"2)' respectively, and 
with 

[S ~ ,E ~, ] = 0 , 

[E ~ ,E ~, ] = 0 . 

(Ll) 

The interest in such algebra relates to several possible 
applications. In dual models/ although the usual presenta
tion proceeds to "replace" the shears of SL(2,R )/SO(2) by 
two such infinite sets, it can be checked that the resulting 
NSR algebra together with the (z,t ) shears is just the analo
gous gsl(2,R ), with the infinite sequences behaving as irredu
cible representations of sl(2,R ). This in fact explains their 
composition, otherwise an ad hoc result. Our gsl(3,R ) is thus 
the spin-excitation algebra of a membrane and gsl( 4,R ) is 
that of a lump or bag.4 

In Ref. 2 we showed how gsl(3,R ) -- giso(3) + decou
pled operators, under a certain contraction procedure. The 
lowest levels S j" and E ~ of the S ~ and E ~ can then be 
identified with the supersymmetry generators and with the 
translations, respectively. This result opens up another pos
sibility: gauging gsl( 4,R ) locally. The graviton (or its transla
tion-gauge part) is the gauge field of E :" E;". It will thus be 
accompanied by gauge fields with spin 3, 5, 7, etc. Similarly, 
the j = 1 gauge field of supergravity5 is followed by fields 
withj = ~,¥,¥, etc. Such a modification of gravity may be 
related to the a -- 0 limit in dual models,6 where a graviton
like field has been shown to appear. 

We have recently studied metric-affine gravity with 
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spinorial matter 7 and a framework for affine gravity. 8 This is 
motivated by the regularities displayed by hadrons, which 
correspond to approximate hypermomentum [sl(4,R) cur
rents] conservation and by the existence of (hopefully micro
scopic) confining solutions9 perhaps related to quark con
finement. In supergravity remarkable progress has been 
achieved in renormalizing gravity: The theory is finite at the 
one-loop level and the same result would hold for two-loop 
diagrams, except that some uncertainty remains owing to 
anomalies. On the other hand, for the three-loop level and 
above, examples of counterterms that are not forbidden by 
supersymmetry have been constructed. 10 

Gauging gsl(4,R) may combine the advantages of both 
approaches: hypermomentum quasiconservation, confine
ment, and renormalizability. Moreover, with the single anti
commutation of supersymmetry now replaced by an infinite 
set of such commutators, it may be possible to forbid all 
counterterms to all orders! 

This is an outline for a full research program. In this 
article we provide a detailed discussion of gsl(3,R ), following 
Refs. 1 and 2. We include a central term in the algebra and 
also check the possibility of having 1» (0;0"2) instead of 
1»(1;0"2)' 

2. SL(3,R) ALGEBRA AND UNITARY IRREDUCIBLE 
REPRESENTATIONS 

SL(3,R ) is the group of volume-preserving deforma
tions, i.e., the group oflinear unimodular transformations in 
a three-dimensional real vector space. The group is a simple 
and noncompact Lie group. The group multiplication law is 
given as a product of transformations, i.e., as matrix multi
plication when the group elements are given as 3 X 3 matri
ces. The maximal compact subgroup ofSL(3,R ) is SO(3). In 
quantum theory one is interested not only in single-valued 
representations of a symmetry group, but also in projective 
or ray representations (representations up to a factor ofmo
dulus one), i.e., 

(2.1) 

g I and g2 being the group elements and UJ a real function. 
This can be achieved by considering only the single-valued 
representations of the corresponding covering group. It fol
lows from the work of Bargmann II that there is a one-to-one 
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correspondence between the ray representations of a group 
and the single-valued representations of its universal cover
ing group. We denote the universal covering group of 

SL(3,R ) by SL(3,R ). This group has the same Lie algebra as 
SL(3,R) and its maximal compact subgroup is SU(2), the 

covering group of SO(3). The center of SL(3,R ) is a two

element group Z2' and the factor group of SL(3,R ) with 
respect to Z2 is isomorphic to SL(3,R ) i.e., 

SL(3,R )/Z2~SL(3,R ) . (2.2) 

In the following we shall consider SL(3,R ) onl0he repre

sentations of SL(3,R ) form a subset of those of SL(3,R ), for 
which angular momentum can take only integer values. 

Let sl(3,R ) be the Lie algebra of the SL(3,R ) and thus 

also of the SL(3,R ) group. It is an algebra of real 3 X 3 trace
less matrices. We denote by Ji (i = 1,2,3) the SU(2) gener
ators and they constitute the angular momentum part of 
sl(3,R ). The remaining five generators are noncompact and 
they form with respect to su(2) a second-rank irreducible 
tensor operator Tij . The sl(3,R ) algebra is now given by the 
following commutation relations: 

[J"Jj ] = iCijJk (i,j,··· = 1,2,3) , 

[J;.Tjk] = iCijm Tmk + iC,kn T jn , (2.3) 

[Tij,T~1 ] 

= -i(DikCjlm + Di/tjkm + DjkCilm + Djltikm)Jm . 

It is convenient to write the SL(3,R ) generators in a spheri
cal basis. The generators are now given (in the matrix form) 
by 

-i 

° ° 
° ° + ~) -/ , 

° (2.4) 

1o~ -,v'2/3 G ° ~} 1 

° -2 

~(li ° +') T"~(~l 
+1 

~) T-,- ° I , -i 

° ° The minimal set of the sl(3,R ) commutation relations in the 
spherical basis is 

[Jo,J ± ] = ± J ± ' 

[J + ,J _ ] = 210 , (2.5) 

[Jo,T/L] = f1T,l' (f1 = 0, ± 1, ± 2) , 

[J I ,T,,] = [6 - f1(f1 ± I)] I12T/L ± I , 

and 

(2.6) 

The commutation relation (2.6) is known as "the sl(3,R ) 
condition," while the remaining unspecified commutation 
relations can be obtained by means of the Jacobi identity. 

The SL(3,R ) group does not have any finite-dimension-
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al spinorial representations, while the finite-dimensional 
tensorial representations can be easily obtained from the uni
tary representations of the SU(3) group in the SO(3) basis. 
Here spinor and/or tensor is defined according to the angu
lar momentum content. There are infinite-dimensional spin-

orial representations of SL(3,R ) and all linear continuous 
spinorial and tensorial unitary irreducible representations 
(unirreps) have been explicitly constructed. 11.12 The angular 
momentum content of the simplest spinorial unirrep of 

SL(3,R ) features the striking .J j = 2 rule. This representa
tion belongs to the class of the multiplicity-free or "ladder" 
representations. They contain in the reduction to the maxi
mal compact subgroup SU(2) each of the corresponding re
presentations at most once. In this work we will confine our
selves to the ladder unirreps, which have been obtained by 
various methods. 12-14 For the sake of completeness we pre
sent here a new and rather short construction of the ladder 

unirreps of SL(3,R ) and provide the corresponding matrix 
elements of the group generators, which are necessary in 
order to construct explicitly the desired graded spin-exten
sion ofthe sl(3,R ) algebra. The construction is carried out by 
making use of the decontraction formula IS in evaluating the 

form ofthe SL(3,R ) generators. This formula, by now rather 
well-known in physics, describes a deformation which is the 
inverse of the Wigner-Inonii group contraction. 16 We work 
in the homogeneous space of functions of the parameters of 
the maximal compact subgroup SU(2). The Wigner-Inonii 
contraction of the sl(3,R ) algebra with respect to the su(2) 
subalgebra consists in defining the new set of (noncompact) 
generators Q'l (c) = cT'l and taking the limit lim. _~ 0 Q'l (t) 
= Q1l . The corresponding group, obtained in this way from 

the SL(3,R ) group, is TsQ<SU(2), i.e., a semidirect product of 
the Abelian five-parameter group Ts and the SU(2) group. 
The Q/L operators transform as components of the SU(2) 
quadrupole tensor operator. The commutation relations of 
the contracted group are given by (2.5), where Til is replaced 
by Q" and Eq. (2.6) now reads 

[Q/L,Qv] = 0, (,u,v = 0, ± 1, ± 2) . (2.7) 

The decontraction formula tells us that the following 
operators 

Til = V 2/3 (0'2 (L + V [J2,{L ]), 
where 

Q/L = (Q.Q) - 1/2Q/L ' 

(2.8) 

together withJo and J ± ' satisfies (2.5) and (2.6), thus gener

ating the SL(3,R) group. The parameter 0'2 is an arbitrary 
real number and the normalization factor yl2/3 is fixed by 
the value of the structure constant in the sl(3,R ) condition 
(2.6). We follow the notation of Ref. 12. 

The unirreps of the SU(2) group are well known. They 
are characterized by the labelj (j = 0, ~, 1, k') and in the 
spherical basis the matrix elements of the compact gener
ators are 

(2.9) 
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J± 1~)=[(j+m)(j±m+l)jIl2Im~I)' (2.9) 

In this basis J 2 _ j(j + 1). The vectors of the orthonormal 
basis {I jm ) } are related to the D functions by 

(p,YI~) =(2j+l) I12D 6m(P,y), (2.10) 

when P and yare the Euler angles. 
Since QI" operators commute mutually, Eq. (2.7), they 

do not contain derivatives in the Euler angles and they are 
obviously given, in the spherical basis, by 

QI" = qD 61"(P,Y), qER, ,u = 0, ± 1, ± 2. (2.11) 

The second-order Casimir operator of the T5CxSU(2) group 
is 

2 

Q.Q= I (- YQI"Q_I" _q2. (2.12) 
I' ~ -2 

The corresponding SL(3,R ) generators in the spherical basis 
now read 

T" =Y2/3«(J'2D 61" +~i[J2,D61"])' (2.13) 

The unitarity of the group representations, i.e., the hermiti
city of the generators, yields (J'2ER. The matrix elements of 
the noncom pact operators T can now be directly read off in 
the {I~ )}basis, i.e., 

(~,I T
" 
I~) = ( - )j' - m'( l'm' ~ ~)(/IITIIj), 

dition is satisfied. It turns out, after some straightforward 
algebra, that the sl(3,R ) condition is valid provided that 
(J'z = 0 and the minimalj is ~. Thus there exists a single spin
orial unirrep of sl(3,R ) with the followingj content: 

~ G;O): UI = ! !'~'~""I , (2.18) 

and the reduced matrix elements are 

(jIITIIj) = 0, 

U+21ITIU) =i[(2j+3)(j+l)(j+2) j1/2, (2.19) 

(j - 211 T II j) = - i [j(j - 1 )(2 j - 1) jl 12 . 

3. GRADED ALGEBRA CONSTRUCTION: CASE A. 

We turn now to the explicit construction of a minimal 
graded sl(3,R ) algebra, i.e., gsl(3,R ). It is minimal in the 
sense that, as the Neveu-Schwartz-Ramond algebra, be
sides the spin or operators it contains only one set of irreduci
ble tensor operators. gsl(3,R ) is an infinite-dimensional alge
bra with generators Jo, J ±' T" (,u = 0, ± 1, ± 2), S ;" 
(j = !,~,~,. .. ; m takes all half-integer values I m I .;; j), and E ;n 
(j = 1,3,5,.··; m takes all integer values 1m I .;;;). The gener
ators Jo, J ± ' and T" form sl(3,R ) itself, while S;" and E ;n 
transform as components ofsl(3,R ) irreducible tensor opera
tors corresponding to ~ (!;O) and !.iJ (1;(J' 2)' respectively. The 
graded Lie brackets are given [we allow the appearance of a 
central term in Eq. (3.1)] in addition to those of sl(3,R) 
[Equations (2.5) and (2.6)] by 

f S j S / 1 - A jj' E j+ / + C j 8 "" (2.14) t m' m' - mm' m+m' In jj'U m + n/.O , 

UIITIIj> 
= (- )/Y 2/3 [(2/ + 1)(2j + 1) jI/Z!(J'2 + ~ i[j'(j' + 1) 

- j(j + 1)]j (~ ~ ~). 

The second-order Casimir operator of the SL(3,R ) group 
now takes (for the ladder unirreps) the following value: 

(2.15) 

The 3 j coefficient in U II T 1Ij) is different from zero if/ = j, 
j ± 2, for integer j. Therefore there are two classes of tensor
ial unirreps of sl(3,R ) that are characterized by the minimal j 
value and an arbitrary real parameter (J'z, and the corre
spondingj content is given by 

g; (O;(J'z): ! j] = ! 0,2,4""1 , 

5: (1;(J'z): U] = (1,3,5""1· 

The nonzero reduced matrix elements are explicitly 

(jIITllj) = _ Y2/3(J' (j(j+ 1)(2j+ 1»)1/2 
2 (2j - 1)(2j + 3) , 

U+2I1TIIj) = [(2j+3)(j+l)(j+2) jl/2 

X [i + (J'zl(2j +3)j , 

(j-21I T II> = - [j(j_l)(2j_l)jIl2 

X [i - (J'2/(2j - 1)] . 

(2.16) 

(2.17) 

We can now consider these matrix elements to be valid in the 
half-integer case as well and check whether the sl(3,R ) con-
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[S;n,E;,,] = 0, (3.1) 

[E ;" ,E ~, ] = 0 , 

and by the following commutation relations: 

[Jo,X;" ] = m X;n , 

[J±,X;n]=[(j+m)(j±m+l)jl12X;n±I' (3.2) 

[T" ,X ;n ] = I ( ;+' I T" I j )X ;~ + /' . 
J' m ,u m 

The matrix elements are given by (2.14), i.e., (2.17) or (2.19), 
with X ;n as either E ;n or S ~. The structure constants A /,;'"" 
= A ~! m are identically zero if (J'z #0, whereas if (J'z = 0 they 

are nontrivial. Using the (graded) Jacobi identities 17 for 
gsl(3,R ), theA ;,;,,,, , can then be expressed in terms of a single 
parameter A II (Equations (3.5) and (3.9) below). A II can in 
its turn be absorbed into the definition of S ~. The constant 
term C ;n8 j/8", + m'.n is analogous to that of the Virasoro
Neveu-Schwarz-Ramond dual string algebras in the quan
tum case, which plays a crucial role in formulating a phys
ically satisfactory theory. All structure constants C;n can be 
expressed in terms of C t, Eq. (3.13), which appears to be a 
free parameter of the graded algebra. 

Let us first take C /" = O. We make use of the (graded) 
Jacobi identity for (J + ,S ;n,S ;~,), i.e., 

[J + ,! s;" ,S ~" ] ] = ! [J + ,S;" ],S ;~, 1 + ! S in' [J + ,s~, ] 1 ' 
(3.3) 

as well as of (3.1) and (3.2) and obtain 

[(j + / - m - m')(j + / + m + m' + 1) j(A /';'m' 
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= [(j - m)(j + m + 1) ]lA ~'+ 1 m' 

+ [(j' - m')(j' + m' + 1)]lA ~'m' + 1 (3.4) 

This equation can be recurrently solved for all A Irtm' in 
terms of A ~~:. If m = j (m' = j') one can solve (3.4) for all 
A ?~, (A ~» in terms of A j~: . Utilizing this result one can 
then solve (3.4) for all A y~ 1 m' and A /j> -I' and so forth. 
After some algebra we arrive at 

A ~'m' = {(2J)!(2j')!(j + j' + m + m')!(j + j' - m - m')!/ 

(2j + 2j')!(j + m)!(j - m)!(j' + m')! 

X(j' - m')!] -1}1/2A ~~: . (3.5) 

It is obvious from this expression that the A /j"m' coefficients 
are invariant under the substitution of ( - m, - m') for 
(m,m'), i.e., A J,!' m _ m' = A ~'m' , 

The A ~~: coefficients are not independent and we will 
now show that they can all be expressed in terms of a single 
one, say A II . Let us make use of the (graded) Jacobi identity 
for (1'",S ~,S~,) , i.e., 

[Tp , IS/., ,S ~, I ] = I [Tp,S ~ ],S ~, I + {S ~ , [Tp ,S ~, ] I . 
(3.6) 

Equating the terms in E ~ ~ J;", + il-' we extract from (3.6) the 
following equation: 

( j + j' I T I j + / )A ~'m' 
m + m' + /1 p m + m' 

( j I Ij) .. , (/ I 1/) .. , 
= m +/1 Tp m A ;';+pm' + m' +/1 Tp m' A ;';m'+p . 

(3.7) 

The matrix elements on the right-hand side of (3.7) corre
spond to the sl(3,R) unirrep §(~;O) and thus vanish [see 
(2.19)]. Therefore the nontrivial solution for A /j"m' can be 
achieved provided that the label 0"2 of the §(1;0"2) sl(3,R) 
unirrep is taken to be zero, so that Eq. (3.7) is identically 
satisfied. 

Convenient recurrence relations can be obtained from 
the coefficients in terms of E ~ +j'm-: ~ p for m = j, m' = /, 
and /1 = -2, i.e" 

t =2(j+j')Ajj: =t =2(j)Aj=H +t =2(j')Ajj:=~ ,(3.8) 

where 

Fixingj = ~ (j' = D, one can determine all A l~: (A j I) coeffi
cients in terms of A II. Having done this, one can then solve 
3 8) <" A 5/2/' <" A J 512 d <" hI' h (. lor 5/2/' I.e" lor J 5/2' an so lort . t 1S rat er 

straightforward to determine all A ~~: in a closed form. We 
finally find 

AJ/= [~(j+j'-I)]! 
JJ [!(j - !)]![!(j' - !)J! 

W(J - 5/2) (J)(j' - 5/2) 

. II t = 2 (j - 2k ) II t = 2 (j' - 2k ') 

X k~O k'=O A!l 
(\)(J .~_{ - 3) II . 
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. 11 t =2 (j + j' - 2k) 
k~O 

(3.9) 

We now explore the possibility of having a constant 
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term C ~ in (3.1). From the (graded) Jacobi identities for 
(J ± ,S ~ ,S !, ) we extract 

C~+I +C~ =0. (3.10) 

The (graded) Jacobi identities for (Til-'S ~,S!,) provide us 
with the following recurrence relations: 

( / I T I j )Cl + ( j I T I / )c ~ = ° . m+/1 il- m m+il- -m il- -m-/1 
(3.11) 

Substituting the explicit expression (2.14) for the matrix ele
ments, by making use of the symmetries of the 3 j coefficients 
and taking into account the consistency condition requiring 
the vanishing of 0"2' we obtain 

Cj' =(_)il-+ICJ 
m+j.l m' (3.12) 

where/ = j ± 2. Finally, we can express an arbitrary C ~ in 
terms of C I through the f9rmula 

C ~ = ( - )I(j - 1)( - )m - IC I . 
4. GRADED ALGEBRA CONSTRUCTION: CASE B 

(3.13) 

Besides the simplest minimal graded sl(3,R ) Lie alge
bras of case A, there exists another minimal graded sl(3,R ) 
Lie algebra based on the sl(3,R ) unirrep § (0;0"2)' This is an 
infinite-dimensional algebra with generators Jo, J ± ' and Til

(/1 = 0, ± 1, ± 2), S ~ (j = H'~"";lml"J), and G ~ 
(j = 0,2,4,···; I m I" J)' The generators Jo, J ± ' and Tp form 
sl(3,R ) itself, while S ~ and G ~ transform as components of 
the sl(3,R ) irreducible tensor operators corresponding to 
§(!;O) and §(0;0"2)' respectively. Graded Lie brackets (in
cluding a central term) are given in addition to those of 
sl(3,R ) [Equations (2.5) and (2.6)] by 

J j'l- jj' 1)-/1 j £ ISm,Sm' -Bmm,G m+ m, +C m8jj'um+ m"o, 

[S~,G~,]=O, (4.1) 

[G ~,G!,] = 0, 

and by the following commutation relations: 

[Jo,x ~ ]' = mX ~ , 

[J±,x/"]=«(j+m)(j±m+l»IX~±I' (4.2) 

[Tp ,x ~ ] = L ( / I Til-I j )X ~ + il- ' 
j' m +/1 m 

where the matrix elements are given by (2.14), i.e., (2.17) or 
(2.19), and X ~ now represents G ~ or S ~, The structure 
constants B ~'m' = B !i m are identically zero if 0"2 =1= 0. For 
0"2 = 0, they are nontrivial; using the (graded) Jacobi identi
ties for gsl(3,R ), they can be expressed in terms of a single 
parameter A ~j~ ~~/2 , which can be given unit value through 
a rescaling of the operators S ~ . The structure constants C ~ 
can be expressed in terms of a single constant C I [see Eq. 
(4.16) below], which is a free parameter of the graded 
algebra. 

Let us take first C ~ = 0, i.e., no center. Without any 
loss of generality we can always takej> j', i.e.,j - />0, 
owing to the symmetry I S ~,S !, I = IS!"S ~ J. Note also 
that B ~'m' vanishes unless 1m + m'l "j - / I is satisfied. 
From (4.1), (4.2), and the (graded) Jacobi identities for 
(J _ ,S ~,S~,) and (J + ,S ~,S!.), respectively, We extract 
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the following recurrence relations: 

[(j - / + m + m')(j - / - m - m ' + 1) ]lB /,/m' 

= [(j + m)(j - m + 1) JlB ;;j _ 1 m' 

+ [(J' + m')(J' - m ' + 1) JlB ;;j'm' -1 , 

[(j - / - m - m')(j - / + m + m ' + 1) JIB ;;j~, 

= [(j - m)(j + m + 1) ]lB ;;j'+ 1 m' 

+ [(J' - m')U + m ' + 1) JIB ;;j~ 1 

(4.3) 

(4.4) 

Making use of these two equations, it is possible to ex
press the B ;;j~, coefficients in terms of the coefficients 
Bf~j" Let us first fix m' = - /' From (4.3) we arrive at 

B j/ .' = (2 j - 2j')!(2j - k )!)lB j/, 
1 k - 1 (2 j _ 2/ _ k )!(2 j)! 1 - 1 ' 

k = 1,2, ... ,2j - 2/ ' (4.S) 

We now turn to Eq. (4.4) and take m = j -1,j - 2,.··; 
m' = - /, obtaining 

B jj'., = _ (2/k (2j - 2j') - (2j - k )!)lB jj', 
1 k - 1+ 1 (2 j _ 2/ _ k + 1 )!(2 j)! 1 - 1 ' 

k = 1,2, ... ,2j - 2/ + 1 . (4.6) 

In the same manner we finally find through repeated use of 
(4.4) 

= ( - )/ + m' {(2j - 2j')!(2j')!(j + m)!(j - m)! 

X [(2j)!(j - / + m + m')!(j - / - m - m')! 

xU + m')!(j' - m ')!]·1) 1/2B / __ / ' 

whereI> /, m = - j + / - m', ... , j - / - m', and 
m' = - /, ... ,/. 

(4.7) 

Let us consider the special case whenj = /, and thus 
m + m' = O. Equation (4.7) yields B ;;j _ m 

=(-)j-mB?J,Form= -jonehasBfljj= _B~J_j' 

since 2j = I,S,.··, but on the other hand, ! S ~ j,S ~ J 

= ! S .~,S l. 1 I and therefore B? j = 0, implying 

B;,; m=O, Vj,Vm. (4.8) 

We will now give a procedure expressing all B y_ j' coef
ficients in terms of a single coefficient B ;;~ ~ \ (since B 1 ~ \ 
= 0), which can be absorbed into the definition of S ~ .-The 

procedure is based on the recurrence relations that are ob
tained from the (graded) Jacobi identity for (TI"S ~,S ~,), 
Let us first consider the relations obtained from the terms in 
Gj-j',i.e., 

( j - / I T I j - / )B j/ 
m + m' + f.1 Ii m + m' mm' 

= (m ~ I T,i I ~)B~' + I' m' + (m/~ f.11 TI' I ~,)B ;;j'm' + I" 
f.1 (4.9) 

Owing to the fact that the matrix elements on the right-hand 
side vanish, since they correspond to the sl(3,R ) unirrep 
!:iJ (1;0) [see (2,19)], we are forced, as in case A, to require 
that the matrix elements on the left-hand side of (4.9) vanish 
as well, i.e., to take the sl(3,R ) unirrep iiJ (0;0) for the G :" 
operators, This is necessary for the existence of a nontrivial 
solution for B /,/m" The (graded) Jacobi identity for 
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(TI"S j,S l'.. j') provides further relations from which we can 
extract the following recurrence relations: 

( j-/+21 Ij-/) .. , 
j-/+f.1 T" j_/ By_/ 

= T B j+2/ j - j, 2 ( j - 21 Ij) ( " 2 1 'I ) 

j + f.1 I' j j+ I' - j' + _ j' + f.1 T" 1 _ / B Y- / + I' , 

(4.10) 

and 

(
j-/-21 Ij-/) '. , " + TI' ' '1 B ~l~ / j-j f.1 j-j 

( j - 21 Ij) . 2" (/ + 21 1 /) .. , 2 
= j+f.1 TI' jB)-;././+ /+f.1 TI, _/BY+j'lli' 

(4,11 ) 

which are obtained from the terms in G ~ =~: ~ ~, and 
G ~ = j: -;';,, respectively. It follows from (2.14) and the sym
metry of the 3 j coefficients that 

( / + 2 1 T / ) _ (/ + 21 / ) _ / ± 2 ± 21_ / - / + 2 T:p 1 m' , 

so that the Eqs. (4.10) and (4,11) become respectively 

t ~2(j-j')B?/ =t ~2(j)B~:~j'j' +t =2(J')BY }+2 
(4,12) 

and 

~2(j-j')B~l'..j' =t =2(j)Bj~~/j' 

+t !2(J')B~j'~L'+2)' (4,13) 

where 

t I~ (j) (j ! ~ 1 Til I ~) , 

and we have set f.1 to be +2 in (4,10) and -2 in (4.11). We 
first solve recurrently (4.12) for / = ! and arrive at 

(

W(j - 512) t! 2 (2 + 2k) )n 5/2 1/2 Bj\ - - II 
j -\ - k-O t !2(S/2+2k) 5/2 1/2 ' 

(4,14) 

We now proceed by making use of (4.13). The expressions 
for the remaining B Y j' coefficients are not monomials and 
become more and more cumbersome. We just note that from 
(4.13), when/ =! we find forj =~: 

B}~, =[t 2 (4)t !2(2)-t =2(nt ~2G)1 
(4.1 S) 

and so forth for j = l,f,lj-,. .. , Then when/ = ~ one can find 

from (4.13) all B ~~ ~,j = l,f,lj-,. .. , and so forth, 

We consider now the nontrivial structure constant C /n 
in (4.1). From the (graded) Jacobi identities for 
(J ± ,S:",S~,) and (T",S:",S~,) we extract the same set of 
recurrence relations for C :" as in case A above and thus have 

(4,16) 

5. GRADING, DILATIONS, AND THE CENTER 

We now extend the sl(3,R ) algebra to the algebra of the 
GL(3,R ) group, i.e., gl(3,R ), by adjoining the dilation opera-
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tor D, i.e., 

[D,Jo] = [D,J ± ] = [D,T!,] = 0, f.l = 0, ± 1, ± 2 . 
(5.1) 

Owing to these commutation relations, we obtain the follow
ing commutation relations for the graded case of ggl(3,R ): 

[D,S~] = dsS~, [D,E~] = deE~, 
[D,G ~] = dGG ~ . (5.2) 

Applying the (graded) Jacobi identity for (D,S ~ ,S !. ), we 
find de = Us and d G = Us for cases A and B, respectively. 
The constant ds can be absorbed in the definition of D. 

Dilations thus provide us with a grading. Taking ds 

= 1, we get a Z grading with trivial L; subalgebras for; < 0, 
;> 2: 

;=0: D,Jo,T!',e, 

; = 1: S~, (5.3) 

;= 2: Ej 
m (G~), 

where e is the identity, i.e., the central term multiplying C ~ 
in (3.1) and (4.1). 

The need for a central term e in dual models3 relates 
primarily to covariance, i.e., to the preservation of the com
mutation relations of the Poincare algebra 

[J(L),J(R)] 

2 
= P + 2 n ~ I I n(1 - -M.d v - 2) 

+ ~ [i4(d v -2) - a(o)J} 

X operators - 0 , 

where J(L) and J(R) correspond to the SU(2)L X SU(2)R de
composition ofSO(4). This commutator has to vanish, 
which fixes a(O) = 1 and d v = 26. 
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In our work the Poincare group commutation relations 
[here the iso(3)] are correct by construction, since we start 
from an algebraic ansatz rather than from canonical varia
bles. We could thus dispense with e here. However, the con
struction of a dynamical theory may involve further compli
cations and we have thus chosen to include in this study the 
possibility of adjoining a central term. 
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A method is developed for establishing the exact solvability of nonlinear evolution equations in 
one space dimension which are linear with constant coefficient in the highest-order derivative. 
The method, based on the symmetry structure of the equations, is applied to second-order 
equations and then to third-order equations which do not contain a second-order derivative. In 
those cases the most general exactly solvable nonlinear equations turn out to be the Burgers 
equation and a new third-order evolution equation which contains the Korteweg-de Vries (KdV) 
equation and the modified KdV equation as particular cases. 

INTRODUCTION 

This paper is concerned with the problem of determin
ing whether a given nonlinear evolution equation is exactly 
solvable, and also with the problem of finding all such equa
tions of a given order. An equation is called exactly solvable 
ifit admits a Lax formulation, I that is, if there exist differen
tial or integral operators L and A such that the given equa
tion can be written in the form L, = [A, L]. 

Our approach to the above problem is based on the con
sideration of the symmetry structure of the given equation. If 
an equation is exactly solvable it possesses infinitely many 
generalized (as opposed to Lie-point) symmetries. The exis
tence of a generalized symmetry manifests itself by the exis
tence of an admissible generalized or Lie-Biicklund (LB) op
erator. 2 The existence of infinitely many symmetries is 
expressed by the existence of a recursion operator L1 3 (see 
also Sec. 1) which generates a new admissible LB operator 
from a given one. In almost4 all known cases the admissible 
operator expressing in variance of equation under t-transla
tion is generated from that expressing in variance under x
translation. We call equations possessing this property ex
actly solvable equations of normal type. Another interesting 
fact regarding the symmetry structure of evolution equa
tions is that in all known cases the existence of one general
ized symmetry implies the existence of infinitely many. 
(However, this has not been proved in general.) With the 
above in mind we now formulate our criterion, which is 
elaborated in Sec. 2. 

A. Proposition 

A necessary condition for a nonlinear evolution equa
tion of nth order to be exactly solvable of normal type is that 
it admit an LB operator with a generator of order 2n - 1. 

Having obtained this generator, it is usually possible by 
inspection to obtain the recursion operator L1, the existence 
of which provides a sufficient condition for the exact solv
ability of this equation, since L1 and the Frechet derivative of 
the t-independent part of the equation form a Lax pair (see 
Sec. 1). 

The above criterion is quite practical since it is algorith
mically very straightforward to find out if a given equation 

'''Research supported in part by NSF grant MES 78-0306 and by the Saul 
Kaplun Memorial Fund. 

admits a generator of a given order. Further, it is also algor
ithmically possible to determine which equations of a certain 
order admit a generator of a given order. This is illustrated in 
Sec. 2, where we find all second-order equations and all 
third-order equations (not involving a second-order deriva
tive) which are of normal type. Within equivalence (see Sec. 
2.1), the most general nonlinear second-order equation with 
the above property is the Burgers equation. The most general 
third-order equations turn out to be: (i) A generalization of 
the Korteweg-de Vries (KdV) equation, see (2.18) which, in 
particular, contains any linear combination of the KdV and 
of the modified KdV (MKdV) as a special case, (ii) A linear 
combination of the potential KdV (PKdV) and of the poten
tial MKdV (PMKdV). The potential KdV (or the potential 
version of the KdV) is the equation obtained from the KdV 
after replacing the dependent variable u by the "potential" 
W, u = W x ' and integrating once. 

B. Outline of the paper 

In Sec. 1 we first define admissible LB operators2 as 
restricted to evolution equations as well as their commuta
tors5 and prove ? lemma expressing the admissibility of an 
LB operator in a convenient form. We further recall the defi
nition of a recursion operator3 and then prove that the recur
sion operator together with the Fn!chet derivative of the 
time-independent part of a given evolution equation form a 
Lax pair, and also give a convenient characterization of a 
recursion operator as well as of its main property (see Lem
mas 2 and 3). Finally, for completeness of the presentation, 
the definition of a hereditary operator6

,7 is recalled. In Sec. 2 
we first outline our method and then present some concrete 
results which also illustrate the general theory. In Sec. 2A we 
find all second-order equations possessing a third-order 
symmetry and the corresponding admissible generators. We 
further show that all these equations can be linearized, and 
give explicitly the corresponding linearizing Backlund 
transformations (BT). The recursion operators possessed by 
the above equations are also explicitly given. In Sec. 2.2 we 
find all third-order equations (not involving a second-order 
derivative) possessing a fifth-order symmetry. We also give 
the corresponding admissible generators and recursion oper
ators. Finally, in Sec. 3 we compare our method with other 
existing ones and indicate some open questions. 
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1. MATHEMATICAL PRELIMINARIES 
A. Admissible LB operators 

In what follows we shall consider evolution equations 

of the form 

[1-u, +K(x,u,ul, ... ,un)=O, 

where 

(
a y . 

uj = -a: )u, J = O,I, ... ,n. 

(Ll) 

(1.2) 

The most general LB operator associated with (1.1) is 
given by 

a a 00 . a 
X(17)=17-+(D,17)-+ I (DJ17)-, (1.3) 

au au, j = 1 au j 

where 17 = 17(x,t,u,u I""'U N ), N arbitrary, is called the gener
ator of the above LB operator, D is the total derivative with 
respect to x 

a a a a 
D=Dx--+u 1 -+ U'I-+U 2 -+ ... , 

ax au au, aUI 

and D, is defined analogously. Without loss of generality, we 
assume that 17 does not depend on t-derivatives since for ad
missible operators they can always be eliminated using equa
tion (1.1). 

The LB operator X (17) is an admissible LB operator of 
(1.1) iff X (17)[1 = (J, where (J = 0 when Eq. (Ll) and its dif
ferential consequences are assumed. The above is denoted by 

(1.4) 

Equation (1.4) provides an algorithm for finding 17 as the 
solution of a system of liner overdetermined equations. 

An important special class of LB operators is the class 
of Lie (point) operators. The most general such operator 
associated with (1.1) is given by 

a a a 
Z=S-+7 -+v -, (1.5) 

ax at au 

where S, 7, v are functions of x, t, and u only. The operator Z 
can be written in the form (1.3) by the equivalence8 

Z~X(V-SUI-7U,), (1.6) 

or, using Eq. (1.1), XCv - SUI + 7 K). The above equiv
alence means that Eq. (1.1) admits Z iff it admits the corre
sponding X. 

The commutator oftwo LB operators is an LB operator 
whose generator is expressed by a simple formula,5 

[X (171)' X (172)] = X (173)' 

where 17., = X (171)172 - X (172)171' (1.7) 

Obviously, the admissible LB operators of a given equation 
form a Lie algebra. 

In considering the symmetries of an equation, it is con
venient to use an operator formulation. 9 We define the Fre
chet derivative of a function N (u)=N(u,u"ul, ... ,un) by 
N'(u), where 

N'(u)[v]- aN(u + EV) I . 
aE £=0 

(1.8) 
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Clearly, the right-hand side ofEq. (1.8) is linear in v and 
thereforeN'(u) is an operator acting linearly on v. Actually, 

N'(u) = aN + aN D, + i aN D j. (1.9) 
au au, j= I au j 

Comparing Eq. (1.3) and (1.9) we obtain 

X (17)[1 = [1 '[17]. (1.10) 

Therefore Eq. (1.4) takes the form 

[1 , [ 17] l!l = 0 = O. (1.11 ) 

In the case of evolution equations, Eq. (1.11) [or, equivalent
ly, (1.4)] can be further simplified 

Lemma 1: The evolution equation (1.1) admits the LB 
operator X (17) generated by 17 = 17(x,t,u,u l, ... ,un ) iff 

17, + X (17)K - X(K)17 = 0 (1.12a) 

or, equivalently, 

or 

17, + K '[17] -17'[K] = o. 
Proof Writing out Eq. (1.4), we obtain 

(D,17) + X (17)K = 0, when (1.1) holds, 

(1.l2b) 

a17 
17, + a;; u, 

or 

N a17 + I -Uj' +X(17)K=O, when (1.1) holds, 
j=1 aU j 

17, - a17 K - i a17 D jK + X(17)K = O. Q.E.D. 
au j=1 aU j 

The advantage of (1.12) in either form as compared with 
(1.4) [or (1.11)] is that the validity of (1.1) has already been 
assumed. Therefore the admissibility of X (17) by (Ll) is ex
pressed as a relation between 17 and K with no further as
sumptions to be made. Further, using Eq. (1.7) we obtain 

Corollary 1 :If 17 does not depend on t explicitly, Eq. 
(1.1) admits X (17) iff X (17) and X (K) commute. 

Recursion Operators: The operator Ll (u) is a recursion 
operator for Eq. (1.1) iff3 

[[1',Ll]!l=o =0. (1.13) 

It follows from the above definition that if X (17) is an admissi
ble LB operator of (1.1) and Ll is a recursion operator of 
(1.1), then the infinitely many LB operators X (Ll j17), j = 0, 
1, 2,. .. , are also admissible operators for the equation (1.1 V 
(See also Lemma 3 and its corollary.) 

We define the Frechet derivative of an operator-valued 
function Ll (u) by 

Ll '(u)[v]w= a[Ll (u + EV)W] I, (1.14) 
aE <=0 

and say thatLl '(u)[v]w is the derivative ofLl (u) evaluated at v 
and then applied to w. For example, the recursion operator 
of the KdV equation is given by Ll (u) 
= D 2 + 2/3u + 1I3u ID -I, where D -I is the inverse total 

derivative D -I(W)(X) = S~ w(5 )dg. Therefore 
Ll'(u)[v] = 2/3v + 113 vlD - I. 

Lemma 2: The operator Ll (u) is a recursion operator for 
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Eq. (1.1) iff the operators~ (u) andK '(u) form a Lax pair for 
Eq. (1.1). This is a consequence of the following equivalence 

[J1',~][]~O =(~, + [K'A])n=o = -~'[K]+[K',~]. 
(1.15) 

(Here~, actually meansD,~ whereas, forinstance, in (1.12) 
1/, means a1//at. The reason for this regrettable inconsisten
cy of notations is that in discussing a Lax pair D,L is custom
arily denoted by Lt.) 

Proof 

[J1 ',~ ]1/ = [Dt + K ',~ ]1/ 

= [Dp~ ]1/+ [K',~ ]1/=~t1/+ [K',Ll ]1/, 

since 

[DpLl ]1/ = D t(Ll1/) - Ll (Dt1/) = Ll t1/· 

The second equivalence in (1.15) follows from the above us
ing the chain rule of differentiation and Eq. (1.1), since 
Ll t =Ll '[u t ] = -Ll '[K]. Q.E.D. 

The most convenient characterization of a recursion 
operator follows from the equation 

Ll '[K] = [K ',Ll ], (1.16) 

since Eq. (1.1) has now been eliminated. 
The following lemma expresses a useful property of a 

recursion operator. 
Lemma 3: The operator Ll is a recursion operator ofEq. 

(1.1) iff 

K '[Ll;] - (Llt)'[K] = Ll (K '[;] - ; '[K]), (1.17) 

where; (x,t,u,u 1""'U n ) is an arbitrary function of the argu
ments indicated. 

Proof Using Leibnitz's rule, we obtain 

(Ll; )'[K] = Ll '[K]; + Ll (; '[K D. 
Then using Eq. (1.16) we obtain that 

(Ll;)'[K] = K '[Ll;] - Ll (K '[ ; D + Ll ( ; '[K]) 

iff Ll is a recursion operator ofEq. (1.1). Q.E.D. 
From the above lemma and Eq. (1.12b) one finds 
Corollary 2: If Ll (u) is a recursion operator[ofEq. (1.1)] 

not depending explicitly on t and X (1/), 1/(x,t,u,u l , ••• ,UN ) is 
admitted by Eq. (1.1), then the LB operators X (Ll J1/), 
j = 1,2,··" are also admitted by (1.1). 

Hereditary operators: Assume that Eq. (1.1) possesses a 
recursion operator Ll. We call hierarchy 1 the hierarchy of 
admissible operators 

(1.18) 

which are generated from the x-translation operator X(u l )· 

It is obvious that the operators X (u t + Ll JUI ) are also admis
sible. Equating to zero the generators of these admissible LB 
operators we obtain 

U t + Ll JUI = 0, j = 1,2"", (1.19) 

which is the Lax hierarchy of equations associated with Eq. 
(1.1). I In Ref. 6 it is shown that the operator Ll is a recursion 
operator of the whole hierarchy (1.19) if Ll satisfies 

[Ll,Ll '][v]w = [Ll,Ll '][w]v, (1.20) 

where 
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[Ll,Ll '][v]W = Ll (Ll '[v]w) - Ll '[Llv]w, (1.21 ) 

and v, ware arbitrary functions ofu, ulI ... 'UN. An operator Ll 
satisfying the above property is called a hereditary operator. (, 
It is clear that any operator Ll is a recursion operator for the 
equation U t + U 1 = 0, sinceLl [u I] = [D,Ll]. Therefore, any 
hereditary operator Ll is a recursion operator for the whole 
hierarchy U t + Ll Ju I = ° generated by this operator. There
fore, an alternative way to find a recursion operator Ll ofEq. 
(1.1) is to look for a Ll such that (i) Ll is hereditary and (ii) 
Llu l = K. The above property of Ll was first introduced in 
Ref. (7), where it was used to prove that such a Ll generates 
the exactly solvable equations U t + C (Ll )u I = 0, where 
C (Z) is an arbitrary function of Z, regular, except possibly at 
IZ 1- 00 and some points Zc (Zc < 00). 

2. A METHOD FOR FINDING OUT IF A GIVEN EQUATION 
IS EXACTL V SOLVABLE 

If an evolution equation admits a Lax formulation it 
also admits infinitely many symmetries. Actually, every 
member of the Lax hierarchy [see Eq. (1.19)] associated with 
a given solvable equation is a generator of a generalized sym
metry admitted by this equation. Therefore, in order to es
tablish that an equation is exactly solvable we must prove 
that it possesses infinitely many symmetries. Although there 
exists an algorithmic way of finding out if a function of the 
general form 1/ = 1/(u,u l , •.• ,UN ) is an admissible generator, 
this does not lead to a very practical method for establishing 
the existence of infinitely many symmetries. However, in all 
known cases the existence of one generalized symmetry 
seems to be sufficient for the existence of infinitely many. 
Further, having obtained one generalized symmetry it is 
usually possible, almost by inspection, to find a recursion 
operator Ll which generates infinitely many symmetries. 
Therefore, the problem of finding out if an equation is exact-
1y solvable reduces to finding an LB symmetry. 

In order to find an LB symmetry we must assume the 
order of the highest derivative in 1/(u,u I""'U N)' But how can 
we know N a priori? It is at this point that we use the exis
tence of Ll. The only assumption we make is that this Ll gen
erates the t-translation symmetry of the equation from the x
translation symmetry. Let us be more specific. Suppose we 
are given an evolution equation of the form 

(2.1) 

This equation possesses two Lie-point generators, 1/ 1 = U 1 
and 1/2 = Un + K (u). If there exists a Ll' which generates 1/2 
from 1/ I' then Ll = D n - I + .... Therefore, the first LB gener
ator is of the form 1/3 = U2n _I + g(u,u 1""U 2n _ 2)' That is, 
N = 2n - 1 and, furthermore, UN appears linearly. The 
above discussion justifies, in our opinion, the proposition 
made in the introduction. 

A. Finding all second-order equations which possess a 
third order symmetry 

In this subsection we first determine all equations of the 
form 

(2.2) 
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possessing an admissible generator of the form 

1/ = U3 + B (U,U I ,U2)· (2.3) 

It turns out that all equations having this property also pos
sess infinitely many symmetries and further, all can be lin
earized. 

The following equations and corresponding generators 
are obtained (for details see Appendix A) 

(i) 
b "(U) 2 

U( + U 2 + -- U I + ab(u)u l = 0, 
b/(u) 

b" 3 3b" 
1/ =U3 + -UI + --UI U 2 

b ' b ' 

(2.4a) 

1 (b I bb" ) 2 3 b 3 2b 2 (2 4b) + ~ + T U I + ~ U2 + ~ U I> • 

whereb (u) is an arbitrary function ofu, b 'eu) = db Idu, and 
a is an arbitrary parameter. (Everywhere in this paper greek 
lower-case letters stand for constant parameters.) 

(ii) 

u +u + [y-e/(u) ]u2 +ae(u)=O 
(2 c(u) I , 

(2.5a) 

1/ = u3 + [( y ~ e' r + ( y ~ e' )']u~ 
+ 3 ( Y ~ e' )u I u2 , (2.5b) 

where e(u) is an arbitrary function ofu. For the discussion to 
follow it is convenient to let e=d Id I, d =d (u). Then (2.5a) 
becomes 

u( + U2 + [d "Id '+ (y -I)d 'id ]u~ + ad Id '= O. (2.5c) 

We can add a constant multiple of u I to the left-hand side of 
(2.4a) and (2.Sa) without altering the above results. This has 
been omitted for economy of writing. 

We define two equations to be equivalent if one can be 
obtained from the other by a transformation involving only 
the dependent variable. Then it is clear that Eq. (2.4a) is 
equivalent to 

u( + U 2 + auu l = 0 (2.6) 

under the transformation u_b (u), while Eq. (2.Sc) is equiv
alent to 

u( + U 2 + ayu = 0 (2.7) 

under the transformation u-[d (u)] Y. Therefore, within 
equivalence the only nonlinear equation of the form (2.2) 
admitting a generalized symmetry of the form (2.3) is the 
Burgers equation. Note that under an equivalence transfor
mation Eqs. (2.4a) and (2.Sa) remain exactly solvable and 
must hence retain the same form. 

1. Linearizing Backlund Transformations 

It turns out that all the above equations can be linearized. 
Also, if they are the only second-order equations exactly 
solvable, then they are the only equations of the general form 
(2.2) which can be linearized. The following results are ob
tained in Ref. 10, Sec. 5.4.1: 
(i) The only equation of the form (2.2) mapped to v( + V2 = 0 
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under a BT of the general form VI - f(u,v) = 0 is given by 
(2.4a). This BT takes the form 

b (u) = 2v!/(av + A. ). (2.8) 

(ii) The only equation of the form (2.2) mapped to 
v( + V2 = 0 under a BT of the form u\ - f(u,v) = 0 is given 
by (2.5a) with r==0. This BT takes the form 

V = (uJae(u». (2.9) 

(iii) The only equation of the form (2.2) mapped to 
v( + V2 + ayv = 0 under a map of the form u = f(v) is given 
by (2.Sc). This map is 

d (u) = V l/y. (2.10) 

Every linear equation possesses infinitely many symme
tries. Therefore, every nonlinear equation which can be lin
earized also possesses infinitely many symmetries. However, 
the reverse is not true; that is, not every equation possessing 
infinitely many symmetries can be linearized (for example, 
the KdV). In the case of second-order equations, however, 
we see that the class of equations possessing a generalized 
symmetry (and actually infinitely many, see below) coin
cides with the class of second-order equations which can be 
linearized. 

2. Recursion Operators 

Equations (2.4a) and (2.Sa) possess, respectively, the 
following recursion operators 

bIt 
.J = D + -;;;- U I + ~ab + ~auID-I(b I.), (2.11) 

( 
y- e' ) .J =D+ --e- u l · (2.12) 

The operator (2.11) reduces to 

.J = D + ~au + ~au!D-1 (2.13) 

when b = u, which is known to be the recursion operator of 
the Burgers equation.3 

It is easy to check that the operator.J defined by (2.11) 
is a hereditary operator. Further,.J 2(U!) is the generator 
(2.4b). Consider, now, the operator (2.12). It can be shown 
easily that.J = D + a(u)u l , where a(u) is an arbitrary func
tion of u, is a hereditary operator. Therefore,.J is a recursion 
operator for the equation u, + .Ju! = 0 or u( + U 2 + au~ 
= O. Further, it is clear that the above operator will also be a 

recursion operator of the equation u( + U2 + au~ + e = 0, 
where e(u) is an arbitrary function of u, iff it is a recursion 
operator of the equation u( + e = 0, that is iff [see (1.16)] 

.J '[e] = [e',.J ]. 

This implies e" + (ae)' = 0 or a = (y - e/)/e. Therefore,.J 
is a recursion operator of 

u( + U 2 + au~ + e(u) = 0, (2.14a) 

iff 

a = (y - c/)/c. (2.14b) 

Note that since.J is a recursion operator of(2.14a), where a 
is given by (2.14b),.J (u!) = U 2 + au~ is a symmetry gener
ator of(2.14a) and, since the whole right-hand side of(2.14a) 
is also a symmetry, it follows that e(u) is also. This can be 
trivially checked directly. Also .Je = yu I and therefore the 
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generator c( u) does not produce a new hierarchy of symme
tries. 

In Ref. 11 (which is an excellent exposition of the Esta
brook-Wahlquist method) Kaup asks which equations of 
the general form u, + U2 + uf + feu) = 0 possess a nontri
vial prologation structure. He then finds that 
feu) = /3e- U + rand also develops a method of solving the 
above equation. Note that if (r - c')/c = 1 in Eq. (2.Sa), 
c(u) = /3e - U + rand, further, this equation is equivalent to 
a linear one; therefore it is trivially solved. 

B. Finding all third-order equations, not involving 
second-order derivatives, which possess a fifth-order 
symmetry 

In this section we determine all equations of the form 

u, +uJ+A(u,u,)=O (2.1S) 

possessing an admissible generator of the form 

(2.16) 

The following equations and corresponding generators 
are obtained (for details see Appendix B). 

(i) 

U, + UJ + aui + /3uf + rUI = 0, 

77 = Us + SauT UJ + 1f- /3u luJ + Saul u~ + i /3u~ 
+ Ja2US + lQ /3 2U 3 + Ul /3u4 

2 I 9 I Z I' 

(ii) 

u, + uJ + aui + b(u)u , = 0, 

where b (u) solves 

b '" + 8ab ' = 0, 

77 = Us +SauTuJ + ibuJ +Saulu~ + 1f-b 'U IU2 

+¥x2ui +iabuj +~b"ui +~b2UI' 

(2.17a) 

(2. 17b) 

(2.18a) 

(2.18b) 

(2.18c) 

It is clear that Eq. (2. 17a) is the potential version of the 
special case of (2.18a) where a = O. In this sense, the most 
general equation of the form (2.1S) admitting a symmetry 
generator of the form (2.16) is given by (2.18). 
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Particular Cases: 

(i) 
a = 0 in (2.17a) (PKdV), 

77 = Us + 1f-/3u luJ + i/3u~ + ~/32uj. 
(ii) 
/3 = 0 in (2.17a) (PMKdV), 

77 = Us + SauTu J + Saul u~ + ¥x2ui. 

(iii) 
b = 0 in (2.18a) (PMKdV), 

77 = Us + SauTu J + Saul u~ + ¥x 2ui· 

(iv) 
a = 0, b = U in (2.18a) (KdV), 

77 = Us + juu J + 1f-Ulu2 + ~U2UI' 
(v) 
a = 0, b = u2 in (2.18a) (MKdV), 

77 = Us + iU2U3 + ~UUIU2 + iui + ~U4UI' 
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(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

1. Recursion Operators 

Equations (2.17a) and (2.18a) possess, respectively, the 
following recursion operators 

.J =D2+r+2aui +1/3u , -2au ,D- I(u z')- ~/3D-I(U2')' 
(2.24) 

.J = D2 +2auT + ~b -2au ID- I(U2') + ~U,D-'(b '.). (2.2S) 

Letting a or /3 equal zero in (2.24), we obtain the recursion 
operator of the PKdV or of the PMKdV, respectively. Let
ting b = 0 in (2.2S), we obtain the recursion operator of the 
PMKdV. Letting a = 0 in (2.2S), we obtain the recursion 
operator of the linear combination of the KdV3 and of the 
MKdV.3 It is easily checked that both (2.24) and (2.2S) are 
hereditary operators. Further, it is interesting that if we start 
with (2.2S) and require that it is a hereditary operator we 
find out that this is the case iff b satisfies (2.18b). Equation 
(2.18b) also appears when applying.J to U 3 + auj + b (u)u I 
in order to obtain the generator (2.18c). Let us consider only 
the terms involving integration 

iu ,D -'(b 'u 3 + ab 'ui + bb 'u I) 
- -2auID-I(uZu3+auzuT +buzu ,). 

The terms involving bb 'u I' aU2uT, and UZU J integrate exactly 
and so we are left with 

iu ,D -'(b 'u~ + ab 'uD - 2au ,D -'(buzu I)' 

Integrating the first term by parts and ignoring the part inte
grated exactly, we are left with 

- *u,D- ' [U 2u l(b" + 8ab)], 

which is exactly integrable iff Eq. (2.18b) holds. 

2. A Backlund Transformation 

It is well known tht the KdV equation is related to the 
MKdV equation through the Miura transformation. It is 
interesting that Eq. (2.18) is also related to the MKdV equa
tion [trivially generalized, see (2.28) below]. Taking into 
consideration (2. 18b), Eq. (2.18a) becomes 

u, + u~ + aui + (7 len 2« u + 72e - 2V2au + 7 3)U I 
= 0, (2.26) 

where 7 I' 7 2,7 3 are constant parameters. The Backlund 
transformation 

UI + KV +). + (;~ y!2 eUvz;' + (;~ yl2 e ,,\2;, 

= 0, (2.27) 

where K, ). are constant parameters, maps Eq. (2.26) to 

v + v, + [3a(KV +). f + 73 - _1_(717z)"z]v, = O. (2.28) , - 3a 

Note that if Eq. (2.27) is viewed as an ordinary differential 
equation with x and u as the independent and dependent 
variables, respectively, (t is regarded as a parameter) then it 

is of the Riccati type. If we put u = (I/v' - 2a )lnw, (2.27) 
becomes 

wx + ( - ~7 2)1/2 + ( - 2a)I/2(KV +).)w + ( - ~7 1) 1/2W2 

=0. 
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3. COMPARISON WITH OTHER METHODS AND OPEN 
QUESTIONS 

The most obvious approach to establishing the exact 
solvability of a given equation is to guess operators L and A 
such that the given equation can be expressed in the form 

L/ = [A,L]. (3.1) 

However, this approach is the least practical, since both op
erators A and L must be guessed. A way out is to assume the 
form of L and then find all equations that correspond to it. In 
this respect there exist two basic approaches; (i) Gel'fand 
and Dikii 12 assume L and then, by solving Eq. (3.1) algebra
ically, find all equations that correspond to it. (ii) AKNS I3 

(see also Ref. 14) assume a given L, but rather than using Eq. 
(3.1) directly, they determine all equations corresponding to 
this L by requiring that the evolution of the scattering data 
takes a simple form. This method has been extended by New
ell. 15 The above approach has the advantage that it also 
paves the way for the actual solution of the evolution equa
tion involved, but has the weakness that it starts with a given 
eigenvalue problem and finds all equations that correspond 
to it, rather than starting directly with a given equation. 

The most widely used direct method for finding wheth
er a given equation is exactly solvable has been developed by 
Estabrook and Wahlquist. 16 This method consists, briefly, of 
the following (for consistence of presentation we do not use 
the language of differential forms employed in Ref. 16): Find 
functions A (u, Q) and B (u, U 1"",U n -I' Q)(the assumption 
made about the dependence of A and B is based on exper
ience) such that the equations Qx = A, Q/ = B are compati
ble when U satisfies the given nth-order equation. This easily 
leads to A = 'J.ja;(u)Sj(Q), B = 'J.A(u,uI"",u n -I )Sj(Q), 
where the functions aj and bj are completely determined and 
the Sj satisfy some given commutator relations. The main 
problem now is to find a closed algebra of Sj and then a 
representation of this algebra in terms of Q. Also, sometimes 
it is necessary to allow Q to be a vector. 

Another direct approach is introduced in Ref. 17, 
where A in Eq. (3.1) is taken to be the adjoint of K 'eu), andL 
is a recursion operator connecting polynomial solutions of 
the equation t/;, + At/; = O. These solutions are simply relat
ed to the conservation laws of the given equation by a theo
rem due to Lax. 18 The authors of Ref. 17 employ a perturba
tive scheme to find conservation laws and then L. A 
weakness ofthis method is that it is applicable only to exactly 
solvable equations with infinitely many conservation laws. 
However, there exist exactly solvable equations with a finite 
number of conservation laws (for example, the Burgers 
equation). 

The formalism of taking as a Lax pair K 'eu) and the 
operator .1 (which recursively relates solutions of the equa
tion t/;, + K '(U)t/; = 0) is developed in Ref. 7. However, this 
formalism was not directly related to the symmetry struc
ture of the given equation. This is done (apparently indepen
dently) in Ref. 6; see also Sec. 1. The advantage of this ap
proach is that Eq. (3.1) has to be solved only for L, since 
A = K 'eu) is explicitly known. 

In this paper we emphasize that the knowledge of one 
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generalized symmetry makes it possible to obtain .1 almost 
by inspection. That is why we concentrate on finding such a 
generalized symmetry; the relevant algorithm employed is 
very straightforward. Furthermore, demanding that an 
equation of a certain order admit a generator of a given or
der, we obtain in a straightforward way (the algorithm in
volved is linear) all such equations. Our method has the 
weakness that it is applicable to equations of normal type 
only. Furthermore, having obtained .1, we must solve the 
equations 

Llt/; = lit/;, t/;, + K'(U)t/; = O. (3.2) 

However, these equations are not in a very convenient form, 
since the first equation involves an integral operator. A prop
er transformation makes it possible to transform the above 
equations to differential ones (for example, in the case of the 
KdV this is achieved by taking t/; = rP 2). A general method 
for doing this as well as an investigation ofEq. (2.18) will be 
presented in a future pUblication. 

Apparently, there exists an intimate connection be
tween our method and Estabrook-Wahlquist's one. Byask
ing two different questions (namely, when a given equation 
has a nontrivial prologation structure and when it admits a 
generalized symmetry) we obtain similar answers 19 (see also 
Sec. 2.1). The problem of relating these two methods is under 
investigation. The problem of extending the results obtained 
here to equations ofless restricted form is also under investi
gation. For example, results have been obtained for nonlin
ear heat equations. 

We hope that the results presented here together with 
those of Refs. 20 and 21 (where the group-theoretical nature 
ofBT and of the constants of motion admitted by evolution 
equations is established) as well as those of Refs. 22-26, indi
cate the importance played by symmetries in understanding 
and solving the problems appearing in the analysis of non lin
ear evolution equations. 
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APPENDIX A 

In this appendix we indicate briefly how Eq. (2.4) and 
(2.5) are obtained. Equation (2.2) admits the LB operator 
associated with the generator (2.3) iff (see Lemma 1) 

[X (u 2 + A (U,UI»,X (u3 + B (U,U I,U2»] = 0, (Al) 

or 

(D3 + jto Bj+1 D j)(U2 +A) 

= (D2 + Al + A2D)(u3 + B), (A2) 

where 

Bj+1 =aBlauj , Aj+1 =aAlau j , j=0,1,2, 
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or 
1 2 

D2B+ IA)+1 +DjB+IA j u)+2 
j~O 1 

2 3 

=D
3
A + I B)+I DjA + IB ju)+I' (A3) 

j~O 1 

WritingoutDjA, DjB, (j = 1,2, 3) explicitly in Eq. (A3) and 
then equating to zero the coefficients of u~ and U3, we obtain 

B33 = 0, 2DB3 = 3DA 2, (A4) 

or 

(AS) 

The parameter a generates the t-translation group so we set 
it equal to zero. Now substituting (AS) in (A3) and equating 
to zero the coefficients of U2 j (j = 3, 2, 1, 0), we obtain 

A22Z = 0, F22 = ~cA22 + 3A lZ' 

2F12u 1 = ~A 12 + ~ lAZZu 1 + ~cA I2u 1 

+ ~IIZui + 3A 11 u1, 

ficients of U6 and Us in (B2) to zero, we obtain 

JB IJu4 = 0, 3DB4 = SDA 2, 

or 

(B3) 

(B4) 

Replacing B in (B2) by (B4) and equating the coefficients of 
U4 to zero, we obtain 

F=~A22U~ +iA12UIU2+iAIU2+g(U,U1). (BS) 

Replacing Bin (B2) by (B4), where F is given by (BS) and 
equating the coefficients of u 3ui, (j = 3, 2, 1,0) to zero, we 
obtain, respectively, 

An2 = 0, A2221 = 0, 

3gzz = SAzAn + 1OA 11ZU1 + SA 11 +SA 1122 UT, (B6) 

3g12u 1 = iAA 12 + iAIA ZZUl + ~AcA12ul 
+ lfA II12U~ + SA 111 ui· 

Equating the coefficients of u~, u~ in (B2) to zero, we obtain 

(A6) A22l1 = 0, (AzA221 -AIA m)u 1 +AIA22 -AA221 = 0. 

+~zA11Ui +A11IU~ =0. 

Solving Eqs. (A6) and taking into consideration (AS), we 
obtain 

(i) 
A = a(u)ui, 

where a is an arbitrary function of u. 

(ii) 
btl 2 

A = -U1 +bu 1, b' 

(A7a) 

(A7b) 

where b (u) is an arbitrary function of u and b' = db Idu. 
Equations (A 7) can be combined into one by letting b-{3b. 
Then 

b "(u) A = __ u2 + {3b(u)u 
b '(u) 1 1 

(ASa) 

[and {3 = 0 gives (A 7a»). To the above A there corresponds 

b '" 3b" bb" 
B= -u~ + --U 1U2 + J2{3(b'+ --)u~ 

b' b' b' 

+~{3buz+i{32b2Ul' (ASb) 

(iii) 
A = (y - c')/cui + c, (A9) 

where c is an arbitrary function of u, B is given by (2.Sb). 

APPENDIXB 

In this appendix we indicate briefly how Eqs. (2.17) and 
(2.IS) are obtained. Eq. (2.IS) admits the LB operator asso
ciated with the generator (2.16) iff 

[X«U3+A(U,u1»),X(us+B(u, ... ,u4»)] =0, (Bl) 

or 

(D 3 +Al + AzD)(us + B) 
4 

= (D S + Bl + I BjDj~I)(U3 +A) = 0. (B2) 
j~ Z 

Writing out DjA, DjB, (j = 1,2,3,4) and equating the coef-
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(B7) 

Solving Eqs. (B6a), (B6b), and (B7a), we obtain 

A = aui + yuui + {3ui + b (u)u 1 + c(u). (BS) 

Eq. (B7b) gives y = 0, {3b' = 0, {3c' = O. Therefore, 

A = aui + {3ui + b (u)u 1 + c(u), 

B = ~2U3 + ~A22U~ + iAIZUIU2 

+ ~IU2 +g(u,u 1), 

where 

{3b ' = 0, {3c' = 0, 

(B9) 

(B1O) 

(BII) 

and we have still to satisfy the compatibility equation of 
(B6c) and (B6d) 

(i) {3 #0. Then Eqs. (B9) and (B1O) indicate that 

A = au~ + {3ui + YU 1 + O. (BI2) 

The compatibility equation of (B6c) and (B6d) is then satis
fied and, by integrating them, we obtain 

g = ~f (A 2)Zdu l' (BI3) 

Replacingg in (BlO) by (B13), where A is·given by (BI2), we 
obtain (2.17b). 

(ii) {3 = O. Then Eqs. (B9) and (B1O) indicate that 

A = aui + bU I + c. 

The compatibility equation of (B6c) and (B6d) gives 

b'" + Sab' = 0, ac' = cb' = O. 

If q!:O we obtain trivial results, therefore 

(B14) 

(BIS) 

A = au~ + b (u)u 1, (B16) 

where b satisfies (2.1Sb). Integrating (B6c), (B6d) we obtain 
g and then, using (B 10), we obtain the generator (2.1Sc). 
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Evolution of a stable profile for a class of nonlinear diffusion equations. III. 
Slow diffusion on the line 
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We show that the nonlinear diffusion equation ani at = a 2(n 1 + 15)1 ax2 with compact initial data 
on - 00 <x < 00 can betransformedintoanothernonlineardiffusionequationa(ae lat) = e 1 + a 

X a 2(} I ai2 on a fixed finite interval of the i axis. Thus, the original moving boundary problem is 
transformed into a fixed boundary problem. The new form of the equation has advantages both 
analytically and computationally as the examples illustrate. Linear stability analysis for the 
transformed equation is straightforward whereas the moving boundaries of the original problem 
complicate the analysis for that case. The advantages of the resulting computational algorithm for 
solving the moving boundary problem are also discussed. A nonlinear Rayleigh-Ritz quotient 
and a Lyapunov functional are shown to be bounded, monotonically decreasing functions of time. 
Both functionals give added insight into the mathematical character of the diffusion process. 

I. INTRODUCTION 

Consider the nonlinear diffusion equation 

-=- D(n)-, for -oo<x<oo, an a [ an] 
at ax ax 

(1) 

where n is a particle density, x is the spatial variable, and t is 
the time. The diffusion coefficient D is a function of the den
sity which we will take to be 

D(n) = (1 + 8)n li (2) 

for simplicity. The boundary conditions are n-<l as Ixl-oo 
for all t, plus the physical requirement that the total number 
of particles be conserved. In this third paper in our series,l.2 
we will restrict the exponent to be 0 < 8 < 00 and we will 
assume that the initial data n(x, 0);;;.0 have compact support. 
The conserved integrals and the self-similar solution of Eq. 
(1) are discussed in Appendix A. 

The resulting mathematical problem arises in many 
contexts. When 8 = 1, Eq. (1) is a model of classical diffu
sion in a plasma. For porous media,3 Eq. (1) is a model of the 
motion of a polytropic gas whose pressure and density satisfy 
p = const. n li, where 8 is the polytropic exponent. If the flow 
is isothermal, 8 = 1; if the flow is adiabatic, then 8 > 1. For 
thermal waves,4 the variable n is reinterpreted as a tempera
ture. Then Eq. (1) is a model of radiation heat conduction 
with 8 = 13/2 for a fully ionized gas or 8~4.5-5.5 in regions 
of multiply ionized gas. Similarly, electron heat conduction 
in a plasma can be modeled by Eq. (1) when 8 = 5/2. Equa
tion (1) may also be viewed as a nonlinear one-phase general
ized Stefan problem.5.6 

Equation (1) has been studied extensively. Zel'dovich 
and Kompaneets4.7 .

8 introduced the nonlinear problem as an 
alternative to linear heat conduction since it is known that 
when 8 = 0 the effect of any perturbation is propagated in
stantaneously through all space while the propagation of the 
heat is retarded when 8 > O. Kalashnikov9 gave the first rig
orous proof that if the initial data of Eq. (1) with 8> 0 have 
compact support, then the solution will have compact sup
port at any finite time. Zel'dovich and Barenblatt4.10 dis
cussed the importance of the self-similar solution as the as-

ymptotic solution for arbitrary initial data and also provided 
a linear stability analysis. Kamin (Kamenomostskaya)II.12 
gave the first rigorous proof that the self-similar solution 
represents the asymptotic solution by using a scaling argu
ment. Aronson3.13 ,14 has studied the regularity properties of 
the solution and, in particular,13 the properties of the inter
face curves (i.e., moving boundaries) of the region of com
pact support. In a recent article, Knerr 15 provides a brief 
review of past rigorous results for Eq. (1) and also extends 
Aronson's results on the interface. Existence and uniqueness 
results for weak solutions of Eq. (1) were established by 
Oleinik, Kalashnikov, and Yui_Lin. 16.17 

As mentioned previously, for 8 = 0 (linear diffusion) 
the influence of a point source of particles at x = t = 0 is felt 
at every point x for any finite t > 0, i.e., the propagation speed 
is infinite. By contrast, the propagation speed for Eq. (1) is 
finite when 8> O. Thus, in comparison to a linear diffusion 
process, Eq. (1) implies a relatively slow diffusion process for 
all 8 > 0; hence, the subtitle of this paper is "Slow diffusion 
on the line." However, it should be emphasized that the non
linear diffusion process may not be slow compared to other 
processes in a given physical environment. For example, 
Zel'dovich and Raizer4 note that, when radiation heat con
duction is important (at temperatures greater than or ~ 104-
105°K), the nonlinear "conduction mechanism can transfer 
energy at a speed much faster than the speed of sound in the 
medium ... because the speed of light at nonrelativistic tem
peratures is very much greater than the speed of sound." 
Slow diffusion may be very fast in such circumstances but the 
propagation speed is still finite and therefore much slower 
than that for linear diffusion in similar circumstances. 

Our main task in the present paper is to show that Eq. 
(1), with its implicit moving boundaries, may be transformed 
into another type of nonlinear diffusion equation with fixed 
boundaries. The transformation we use is a generalization of 
one recently used by Rosen 18 in a different context. Al
though the boundaries are stationary, this new class of non
linear diffusion equations does not belong to the same class 
we studied previously. 1.2 Nevertheless, it turns out that the 
same methods of analysis may be applied. In Sec. II, we 
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present the mathematical transformation and then provide a 
physical interpretation. The transformation is illustrated in 
Sec. III by application to the self-similar solution. The per
turbation analysis is performed in Sec. IV and then used to 
provide estimates of the boundary motion in the original 
problem. Section V discusses the computational advantages 
of the fixed boundary problem. Appendix B discusses two 
bounded auxiliary functionals which decrease monotonical
ly in time and which may be used to gain insight into the 
mathematical character of the evolving diffusion process. 

II. TRANSFORMATION AND INTERPRETATION 

With the definitions () = n I + 8, q = (2 + 0 )/(1 + 0), 
and a = q -1, Eq. (1) becomes 

a«() "vat = a2
() lax2

, for - 00 <x < 00 , (3) 

which turns out to be a more convenient form of the equation 
both analytically and computationally. Note that with 
0<8 < 00, we have 1 < q < 2 and 0 < a < 1. 

Following Rosen, 18 we now introduce new space and 
time coordinates x and t defined by 

axlax = ()U, aXiat = a() lax, i = t. (4) 
We see immediately that Eq. (3) is just an integrability condi
tiononx, i.e.,a (aXlax)lat = a (axlat)lax. The line integral 
which determines x(x, t) is just 

x= f«()Udx+a()laxdt). (5) 

The inverse transform to Eq. (4) is given by 

axlax=8- u
, axlai= -aelax, t=i, (6) 

where e is related to () by 

e(xJ)=()(x,t). (7) 

The inegrability condition for x is 

aCe - u)lai = - a2e lax2 
, 

or equivalently (8) 

a (ae lai) = 8 1 + U(a2e lax2). 

The line integral of x(x, i) is 

x = f(e - a dx - ae lax di) . (9) 

Equations (3)-(9) include all the formulas needed to 
transform back and forth between the nonlinear diffusion 
equations (3) and (8). However, what is the advantage of 
doing so since both equations are nonlinear and therefore 
difficult to solve analytically? To understand this, consider 
Eq. (3) when the initial data have compact support. Then we 
may choose to compute the line integral in Eq. (5) by starting 
at x = - 00, t = 0, integrating along the t axis from 0 to t, 
and then integrating along the x axis from - 00 to x. The 
resulting expression for x is 

x(x,t) = f:oo()U(Y,t)dY = f:oon(y,t)dY (to) 

since a() I ax clearly vanishes at x = - 00 for all finite t and 
since () a = n follows from the definition of (). If x = a(t) and 
x = b (t ) are, respectively, the left and right boundaries ofthe 
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region of finite density, we find that 

x(a, t) = 0, 

and 

x(b,t)= fn(Y,t)dY=N, 

(11) 

(12) 

where N is the total number of particles and therefore inde
pendent of time (see Appendix A). It follows thatx(x, t) may 
be interpreted physically as the total number of particles to 
the left of x at time t. Thus, the moving boundaries x = a(t) 
and b (t) transform into fixed boundaries for Eq. (8) in an 
intuitively appealing way. The following sections demon
strate the advantages of the fixed boundary problem. 

A physical interpretation may also be given to the 
definition 

a() ax 
ax ax 

- u-l(a«()')lax). 

(13) 

Following Aronson, 13 we define v = n lJ = () 2 - q = () a SO 

Eq. (13) becomes 

axlat = - (1 + 8 -I)avlax . (14) 

When Eq. (14) is evaluated at x = aCt ) or b (t), the formula 
determines the speed of the boundaries. Aronson's result for 
the speed of the boundaries is the same as Eq. (14) except 
when Ux = 0 at a boundary. Aronson's theorem leaves the 
interface speed undefined when u. vanishes. From Eq. (14), 
we expect the boundary speed to vanish when Ux vanishes 
and this expectation agrees with Knerr's result. 15 

In the next section, we illustrate these transformations 
by studying the self-similar solution. 

III. SELF-SIMILAR SOLUTION 

The self-similar solution of Eq. (3) is exhibited in Ap
pendix A. In this section, we show that the self-similar solu
tion for Eq. (3) transforms into a separable solution for Eq. 
(8). Then we study the separable solution's shape function. 

Evaluating Eq. (10) for the self-similar solution, we find 
easily that 

x(x,t)= f~z,SU(Z)dX' (15) 

where z = xTU(t). The integral in Eq. (15) can be expressed 
in terms of the incomplete beta function. Note that x de
pends on x and t only through the similarity variable z. This 
means that 

() (x, t) = S (z)T(t) = S (x)T(t) = B (x, i), (16) 

or 

Sex) = S(z) , (17) 

with z related to x implicitly by Eq. (15). 
Note that u = 2 - q so - a = u -1. Also note that 

thechangeofscaleX----+xlN andt_i IN 2 leaves Eq. (8)invar
iant so that, without loss of generality, we may set N = 1. 
Then Eq. (8) becomes 

a(Ba-l)lai=a28Iax2
, for O<x<l, (18) 

with the boundary conditions 8 (O,t) = 8 (1, t) = O. Equa-
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tion (18) is identical in form to the nonlinear diffusion equa
tions studied in Refs. 1 and 2. The only difference is that the 
exponent 0" was restricted to the range 1 < 0" < 00 in those 
papers whereas 0< 0" < 1 here. In fact, all the formulas de
rived 1 for the shape function may be carried over without 
change since the restrictions were placed on this parameter 
for physical, not for mathematical, reasons. Listing the rel
evant equations from Ref. 1, we have 

(19) 

which is solved by 

I(S) = f' (1 :;")1!Z =px, for o,x, 1/2 , (20) 

where 

2 r(1/2)r(l/0") 
p = --;; r«l/2) + (1/0"») , 

(21) 

and 

I(S) = ~Bsq (~,~) 
0" 0" 2 

= S zF1 -, -; 1 + -; S u • 
A (1 1 1 A) 

0" 2 0" 
(22) 

The special functions which appear in Eqs. (21) and (22) are 
the gamma function r, the incomplete beta function B, and 
the hypergeometric function zF\. The eigenvalue A is given 
by 

(23) 

[The eigenvalue in Appendix A was chosen to be equal to the 
A in Eq. (23).) Two relevant integrals are given by 

Y= fSU-l (x) di = 4/O"p (24) 

and 

c = fSU(X) dx = 2/(2 + 0"). 

The relationship between 0" and {j is given by 

0"= {j/(1 +{j). 

(25) 

(26) 

Table I illustrates the values of several of these constants as {j 
and 0" are varied. 

The formula (20) determines S (x) implicitly. Since the 
analytical form of the self-similar solution for Eq. (3) is 
known, it is clear that no advantage has been gained by trans
forming to Eq. (8) or (18) in this particular example, Howev
er, we will show that important gains are made for the per
turbation analysis and also for numerical computations in 
the following two sections. 

IV. PERTURBATION ANALYSIS 

Repeating the argument of Ref. 1, consider 

(] (x, t) = S (i)T(t) + u1(x)v/(t) , (27) 

where u/v/ is a small (separable) perturbation to the separa
ble solution ofEq. (18). The analysis may be carried through 
exactly as in Ref. 1 simply by replacing q everywhere by 0". 
We find that 

(28) 
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and 

v/(t) = TP'(t) , 

where 

(29) 

p/=2-0"+KJJ.., for 1>1. (30) 

The solution ofEq. (28) is given in Ref. 2. Here we will quote 
only the eigenvalues 

K/ = W + 1)(0"1 +2),.1" for all 1 = 0,1,2, .... (31) 

As before, uo(x) = S(x)andKo = A. Once again note that, for 
1 = 1, we have K 1 = (0" +2),.1, and therefore PI = 4. For this 
case, u \ ex: SS '. Thus, the slowest decaying (infinitesimal) per
turbation to the separable solution decays as the fourth pow
er of the separable solution's time factor. 

In light of our previous work, the present perturbation 
analysis turns out to be extremely simple. By contrast, the 
perturbation analysis performed for Eq. (3) by Zel'dovich 
and BarenblateO suffers from the serious conceptuallimita
tion that the analysis dealt with a region whose boundaries 
are determined by the boundaries of the self-similar solution. 
However, as these authors have noted,lo the perturbations 
themselves affect the boundary location so that results de
rived in this way are of uncertain value. These difficulties do 
not arise in our approach because we have rigorously trans
formed the moving boundary problem into a fixed boundary 
problem. 

Now let us consider briefly how the perturbations alter 
the boundaries of the original problem (1) or (3). To trans
form back, we must use Eq. (9). In this case, we choose to 
begin the line integration at x = !, i ~ 0, integrating first 
along the i axis and then along the t axis. The resulting 
formula is 

A IX A ii a(] x(x,t)= (}U-I(y,O)dy- -A (x,r)dr. 
112 0 ax (32) 

The first integral depends only on the initial data and may be 
replaced by x(x, 0) which is determined implicitly when Eq. 
(10) is evaluated at t = O. Within perturbation theory, the 
second integral in Eq. (32) may be evaluated by noting that 
the u, 's form a complete set of expansion functions so that 

(] (x, t) = f a/(t)u/(x) , (33) 
/=0 

where the at's satisfy an infinite set of coupled ordinary 

TABLE I. Values of a, p, A, and r for selected values of 8. The defining 
equations in the text are Eqs. (26), (21), (23), and (24), respectively. The 
slope of the separable solution shape function is ± p near the boundaries. 
The separation constant is A and from Eq. (48) r = 2zo, 

{) a p A r 

1/3 1/4 256/35 8192/35 35/16 
1/2 1/3 32/5 512/15 15/8 
1 1/2 16/3 64/9 3/2 
2 2/3 317"/2 3r/4 4/17" 
5/2 5/7 4.5784 7.4864 1.2231 
3 3/4 4.4870 7.5499 1.1886 
00 1 4 8 1 
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(though nonlinear) differential equations. 1 If the perturba
tions are sufficiently small, we may write 

ao(t)"'-'T(t) , 

and (34) 
a,(t')~E, TP'(t) , for I> 1 , 

where the E, 's are small constants dependent upon the initial 
data. Then we find 

i ' 
( a~ (x,7)d7"'-'A- 1 [T,,-I(t)-1 ]S'(x) 

Jo ax 

+ (1 - O')! ~ [1 - r'/\t)]u;(x). 
'=1 K, 

(35) 
The time-dependent factor in the first term is monotonically 
increasing while all the others are monotonically decreasing. 

Because T K
,/ J. decays at least as fast as T for alII> 1 and 

1 <q < 2 (since K1IAq = 41q -1 > 1), we may may neglect 
these time-dependent terms asymptotically. Therefore, we 
have 

, oc ~ 

x(x, t) .- x(x, 0) - (1 - 0') L - u;(x) 
I~oo '=IK, 

- A -I [(t Ito) 1 -I/q -1 ]S 'ex) . (36) 

Evaluating Eq. (36) at either x = 0 or x = 1 gives the asymp
totic perturbation formula for the motion of the boundary. 
Equation (36) agrees asymptotically with Eq. (42) evaluated 
at ± zo since Zo = A _Ip = yl2 follows from Eq. (48), where 
So = 1. 

V. COMPUTATIONAL ALGORITHM 

Besides the previously demonstrated analytical advan
tages obtained with the transformation to fixed boundaries, 
computational advantages are also gained. 

With fixed boundaries, Eq. (8) can be solved numerical
ly with the same three-level method of Lees l9

.
20 which was 

used in Refs. 1 and 2. The only additional complications 
involve the transformations between x and x [Eqs. (10) and 
(32)]. The transformation (10) needs to be employed only 
once (at t = 0) 

x(x, 0) = {ooea-'(y,O)dY , (37) 

thereby transforming into the domain ofEq. (8). Thereafter, 
e (x, t) evolves accordin~ to ~q. (8). Whenever we wish to 
determine e (x, t) from e (x, t), we must evaluate 

i ' 
x(x, t') = x(x, 0) - ( a~ (x, 7) d7 , (38) Jo ax 

wherex(x, 0) is determil!ed implicitly by Eq. (37). It follows 
that we must compute ae I ax as well as e at each grid point in 
x and i. These are very modest complications compared to 
the computational difficulties inherent in treating the singu
lar moving boundaries of the original problem (3). 
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APPENDIX A. CONSERVED INTEGRALS AND THE 
SELF-SIMILAR SOLUTION 

Equation (1) has two conserved integrals. In the ab
sence of sources and sinks, the total number of particles must 
be conserved. We see that 

~ Joc n(x, t) dx = J(a2(n 1 + 15)1 ax2
) dx 

dt - 00 

- a(nl + 15)lax I b(l) - 0 
- a(l) - , (39) 

where a and b are the boundaries of the region of compact 
support. Thus, the flux a (n 1 + 15)1 ax must vanish at the 
boundaries as expected physically. The second conserved in
tegral is the center of mass (or density) which follows from 

~ foo xn dx = Jx(a2(n 1 +15)1 ax2
) dx 

dt - 00 

= [xa(n l +15)lax] Ib(t) _ n l + 15 l b (l) = 0 
a(t) a(t)· 

(40) 

In order for Eq. (1) to have a classical solution satisfying 
these two physical conservation laws, both the flux and the 
density must vanish at the boundaries. If the initial density 
distribution is sufficiently smooth, these conditions will be 
satisfied for all t> O. 

Since the center of mass is stationary, we are free to pick 
its location due to the translational invariance ofEq. (1). We 
assume throughout this paper that the center of mass is lo
cated at x = O. 

Equation (3) has a self-similar solution ofthe form (also 
see Refs. 4, 7, 8, 10, and 21) 

e(x,t)=S(z)T(t), (41) 

with 

z = xlR (t). (42) 

The relation 

R (t) = T'-q(t) (43) 

follows from the requirement of particle conservation (39). 
Substituting Eqs. (41)-(43) into Eq. (3) yields the equations 

S" +A [Sq-I +(q-l)zSq- 2S'] =0, 

or equivalently 

S' +AZS q- 1 =0, 

and 

(q - 1) T - 1 - qr = - A , 

which have the solutions 

{
s (1 - z2Iz2)I/a 

S(z) = 0 0, 

0, 

and 

T(t)=(1 +tlto)-I/q. 

for Z2<Z~, 

otherwise, 

(44) 

(45) 

(46) 

(47) 

The constants appearing in Eqs. (46) and (47) are given by 

0' = 2 - q, z~ = 2Sg(O'A yl, and to = (1 - ~)A -I . 

(48) 

The factor So is an arbitrary constant while A is the separa
tion constant in Eqs. (44) and (45). To determine these con
stants, we consider the properties of the solution. 
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From the conservation of particles, we have 

So we find that 

sq = CTA [N r «lI2) + (lICT»)2 
o 217" r(lICT) , 

(50) 

showing that S 6 is directly proportional to A, which is still a 
free parameter. 

From Eq. (48), we see that A is inversely proportional to 
to' The meaning of to is simple: When t = - to, Eqs. (46) and 
(47) are singular, indicating that if a point source of particles 
of strength N were placed at x = 0, t = - to, the self-similar 
solutions (46) and (47) would evolve.21 For later conve
nience [see Eq. (23)], we will choose to so that 

A - 217" [ r(lICT)]2 (51) 
- --;; r«lI2) + (lICT» , 

and 

(52) 

APPENDIX B. MONOTONE AUXILIARY FUNCTIONALS 

Two bounded, monotonically decreasing functionals 
are known for Eq. (18). These functionals are inherently in
teresting since their behavior gives additional insight into the 
mathematical properties of the nonlinear diffusion process. 
For simplicity of notation, we will drop the carets from 0, S, 
x, and tin this Appendix. 

I. Nonlinear Rayleigh-Ritz quotient 

Following Ref. 2, we define 

Q(t) = C-1fe<T(X, t) dx 

and 

R (t) = c-If e ; (x, t) dx . 

Then 
d CT 
-Q(t)= - --R(t)<O 
dt 1 - CT 

and 

~R(t)= - ~fe;xe2-<Tdx<0. 
dt 1 - CT 

Furthermore, Schwarz's inequality implies that 

R 2(t)<Q(t)C-lf e;x e2 -<T dx. 

(53) 

(54) 

(55) 

(56) 

(57) 

It follows from Eqs. (55)-(57) that the nonlinear Rayleigh
Ritz quotient 

~(e) = R (t)IQ2/<T(t) (58) 

is a monotonically decreasing function of time, i.e., 

~~(e)<o. 
dt 

(59) 
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Equality is achieved in Eq. (59) only when e is the separable 
solution. 

Using a variational argument, it is also straightforward 
to show that 

(60) 

where A is the eigenvalue in Eq. (19). Thus, the nonlinear 
diffusion equation (18) causes e (x, t) to evolve so ~(e) mon
otonically approaches its minimum value A and therefore e 
asymptotically approaches the separable solution. 

II. Lyapunov functional 

Following Ref. 22, define a new time variable T such 
that 

T= -A-llnU(t), (61) 

where 

U(t) = (£0 + t Ito) -I/q (62) 

and;o is a constant which will be specified later. Also define 
a new dependent variable such that 

W(x, T) = eflr. (63) 

Then from Eq. (8) it follows easily that 

Wr = wqwxx +AW. 

Next, define the functional 

I(W)= + fW~dX- ~ fW<TdX, 

which satisfies 

~I(W) = - fw -qw; dx<O. 
d'T 

Equality occurs in Eq. (66) only when Wr=O or 

(64) 

(65) 

(66) 

W xx + A W<T -I = 0, which is identical to Eq. (19). Thus, the 
functional I is monotonically decreasing in T unless W -So 

To show that I (W) is bounded below, we must show 
that S W<T dx is bounded above. To demonstrate this, reconsi
der Eqs. (60) and (55), which together imply 

~Q -q/<T>t ol . 
dt 

Upon integration, we find 

Q(t)<[Q -q/<T(O) + t It01 -<T/q . 

(67) 

(68) 

Ifwenowchoose;o = Q -q/<T(O)inEq. (62), Eq. (68) implies 
that 

f W"(x, T) dx<c = fS"(X) dx. (69) 

This fact proves that I (W) is bounded below for all T. 

Again we have found a bounded functional monotoni
cally decreasing in t unless e is the separable solution. The 
existence of these functionals is heuristic evidence that the 
separable solution represents the asymptotic solution for ar
bitrary initial data. 
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A method is developed where a Hilbert transform is combined with an asymptotic Pade method in 
order to obtain good multi pole approximations for functions whose power series have a large 
radius of convergence. This method has been used to find two- to eight-pole approximations for 
the Gaussian function. 

I. INTRODUCTION 

In previous papers I we discuss a modified procedure to 
the Pade method2 where both the asymptotic expansion and 
the power series for the same function are considered. In this 
way we obtain a fractional approximated function (multi
pole approximation) which gives better agreement to the ex
act function for small and large values of the independent 
variable than the usual Pade method. However, this proce
dure fails when applied to some functions as the Gaussian, 
where the radius of convergence of the power series is very 
large (infinite in this case) and an asymptotical series cannot 
be obtained. For those cases we have developed a method of 
obtaining a good multipole approximation to those func
tions by using a Hilbert transform in combination with the 
asymptotic Pades method in the line of the Borel-Pade 
method. 3 Our procedure can be used for several kinds of 
functions; however, the method is described here in relation 
to the Maxwellian distribution, where a four-pole approxi
mation has been proposed recently.4 In that paper the au
thors have shown that the function 1I(v2 + B)2 + C 2 ap
pears to approximate the Maxwellian reasonably well and 
they correlate this approximation to the two-pole approxi
mation for the plasma dispersion function Z (s) given by 
Fried, et al.5 Here we discuss multipole approximations for 
the normalized Maxwellian distribution functionf(v) 
= exp( - v2)/v 1T and we correlate it with the two-pole and 

multi pole approximations to the Z (s). Each pole in the Z (s) 
approximation generates two poles in thef(v) approxima
tion. A new Lorentzian approximation forf(v) is obtained by 
a one-pole approximation for Z (s), using the asymptotic Pa
de method. I 

First we consider the general case of approximatingf(v) 
by a sum of simple rational fractions, and, by the symmetry 
and reality conditions, we correlate the poles of the different 
fractions. In this way we find a general form in terms of the 
independent poles. Except for very small values of v, our 
method gives better approximation than a straightforward 
Pade method. 

In Sec. II the theoretical foundations of the method is 
presented and the computation of the 2n-approximation for 

fn (v) is obtained by using the corresponding main approxi
mation for Z (s) with n poles. In Sec. III the results are pre
sented in a graphical form and the analysis and discussion 
are carried out. The conclusions are presented in the last 
Section. 

II. THEORETICAL ANALYSIS 

We look for a fractional approximation for a given func
tionf(v) of the form 

1 C; 
fapprox (v) = .. /- L -- ~f(v), 

V 1T ; V - ai 

where the coefficients C i and the poles a i are, in general, 
complex numbers. 

(1) 

The general procedure will be to obtain the Hilbert 
transformj(s) off (v) and to determine the power series and 
the asymptotic expansion of this transformed function. Then 
we obtain a fractional approximation!.pprox (s) to this trans
formed function by using the asymptotic Pacte method pre
viously discussed. I Finally, by applying the inverse Hilbert 
transform to the approximated transformed function, an ap
proximated fractional functionfapprox (v) for the originalf(v) 
function is obtained. 

The method is better described in relation to the Gaus
sian function, as we do here. However in this case, before 
applying the general procedure, it is convenient to reduce the 
number of independent coefficients by means of the symme
try and reality conditions of this function. 

A first consideration is that the poles a; of the approxi
mated Guassian function can not be real becausef(v) does 
not show any singularity for v real. In this case the reality 
condition off(v) implies that each pole a i must have a corre
sponding complex conjugate, and the same applies to the 
coefficients C i . Thus, 

1 n (c C*) 
fapprox (v) = .. /- L --=-- + ~ . 

V 1T ,~I V a, v ai 

(2) 

Besides, thesymmetryconditionf(v) = f( - v) imposes 
a further restriction on the number of independent poles. If 

1332 J. Math. Phys. 21(6), June 1980 0022-2488/801061332-04$1.00 © 1980 American Institute of Physics 1332 



                                                                                                                                    

a; is pure imaginary, then C; must be pure imaginary. If Q; is 
complex, then each pole Q j must have a corresponding pole 
of opposite sign, and similarly for the C; 'So Therefore, it is 
convenient to separate the complex poles Q; and coefficients 
C; from the pure imaginary poles and coefficients which will 
be designated by a k and Yk respectively. Then 

1 .f, (Cj cj cj 
!.pprox = ... /- L ---+ --.- - ---

V rr j = I V - aj v - aj v + aj 

-~)+ 1 i (~+ -.rL). (3) 
v + aj V rr k = I V - a k v - at 

The total number of poles 2n is related to rand p by the 
equation 

2p + r= n. (4) 

Since in Eq. (3) the Qj are not real, we can choose all the 
poles to be in the lower half plane without losing generality. 
It is useful to designate the terms of the sum in Eq. (3) by gj 
and hk • Then 

whereEj , Fj, Bj' Cj , H k , and Gk are real numbers defined as 

Ej = 4 Re(ajcj), 

Fj = - 41 aj 12 Re(ajcj), 

Bj = - Re(a]), 

Cj = Im(a]), 

Hk = 2akYk = -2la k IIYk I, 

Gk = - a~ = lak 12. 

(7) 

The value hk is obtained from ~j when aj and cj are 
pure imaginaries. 

Following now the general procedure, we apply the Hil
bert transform to the approximated and exact functions. 
Thus we obtain for Ims> 0 

Z ( ) = J"" !.pprox (t) dt 
approx s 

-"" t-s 

= 1 f (2rriCj _ 2rriCj) 
V rr j = I S - aj S + aj 

1 {- 2rriYk 
+--~--. v-;- k=1 s-ak 

(8) 

The two-pole approximation of Fried et al. S is equiv
alent to takingp = 1 and r = 0 in Eq. (8). Our values a l and 
CI are given in terms of their parameters, a-I = 5 + i'T/, by 

Q, = a = lal 2
( 5 - iTJ) = (0.552 + rr/4>-1(0.55 - ,V-; 12), 

(9) 
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v-;- -1 
c1 = ---- = 

2rri 25a 
1 + i 

8XO.55 4V;' 
(to) 

Theg l defined in Eq. (5) is the four-pole approximation 
given by Ward,4 denoted here by f w. Since a I and C I come 
out pure imaginary, from Eq. (7), E, becomes zero. 
Therefore, 

1 lal 4 

gl = V; [v2 + la 14(rr/4 - 52)]2 + 1Tlal 85 2 

1 0.845 

= - V 17' (v2 + 0.408)2 + 0.6787 . 
(11) 

The coefficients Bland C I are now identified with Band 
C as defined by Ward, and FI come out equal to B 2 + C 2. 

In relation to the general multipole approximation for 
the Z function (one to four poles), our coefficients cj and Yk 
are obtained from the corresponding b-pole residues of 
Zim (s) by the equations 

b. 
c

j 
= - __ 1_, Yk = 

2V-;-
(12) 

Here Zim (s) is the n-pole approximation for Z (s), 

.f, (b b ~) r bk Zlm(S)= L _J_+ _1_ + L 
j = I S - aj S + aj k = t S - a k 

(13) 

obtained by means of I-terms of the power series and m
terms of the asymptotic expansion. 

.06 

f/IO 

.~ 

.01 

-.05 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 

FIG. I. Deviations lift .. from the exact value, for the best n-pole approxi
mations. The deviation of Ward approximation is shown for comparison. 
The values of the exact function (divided by 10) are also shown. To be able to 
show the different deviations in the same graph, part of iii •• is shown divid
ed by 2, and Ii!;) is shown multiplies by 10. 
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TABLE I. Poles (a), ak)' coefficients (cj , Yk) and parameters ofEq. (7) of the best approximationsj,m for different number of poles. 

I" 

Iw 

I . 
a,=---=' 

V1T 
= -0.56i 

1 
G, = V 1T 

= 0.318 

a, =0.505 -0.815i 

B, =0.408 

E, =0 

(231T - 32 - 4~)"2 a,= ~------~~ 
2(4 - 1T) 

= 0.5138 - 1.0324i 

n = 1 

n=2 

v;; . 
----I 
2(4 - 1T) 

B - 2~+16-ll1T =0.8018 
, - 2(4 - 1T)2 

1T - 3 
E, = - -- = -0.1649 

4-1T 

a, = 0.9050 - I.I317i 
a, = -1.2278i 

B, = 0.4617 
E, = -1.4978 
G, = 1.5075 

a, = 1.2359 - 1.2150i 
a2 = 0.3786 - 1.3509i 

B, = -0.0512 
E, = -0.6975 
B2 = 1.6816 
E2 = 0.6978 

n=3 

n=4 

We will denote by Itm (v) the function whose Hilbert 
transform is Zim (s). This notation is now more adequated 
than the previously used/'pprox (v) in Eqs. (1)-(3). The poles 
aj , a k and the pole-residues bj , bk for Zim (s) have been al
ready determined. I Hence the coefficients cj and Yk can be 
computed. 

For a given number of poles we have computed only the 
coefficients corresponding to the best approximation to the 
exact function, which are shown in Table I, together with the 
values for Ej , Fj, Bj' Cj , H k , and Gk • 

III. ANALYSIS AND DISCUSSION 

In Fig. 1, differences between the approximated func
tionsltm (v) and the exact function!(v) are shown for v in the 
interval (0,4). In the same figure the differences for the best 
of the four-pole approximation! w given by Ward (Eq. 15 of 
Ref. 4) is also shown. 
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y, = ~ i 

= 0.28i 

I 
H,=-

1T 

=0.318 

C, = -0.227 +0.14Ii 

C; = 0.6787 
F, = 0.845 

1 1 . 
c, = (231T _ 32 _4~)"2 + 4V 1T 1 

= -0.3636 +0.14IOi 

C' _ (231T - 32 -4~) 
, - 4(4 - 1T)4 

F, = (1T - 2)2 = 1.7686 
(4 _ 1T)2 

C, = -0.2088 -0.1639i 
y, = 0.6098i 

C; =4.1959 
F, = 0.0292 
H, = 1.4974 

C, = 0.0105 -0.1542i 
C2 = - 0.5929 + 0.2953i 

C; = 9.0192 
F, = -2.4069 
C; = 1.0463 
F2 = 4.9081 

= 1.1257 

AU the new approximations, except the two pole ap
proximation, give better agreement than! w' 

In Table II, the maximum absolute deviations ~ltm are 
also indicated. The relative deviations are irrelevant since 
!(v) goes to zero very quickly for large v. The approximations 
improve with the number of poles. 

T ABLE II. Maximum absolute deviation ,jlt", and the values of v and I 
where this deviation is found for different number of poles. 

(,jlt", )"'''' Vrnf max I(v)'n, """ 

I" -0.129 0.60 0.394 

Iw -0.030 0.90 0.251 

j" 0.018 1.70 0.031 

142 -0.007 1.20 0.134 

j" 0.0008 2.00 0.010 
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Improvements of one order of magnitude are obtained 
by increasing the number of poles from one to two and from 
three to four. Also, by increasing the number of poles, the 
maximum deviation is obtained by larger values of v. 

In connection with the moments, it must be pointed out 
that the exact function has finite values for moments of any 
order. For the approximated functions, from some order on, 
all the even moments are infinite. However the mean square 
velocities are finite except for the Lorentzian approxima
tions (two-pole). 

It is covenient to point out that fractional approxima
tions to the Maxwellian distribution can obviously be ob
tained by a straightforward Pade method. However, for a 
given number of poles the Pade method results in very poor 
approximations compared with ours. Only in the case of very 
small values of v can the Pade method be compared favor
ably with ours. 

IV. SUMMARY AND CONCLUSIONS 

A method has been devised to find good multipole ap
proximations for a given function, by means of the Hilbert 
transform and the asymptotic Pade method. The application 
of this method is adequate for functions where the radius of 
convergence of the power series is very large. 
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In the case of the Gaussian function, we have used the 
reality and symmetry conditions in order to reduce the num
ber of independent poles. The procedure requires finding 
previously a multi pole approximation for the plasma disper
sion function Z. Using the known approximation for Z, we 
have determined approximations to Maxwellian distribu
tions with two, four, six, and eight poles. All of our approxi
mations with four or more poles give better agreement with 
the exact function than those found by Ward. 
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Existence and completeness of the MOiler wave operators for radial potentials 
satisfying S~ r\ v(r) I dr + f'1 I v(r) I dr < 00 

J. D. Dollard and C. N. Friedman 
DepartmentoJMathematics. University oJ Texas, Austin, Texas 78712 

(Received 14 May 1979; accepted for publication 2S June 1979) 

We give an elementary proof of the existence of the (three-dimensional) Moller wave operators 
and the unitarity of the S operator (weak asymptotic completeness) for radial Kato potentials v (r) 

satisfying J J 
d rlv (r )ldr + tlv (r)ldr < 00. 

1. INTRODUCTION 

In the present article, we shall give an elementary proof 
of the existence of the three-dimensional Moller wave opera
tors and the unitarity of the S operator (weak asymptotic 
completeness) for radial Kato potentials vCr) which satisfy 
the condition 

frlv(r) I dr+ f" Iv(r) I dr< 00. (1.1) 

This result has been proved by Kuroda I, who combined 
the results of Green and Lanford l with some trace ideal 
methods. However, our proof is so elementary that we feel it 
may add considerable insight to the result, and the method of 
proof may be of some independent interest. Basically, our 
method consists of analyzing the asymptotic form of solu
tions of the one-dimensional radial Schrodinger equation for 
fixed angular momentum, and a consistent use of the spread
ing of wave packets under time evolution. This method is 
quite similar to (although somewhat simpler than) that of a 
previous article3 by the present authors. In analyzing solu
tions of the radial Schrodinger equation we shall make use of 
product integration methods which are summarized3 for the 
case of continuous integrands. In fact, in the present context 
we shall need to product integrate functions which are 
Lebesgue integrable rather than continuous; in this setting 
the construction of the product integral is slightly different, 
and the differential equation satisfied by the product integral 
has to be interpreted as holding almost everywhere or may be 
replaced by the corresponding integral equation, but essen
tially nothing else is changed. (See Refs. 4, 5, or 6 for detailed 
study of the product integral.) 

2. SOLUTIONS OF THE RADIAL SCHRODINGER 
EQUATION AND CONSTRUCTION OF WAVE PACKETS 

Suppose that vCr) is a radial function defined almost 
everywhere on R 3 and satisfying 

(2.1) 

[where x = (XI ,Xl ,X3 ), dx = Lebesgue measure on R 3, and 

r = Ixl = (xT + x~ + xD I !2], and (1.1). Consider the par-

tial differential operators 

Ho= -.1= - (~+ ~+ 
aXT ax~ 

(2.2) 

H=-.1+v(r). 

Ho and H act on locally integrable functions ifJ(x I 'X2 ,X 3) in 
the sense of distributions and define self-adjoint operators in 
L 2(R3 ,dx) with domains 

!:/l (Ho) = {ifJEL 2: HoifJEL 2}, 

fa) (H ) = {ifJEL 2 : HI/JEL 2}, 

and 9(Ho) = !iJ(H). 
Let Sim be subspaces of L 2(R3 ,dx) given by 

(2.3) 

SI", = {ifJEL 2: ifJ(x) = R (r) Ylm (8,q:; )}, (2.4) 

where Ylm is a spherical harmonic; then Sim reduces Ho and 
H, and if we put 

rR = q:;, (2.5) 

then on Slm' Ho and H are unitarily equivalent to operators 
ho and h on L 2(0, 00 ),dr) given by 

h _(_~ /(1+1») 
oq:; - dr + r q:;, 

(2.6) 
hq:; = [ho + vCr) ]q:;. 

Since!iJ (Ho) = /:/) (H), we have fiJ (ho ) = fiJ (h ). In Ref. 3 it 
was shown that !iJ (ho) consists of those q:; in L 2( (0,00 ),dr) 
such that ( - d 2/ dr + 1 (I + 1)/ r)q:; computed in the sense 
of distributions on the open set (0, 00 ) is given by a function in 
L 2(0, 00 ),dr)and q:; (r) = OCr) as r-+O. 

We now analyze the asymptotic behavior as r---+oo of 
solutions of the equation 

hq:;(r) =k 2q:;(r), k>O. 

First, rewrite (2.7) as 

(;) = C(r; -E ~) (;,) , 
w(r) = vCr) + I (l + 1) . 

r 
We now proceed as in Ref. 3, Egs. (1.21)-(1.28). 

(2.7) 

(2.8) 
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Setting 

$ (r) = (; ,~:)J ' 
M= C~ _lik) , 

w(s) ( 1 
Ak(s) = ~ _e2ik (s-roJ 

we have 

ro 

e - 2ik (s - roJ) 

-1 ' 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

[We remark that n ~o eA,(s) ds is equal to the time ordered 

exponential Texp(f~"Ak(s) ds).] Since Ak (s)EL I«ro,oo),ds) 
by (1.1), limr~oo n~" eA,(s)ds = n;:, eA,(s)ds exists by Theo

rem 1.12 of Ref. 3, and we have 

$ (r) = MP (r) ileA,IS) dSM -1.$ (ro ) 
ro 

+ MP (r)(~eA'IS) ds _ qeA,IS) dS)M -1.$ (ro) 

= MP (r) fleA,IS) dSM -1.$ (ro ) 
ro 

- MP (r) 1'''' ds Ak (s) ~eA'IS) dSM -1.$ (ro ) 

=MP (r) [Ck + Rk (r) ].$ (ro ), (2.14) 

where 

C = rr'" A,I.<) dSM - 1 
k e , (2.15) 

r" 

Rk (r) = Joo ds Ads) IleA,IS) d SM -I. (2.16) 
r r\) 

Since Rk (r)-o as r---+oo, it follows from (2.14) that ev
ery solution of (2.7) is of the form 

q; (r) = C+eikr + Ce - ikr + 0(1) as r---+oo. (2.17) 

In Ref. 3 it was shown that there exists a solution of (2.7) 
which is 0 (r I + I) uniformly on bounded k intervals as r---+O. 
[Since vCr) is not necessarily continuous, "solution" means 
solution in the L 2 or distributional sense or solution of the 
integral equation equivalent to (2.7)]. Putting these facts to
gether, we have that for each k> ° there is a solution 
q; (l,v,k,r) of (2.7) satisfying 

q; (I,v,k,r) = 0 cr + 1 ) 
as r-o, 

q; (I,v,k,r) = sin( kr - I; + 01 (k») + o( 1) as r---+oo. 

(2.18) 

[The phase term - I1r/2 is chosen for convenience since, as 
is well-known, for v = ° (2.18) holds with D/(k) = 0.] 

We now construct wave packets from q; (l,v,k,r). 
Definition: For f(k ), a C 00 function with compact sup

port in (0, 00 ) we define 

q; (I,vJ,r) = loo dk q; (I,v,k,r)f(k ). (2.19) 

1337 J. Math. Phys .• Vol. 21. No.6. June 1980 

Theorem: (i) q; (/,vJ,r)EL 2«0, 00 ),dr). 
(ii) q; (I,vJ,r)EfiJ (h) and hq; (/,vJ,r) = q; (I,v,k 2/,r). 
(iii) eithq; (/,vJ,r) = q; (/,v,e itk 'f,r). 
Proof (i) Sodk sin(kr - I1r/2 + D/(k »f(k) 

EL 2«0,00 ),dr) by the Plancherel theorem. So we need only 
show that Sodk P(r)Rk(r)f(k) has entries in L 2«1,00 ),dr) 
[where P (r) and Rk (r) are as in (2.11), (2.12), and (2.16)]. 
[Note that by the first equation in (2.18), q; (/,vJ,r) 
= 0 (r I + I) as r-o, so q; (/,vJ,r) is in L 2 of any bounded r 

interval.] 
To see this, write, for I <,r<, 00 , 

lOO dk P (r)R k (r)f(k ) 

= foods W(S)Xlr.oo )(s) loo (dk /2ik )f(k)P (r) 

X (1 e-2ik(s-ro»)rrs eA,(s)dsM-1 
21k (s- roJ 1 - e - ro 

=foodSw(s)F(r,s). (2.20) 

By the Plancherel theorem, the entries ofF (r,s) are for fixed s 
in L 2«0,00 )dr) and have L 2«0, 00 )dr) norm bounded uni

formly in s for O<,s < 00. [Note that lin ;,/'(S) ds II <,exp(l/k 
XS;;: Iw(5)1 dS) for all s,k.] Since w(s)EL 1«1,00 ),ds), the 
result follows. 

(ii) follows from the previous description of fiJ (h) and 
then (iii) is easily proved by writing e ith as a Taylor series to n 
terms with integral remainder and using (ii). 

3. EXISTENCE AND COMPLETENESS OF THE WAVE 
OPERATORS 

In this section we shall prove that 

f} ± = strong lim eitHe - ilHo (3.1) 
I_± 00 

exist on L 2(R 3,dx) where Ro ,R are as in (2.2), and that 

range(f}+ ) = range(f}-). (3.2) 

It follows that 

(3.3) 

is unitary. 
To prove (3.1) and (3.2) it suffices to prove that for each 

fixed I, 
W -t = strong lim eithe - itho 

t-_ ± 00 

exist on L 2«0,00 ),dr) and that 

range(w+ ) = range(w- ). 

(3.4) 

(3.5) 

We consider (3.4) first, and we shall only consider the case 
t---+ + 00 since the case t---+ - 00 is similar. Since the eithe - itho 
are unitary, it suffices to prove strong convergence on the 
dense set of functions of the form q; (I,OJ,r). [q; (/,OJ,r) is the 
wave packet of(2.19) for v = 0.] We have 

eithe - ithOq; (I,OJ,r) 

= eithq; ([,O,e - ilk 'f,r) 

ith (I - ib,lk) - ilk 'f, ) = e cp ,v,e e ,r 
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+ eith rIP (I,o,e - itk J;r) - ip ([,v,e - i6,(k ) e - itk J;r ) ] 

= ip (I,v,e - ilJ,<k f,r) + eith 1'''' dkf(k )e - itk' 

X rIP (l,O,k,r) - e - i6,(k) ip (l,v,k,r)] 

= ip (/,v,e - i6,(k f,r) + eith 1"0 dkf(k )e - itk' 

X [sin(kr - I1r/2) - e - i6,(k) 

xsin(kr - I1rl2 + 8/(k »] 

+ eith 1= dkf(k)e - i'k'Ek (r), 

where 

Ek (r) = ip (l,O,k,r) - sin(kr - 11,./2) + e - i{>,(k) 

X rIP (l,v,k,r) - sin(kr - I1r/2 + 8/ (k»] 

(3.6) 

==.Ek.O (r) + Ek,v (r). (3.7) 

It was proved in Ref. 3 that the term 

eith 100 

dkf(k )e - itk'[ sin(kr _ I1r/2) _ e - i6,(k) 

Xsin(kr - I1r/2 + 8/(k»]-o 

in L 2( (0, 00 ),dr) as t- + 00. (3.8) 

We shall now show that 

eith l°O dkf(k )e - itk'E (r)-o k,v 
o 

in L 2( (0, 00 ),dr) as t- + 00. (3.9) 

Our proof will, of course, apply also to the term involving 
Ek,o(r); this term can also be handled more easily because 
Ek.O (r) is dominated by a fixedL 2(0, 00 ),dr) function for k in 
a compact interval and one can apply the Riemann-Lebes
gue lemma and the dominated convergence theorem as in 
Ref. 3. (3.9) is more subtle because Ek,v(r) is not generally 
dominated by a fixed L 2(0,00 ),dr) function; e.g., if 
vCr) = O(r- I 

- ') as r-oo, then Ek,v(r) = O(r- ') as r-oo.] 
We remark that in proving (3.9) we may ignore the eith 

since this is a unitary operator on L 2(0, 00 ),dr). Further
more, since Ek,v (r) is bounded near r = ° (uniformly on 
bounded k intervals) by the first equation in (2.18), it suffices 
to prove that 

l°°dkf(k)e-itk'Ek,v(r)-o in L 2((1,00),dr) 

as t- + 00, (3.10) 

since the interval O,r, 1 is easily handled with the Rie
mann-Lebesgue lemma and the dominated convergence 
theorem. Now Ek.v(r) is a linear combination of entries of 
P (r)R k (r) [see (2.14)] with coefficients which are bounded 
functions of k. Hence, to prove (3.10) it suffices to prove that 
if g(k ) is a bounded function of k with compact support in 
(0,00), then the entries of 

1"0 dk g(k )e - itk 'p (r)R k (r)-o in L 2( (1,00 ) ,dr) 

ast_+ 00. (3.11) 
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Recalling (2.21) we see that it suffices to prove that the 
entries of 

iOOdSW(S)X iOOdkg(k)e-itk'e±ikr [r,oo )(s ) 

I 0 

XITeA,(S) d,-o in L 2((1,00 ) ,dr) , (3.12) 
r" 

when g(k ) is a bounded function with compact support in 
(0,00). Now the entries of II ~o exp [Ak (S' ) dS' ] are bounded 
functions of k uniformly in s for k bounded away from 0. Let 
a k (s) denote any of these entries. Then 

II r=dsw(s)X[r,oo)(S) rOOdsg(k)e-itk'e±ikrak(s)11 , 
JI Jo L-(il,oc).dr) 

,f"'dS Iw(s)IIIX[r,oo)(s) 

X 100 

dkg(k )e-itk'e±ikrak(s)IIL'((l,ooJ,dr)' (3.13) 

Now IIX[r,oo ) (s)fO'dk g(k )e - itk 'e ± ikrak (s) IlL '(( 1,00 ),dr) is 
bounded by a fixed constant independent of sand t by the 
Plancherel theorem, so by the dominated convergence theo
rem we need only show that this norm tends to zero as t- 00 
for each fixed s. This follows from the more general fact: 

Lemma: Supposeg(k)EL 2( - 00,00 ),dk ) andf(S) is a 
bounded function on - 00 < S' < 00 which tends to zero as 
S'- ± 00. Then if we put 

ht (S') =f(S') f: 00 dkg(k )e-itk'eiks, (3.14) 

we have 

lim Ilh t (S' )IIL'(( __ oo,oo),d,) = 0. 
t~oo 

(3.15) 

Proof(essentially contained in Ref. 7): We have 

ht(S) =f(S)e-itWog, (3.16) 

where dY'0 is the self-adjoint operator 

dY'0 = -d 2/dS'2 on L2( - oo,oo),dS), (3.17) 

and g is the inverse Fourier transform of g. By the results of 
Ref. 7 (actually discussed for the three-dimensional case but 
applicable with essentially no change to the one-dimensional 
case), it suffices to show that 

lim Ilf(S') (CtgHS' )IIL'(( _ oo,oo),ds ) = 0, 
(--'-'00 

where 

(Ctg)(S') = (l/2it )112eis2/4tg(S' /2t). 

But then 

(3.18) 

Ilf(S' )(Ctg) (S) II~, = f dt If(t ) 12l/2t Ig(t 12t ) 12 

= fd1J If(2t1J) 1
2Ig(1J) 12-0 as t-oo 

(1J = t /2t), (3.19) 

by the dominated convergence theorem. 
We have now proved [see (3.6)] that 

UJ+ = strong lim
t
_ + 00 eithe - itho exists and is determined by 
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w+q; (I,O/,r) = q; ([,u,e - iff,r). (3.20) 

An analogous calculation shows that w- exists and 

w-q; (/,O/,r) = q; ([,u,e + ilj'j,r). (3.21) 

Hence 

range(w+ ) = range(w- ) 

= closure of the functions q; (I,u/,r) 

in L 2«0,00 ),dr). (3.22) 

The operator s = (w+)*(w-) is unitary and is determined by 

stp (/,O/,r) = q; ([,0,e2i°'j,r). (3.23) 
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Hence fl ± exist and S = (fl +)*(fl -) is unitary. 
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The analysis of path structures is formulated in terms of jet bundles with particular emphasis on 
the transformation laws and symmetry properties of geodesic path structures. The role played by 
geodesic path structures in the constructive axioms of Ehlers, Pirani, and Schild for GRT is 
discussed and it is shown that these axioms are decidable. 

1. INTRODUCTION 

Ehlers, Pirani, and Schild 1 (EPS) proposed a set of con
structive axioms for general relativity theory based on the 
local behavior of arbitrary massive particles, freely falling 
massive particles, and light propagation. The analysis of the 
aspect of spacetime structure revealed by the paths followed 
by freely falling massive particles leads to the study of path 
structures on manifolds. Ehlers and Kohler2 have presented 
an analysis of path structures and their symmetries using the 
standard formalism of the first and second order tangent 
bundles, T (M) and T (T (M», of the spacetime manifold M. 
However, the simplest and most natural description of struc
tures of higher order contact is in terms of the jets and jet 
bundles of Ehresmann. J 

In the present paper, the analysis of curve and path 
structures is developed using jets. A great simplification, 
both conceptual and technical, results. Conceptually, the 
elements of the second order jet bundle J 2(Ro, M) have a 
direct interpretation as second degree Taylor approxima
tions to curves through a given point of M. The derivation of 
the coordinate, parameter, and active transformation laws is 
a straightforward exercise in the application of the chain 
law. In contrast, the elements of T(T(M» which injet lan
guage is J l(Ro,J l(Ro, M», are more complicated. The de
sired elements of the sub-bundle J 2(Ro, M) of J 1 (lRo ,J l(Ro, 
M», must in the standard approach be selected by imposing 
the spray condition on theelementsofJ l(Ro,J l(Ro, M». Of 
course, the interpretation of the elements of the subbundle 
and the discussion of their coordinate, parameter, and active 
transformation laws is considerably obscured by the use of 
this indirect approach. The definition and analysis of sprays, 
called acceleration fields in this paper, are also much simpli
fied by using jets. Moreover, the relationship between these 
fields and second order differential equations becomes trans
parent. Finally, the discussion of the corresponding struc
tures for paths is very difficult if the standard approach is 
used. The discussion in terms of jets is easy in comparison. In 
the case of geodesic acceleration fields and the projective 
analog, geodesic directing fields, the description in terms of 

"'Supported in part by the Natural Sciences and Engineering Research 
Council Canada. 

jets is so much simpler that such fields are readily obtained as 
cross sections of appropriate fiber bundles. The bundle of 
geodesic directing fields, f§ S (M), (4.22), provides an elegant 
coordinate free formulation4 of the second projective axiom 
ofEPS; namely, the directing field which governs the motion 
of freely falling particles is a cross section of f§ S (M). 

The definitions and notations for jets and jet bundles are 
established in Sec. 2. In Sec. 3, curve structures, acceleration 
fields, and the one to one relationship between them are dis
cussed. Also, geodesic acceleration fields are defined and it is 
shown how these may be obtained as cross sections of a fiber 
bundle. The analogous discussion for path structures and 
directing fields is presented in Sec. 4. 

The definitions of active transformations and symme
tries of curve and path structures are given in Sec. 5. The 
discussion is presented for the three customary levels of anal
ysis, global, local, and micro (infinitesimal neighborhood of 
a point p of M). The formulas for the microtransformations 
and microsymmetry conditions are particularly relevant for 
this paper and are presented in detail. These results are then 
used in Sec. 6 to prove some theorems concerning geodesic 
curve and path structures and their microsymmetry groups. 
Theorem 4 states that a curve structure is geodesic if and 
only if its microsymmetry group is isomorphic to GL1(n). 
The maximal microsymmetry group of a geodesic path 
structure is derived in Theorem 5. In comparison with the 
standard treatment of this projective group, the jet bundle 
language offers a marked improvement in conceptual clar
ity. Theorems 6 and 7 correspond to Theorems 2 and 3 of 
Ehlers and Kohler.2 The first of these theorems states that a 
path structure which admits a microsymmetry transforma
tion at every point whose first order part is a dilatation other 
than the identity is geodesic. The proof given by Ehlers and 
Kohler is reproduced for completeness. The second theorem 
states that a path structure which is maximally isotropic to 
first order in the sense that it admits, at every point of the 
manifold, a microsymmetry group whose first order part 
acts transitively on the space of one-directions]]) ~ (M) is geo
desic and conversely. Ehlers and Kohler present the proof of 
this theorem only for analytic path structures and for mani
fold dimension n = 2. The proof presented below does not 
require analyticity (only C 6

), and the organization of the 
proof is sufficiently improved so that it can be written down 
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in reasonably concise form for the case of arbitrary manifold 
dimension n. 

The geodesic method of EPS has recently been criti
cized.5-8 It has been argued that the geodesic method is beset 
with logical and derivatively with epistemological circular
ity. Specifically, criteria that determine which bodies are 
suitable as freely falling test bodies and permit their identifi
cation presuppose metrical considerations, thereby leading 
to circularity. A particle which has a gravitational multipole 
structure will not in general travel along a timelike geodesic 
even if no forces act on it. Without already knowing the 
spacetime structure, how are we to know which particles are 
gravitatioDl,l1 monopoles and which are not? 

In Sec. 7, these criticisms are briefly analyzed. It is 
shown that they rest on a serious misunderstanding of the 
nature of inertial laws and the geodesic method. 

Morever, using radar coordinates and the concept of a 
directing field, it is shown that the criticisms are without any 
substance; that is, it is shown that the truth of the projective 
axioms concerning free fall motion is epistemically decidable 
in a noncircular way. 

2. JETS AND JET BUNDLES 

Let M and N be C 00 differentiable manifolds of dimen
sions m and n, respectively. Let (U,x) p and (V,Y)q be charts 
for neighborhoods pEM and qEN. The k-jet j~ (f) of a C k 
map f:M -- N with source pEM and target q = f (p)EN is 
the equivalence class of such maps which agree at the point 
pEM and for which the derivatives of the maps yO f Ox - 1 

agree at x(p) up to and including order k. That the equiv
alence is not dependent on the choice of coordinate charts 
follows from the chain rule. The set of such k- jets is denoted 
by J k(M p ,Nq ) • If the source, target or both are unrestricted, 
the sets of k- jets are denoted by J k(M,Nq) ,J k(M p , N), and 
Jk(M,N),respectively. These four sets of k- jets are differen
tiable manifolds, and the coefficients of the k th order Taylor 
expansion of yo f Ox - 1 may be used as local coordinates of 
the k- jet j~ (I) . Moreover, the source and target maps u: 
J k(M,N) __ M and r:J k(M,N) __ N defined by 

u(j~(f» = p, 

r(j~(f» = f(p) 

are differentiable. 

(2.1) 

If m = n, denote by D(M p,Nq) the set of diffeomor
ph isms f:M -- N such that f(p) = q, and by JkD (M p , 

N q) the set ofk- jets j~(f) . The Lie group GLk(n) is defined 
to be the set of k- jets J k D(R ~ ,R ~) with the group product 
defined by k- jet composition 

j~(f 1)0 j~(f 2) = j~(f 10 f 2) . (2.2) 

This group acts on J k(Ro ,~) , the set of k- jets of 
curves through OERn 

, according to 

j~(f)o j~(y) = j~(foy) , (2.3) 

where y:R __ Rn and y(O) = O. 

A local grid for pEM is a diffeomorphism ;:lRn 
--; I- (Rn) CMsuch that; (0) = p.Ak-gridisak-jetj~(;) 
of a grid. Let Z k (M ) denote the set of k-grids for all pEM. 
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Z k (M) is the total space of a principal fiber bundle (PFB) 

!l'k(M) = (Zk(M),1Tzk,M,GLk(n», (2.4) 

w here the differentiable projection map 1T Zk :Z k(M) __ Mis 
defined by 

1T Zk (j~(;» = ; (0) . (2.5) 

In view of the action (2.3) ofGL k(n) onJ\Ro ,R~), one 
may construct the associated fiber bundle (AFB)9 of k-arcs 
onM, 
J#k(M) = (Jk(lRo,M),1Tk,M,Jk(Ro,lR~),!l'k(M», (2.6) 

with typical fiber J k(Ro,~) . As the notation indicates, the 
elements of the total space J k(Ro ,M) may be more directly 
obtained as the k- jets of curves y:R __ M in M. The projec
tion map 1Tk :Jk(Ro,M) __ M is defined by 

1Tk(j~(y» = y(O). (2.7) 

There is a sequence of natural, differentiable projection 
maps n{:Jk(Ro, M) --J/(Ro, M) for 1<1 <k defined by 

n{(j~(y» = j~(y). (2.8) 

In many cases of physical interest, the parameter of a 
curve is either arbitrary or not specified in advance; for ex
ample, in general relativity the world line of a freely falling 
test particle is determined by a point on it and its direction (a 
nonzero multiple of its tangent vector) at that point. Since 
the tangent vectors of physical particles are everywhere non
zero, curves such as y:R __ R2 with 

(2.9) 

need not be considered in the definition of a path ("param
eter free curve") for the purposes of this paper. 

A parameter transformation is an element of D (R,R). 
The k-jetsj~Vt)E.!kD(RojRo) for JlED(Ro,Ro) form a group 
p k where the group product is k-jet composition. 

Define an equivalence relation in the set of curves with 
nowhere vanishing tangent vectors by f - riff 3JlED(Ro, 
Ro), f = yOJl. Then a path is an equivalence class of such 
curves. 

There is an action of the group p k on J k (Ro,~) and on 
Jk(Ro, M) which will be denoted by Rk in both cases. It is 
given by 

Rk (j~(r),j~Vt» = j~(r)o j~Vt) . (2.10) 

This right action is compatible with the structure of the 
bundle .xffk(M); that is, Rko l(f) = l(f)oRk for 
f:M -- M and 1Tk oRk = 1Tk and n{ oRk = R/ on{ . Denote 
by Ok and Ok(M) the sets of equivalence classes of elements 
of Jk(Ro,~) and Jk(Ro, M) defined by Rk . These equiv
alence classes will be called k-directions (or simply direc
tions for k = 1). Note that 2-directions are called special 
directions in Ehlers and Kohler. 2 

For k > 1, the manifold of k-directions Dk(M) is the to
tal space of an. AFB with typical fiber Ok and PFB fIk(M) 

f2Jk(M) = (Ok (M), 1Tk,M,O\!l'k(M» . (2.11) 

For k = 1, the structure group of the bundle is PG(n), 
the projective group in n dimensions. PG(n) is the factor 
group ofGL(n) with respect to the invariant subgroup of 
elements of the form (At5 5) with A:;60 called dilatations. The 
appropriate PFB is the bundle of projective I-grids. 
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9 .;rl(M) = (PZ I(M),1Tzl ,M,PG(n» , (2.12) 

where the elements of the fiber PZ! (M) at pEM are equiv
alence classes of I-grids in Z !(M) related by a dilatation. 
The AFB of I-directions is then 

(2.13) 

The above considerations do not require C '" manifolds. 
A differentiability class C r for some finite r would be suffi
cient. In the following, it is assumed that mappings are suffi
ciently differentiable that any derivative maps which occur 
are at least C 1 • It is also assumed that the base manifold M 
has dimension n '> 2. 

3. CURVE STRUCTURES 
Following Ehlers and Kohler,2 we restrict the concept 

ofa curve inM, y:1 - M, where lis an open interval ofIR by 
requiring: For every Sl ,S2 El such that y(SI) = y(sz) and 
y(sl) = y(S2) , there exist open intervals 11 3s, and 12 3S2 and 
a smooth invertible map WI, - 1z such that p(s, )1sz and 
y11, = (yop) II, . 

A curve which retraces itself periodically such as 
y:R_Rz 

y(s) = (coss, sins) (3.1) 

is not excluded, nor is a curve which touches itself or retraces 
a portion of its track in the opposite sense [y(s,) 
= - y(S2)] . However, a curve which touches itself or re

traces part of its track in the same sense [y(s 1) = y(sz)] is 
excluded for the condition is not satisfied at the point (s) 
where the curve bifurcates. For such a curve, at the point of 
bifurcation, information of higher order [say r (s)] would be 
required to determine which branch to follow; consequently, 
the curve could not satisfy everywhere a differential equa
tion of second order. Note that the condition excludes bifur
cation for both increasing and decreasing values of the 
parameter. 

One may also consider curves y':l-JI(!Ro, M) and r 
:1 _ J 2(!Ro, M) given in terms of local coordinates by 

yl(S) = (yli(S),y:i(S» , 

For those special curves for which 

y:i(S) = yli(S) , 

rii(S) = fi(S) , 

/1 i(s) = Yii(S) , 

(3.2) 

(3.3) 

the y' and r are called the first and second lifts of the curves 
1T, 0y':IR _ M and 1T2 0r:IR ---+ M, respectively. If y = 1T, 
oy': and y = 1T2 or:, then one writes 

/(y) = yl, 

l(y) =r· (3.4) 

The relations (3.3) do not hold in general since the coordi
nates Y; ,iz are defined as derivatives only at a point. 

Definition: A curve structure (CS) 'IJ, on M is a set of 
curves in M such that for every element ylEJ 1(!Ro ,M), there 
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exists exactly one maximal curve YE'IJ such that/(y) passes 
through y'. 

Definition: An acceleration field on M is a map 
A:JI(!Ro, M) _J2(Ro, M) such that 1Ti oA = id. 

Lemma: Every curve structure on M defines a unique 
acceleration field on M and conversely. 

Given a curve structure 'IJ and ylE J 1(!Ro,M), let YE'IJ 
be the unique curve such that /(y) passes through yl. Then 
define 

(3.5) 

wheresElis uniquely defined by/(y)(s) = yl. Because of the 
restriction on curves in M stated above,/(y) does not self
intersect. 

Conversely, in a given coordinate system an accelera
tion field A is given by 

A (yli,y:') = (A i(yli,y:'),A ~ (yli,y:'),A ~ (yli,ym 

= «yli,y:i,A ~ (yli,y:~) . (3.6) 

Then, the initial conditions y(O) = yli and y(O) = y:i and 
the differential equation 

y(s) = A ~ (y(s),y(s» (3.7) 

determine a unique curve y up to a translation in parameter 
space such that /(y) passes through ylE P(!Ro, M). 

Unless required for clarity, the superscript denoting the 
order of the jet and the coordinates of the base point will be 
suppressed. Let (U,x) p and (D,X) p be charts ofpEM. Set 
X = xox-' and X =xox-'. ThenXoX = id andXoX = id 
with suitable domain restrictions. The coordinates of a 2-jet 
with respect to these charts, (~ ,rS) and (Y't ,j/'z), are related 
by 

y; =Xiyf, 

y~ =X~Yi +XjkyjlY~' (3.8) 

where (Xi ,X ik )EGLZ(n) is the 2-jet of X atx(p). The coordi
nates of a I-jet, (~ ) and Y't , are related by the first of equa
tions (3.8). 

Definition: A geodesic acceleration field r: 
J I (IRa , M) --> J2(IRo , M) is an acceleration field for which, 
at eachpEM, there is a chart, say (D, X) P' such that 

rw,) = (Y't ,0) . (3.9) 

This definition is a modern formulation ofWeyl's definition 
of a symmetric linear connection. (See Ref. 14b, Sec. 15, p. 
114.) 

Theorem 1: An acceleration field is geodesic iff relative 
to any given chart (U,x) p 

r~(y{)= -rikyfr,k, (3.10) 

where the r Jk are functions only of pEM. 
If an acceleration field is geodesic, then relative to some 

chart (D,X) p' it is given by Eq. (3.9). Then relative to (U,x) p 

r(y;) = (X, ')(X)T(X -')(X)(y;) 

= (X)r(y;) = (X)(y;,O) 

( ;,x iX-I X- m j k) = YI 1m j k y, y, . (3.11 ) 

Thus (3.10) holds with r Jk = - X ~mX;X 7: which are func
tions only ofpEM. Conversely, ifan acceleration field is giv-
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en by (3.10), then relative to (U,X)p 

r-i(-j)-( X-ir'XjXk+X-iXjXk)-P-q (312) 
2 YI - - , jk p q jk p q YI YI' . 

Consequently, there exist charts in which r ~ ('Pi) vanishes; 
namely, those for which 

Xjk = X;rjk . (3.13) 

Geodesic accelaration fields can all be obtained as cross 
sections of an AFB with PFB ,q2(M) . Consider the space of 
maps r: J I(Ro ,Kg) -+ J 2(Ro,~) such that 1T~ or = id and 

(3.14) 

where the r jk are just numbers. This function space is a 
manifold of dimension n2(n + 1)/2 with the global coordi
nates r jk' The group G L 2(n) acts on this space according to 

[(a)r(a-I)]~k = (a;r'pq -aipq)aj-IPak-lq. (3.15) 

Note that this equation has nothing at all to do with the 
manifold M whereas (3.12) refers to a particular pEM and the 
rjk in (3.12) are functions ofp. 

Denoted the space of maps defined by (3.14) by GA. 
Then using the GL2(n) action on GA given by (3.15) con
struct the AFB 

~ .s;ff(M) = (GA (M),1TGA ,M,GA,,q2(M». (3.16) 

Then every geodesic acceleration field on M is given by a 
cross section r:M -+ GA (M) ofGA (M). 

4. PATH STRUCTURES 

A path in M will be denoted by S. That a curve Y is a 
member of the equivalence class defining S will be denoted 
by YES, or S = [y]. The k-lift of a curve y:I -+ M is the curve 
l (y):I -+ J k (IRo, M) which defines a curve it (y): 

I -+Ok (M) by means of the right action Rk of P k onJk(lRo, 
M). The k-lift ofthe path S in Mis the path l (5 )= [j~, (y) ] 

in Ok (M). (Note that it is not appropriate to define l (5) to 
be the path [l (y)] since the set of parameter transforma
tions allowed for [l (y)] is in general the subset of those for 
[y] such that l(P) is the identity of pk.) A general element of 
Ok (M) will be denoted by S k. General curves and paths in 
Ok (M) may be defined but will not be needed for the pur
poses of this paper. 

Relative to a coordinate chart (U,x) p for pEM, yl 
EJ I (IRo,M p )and YE J 2(IRo,M p )are determined by the 
coordinates 

yl = (Xi(p),y:i) , 

Y = (Xi(p)'YI2i,yt) . (4.1) 

In terms of these coordinates, the right actions RI and R2 
defined by (2.10) are given by 

RI (yl,i6(P» = (x'(p),(D,u)y:i), 

R2 (Y,i6(P» = (xi(p),(D,u)yI2i,(D,u?yt + (D 2,u)yn , 
. (4.2) 

where D,u and D 2,u are the first and second derivatives of the 
parameter transformation at t = O. From (4.2), it is evident 
that the portion of OI(M) over U is covered by the n coordi
nate charts defined by taking D,u = lIy:b for b = 1, ... ,n. 
Similarly, the portion ofD2(M) over Uis covered by the n 
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coordinate charts defined by taking D,u = lIyl2b and 

D2,u = - Y22bl(YI2b)3 (4.3) 

for b = l,oo.,n. In general, equations will only be written for 
the case b = n, a case which is particularly apt for discussing 
timelike paths when n = 4. In this case the parameter trans
formed coordinates are given by 

S ii = yii/ylln , 

S~i = yNyl2n S~i = (yl2nyii - YI2iYin)/(YI2n)3 (4.4) 

and satisfy S :n = 1, sin = 1, S ~n = O. In terms oflocal co
ordinates, elements SIED!(M) and S2ED;(M) are given by 

S 1= (xi(p), S :U) , 

(4.5) 

where a = l,oo.,n -1. For convenience, the superscript de
noting the order of the element and the coordinates of pEM 
will in general be suppressed. 

Let y:I -+ M be a curve in M. Then the lifted curves in 
OI(M) and 02(M) are given by 

i1, (y)(s) = (xioy (s),s f(s» , 

j~2 (y)(s) = (xioy(s),s f(s),s ~(s» , 

where 

s f(s) = jP(s)/Y'(s) , 

s ~(s) = [Y'(s)ji"(s) - jP(s)ji"(s)]I [Y'(s) P . 
Writing Xi(S) = xioy(s) = 1(s) , one readily obtains 

dxu 

sf(s) = -, 
dxn 

d 2xa 

s~(s) = (dxn)2' 

(4.6) 

(4.7) 

(4.8) 

For the case n = 4, S f(s) and S ~(s) are the 3-velocity and 3-
acceleration, respectively. 

Definition: A path structure (PS), 9, on M is set of 
paths in M such that for every element S IEDI(M), there ex
ists exactly one maximal path sE9 such that S I is on /(5). 

Definition: A directing field on M is a map E: 
DI(M) -+ D2(M) such that 1T~ 0E = id. 

In terms of local coordinates, a directing field E is given 
by 

E(xi(p), sf) 

= (E i(Xi(p),s f),Ef(xi(p),s f),E~(Xi(p),S f» 

= (xi(p),sf,E~(Xi(p),sf». (4.9) 

Lemma: Every PS on M defines a unique directing field 
on M and conversely. 

Given a PS, choose SIEDI(M) and let S = [y] be the 
unique path determined by Sl = (xi(p),sf) . Let i~ (y)(s) 

= (xioy(s),sf(s),s~(s» and let S~ be the value of S ~(s) atp. 
Then E is defined at S I by 

E~(xi(p),sn =s~. (4.10) 

Conversely, a directing field E determines a PS by 
means of the differential equation 

(4.11) 
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which by means of (4.8) may be reexpressed as 

d
2
x
a -a( ;dx

a) - - x (4.12) 
(dX")2 - - 2 , dx" . 

The coordinate transformation formulas (3.8) together 
with (4.4) yield the transformation formulas 

- - fJ - X~ +XpS 1 

sf = X" x"n' ,,+ r~ 1 

- XpS~ +X;"s'lsf + 2X~s'l +X~" 
S~ = (X: +X;S02 

XPS~ +X';.u!'1si + 2X;:"s'l +X:" €f. 

(X: +X;S02 
(4.13) 

Definition: A geodesic directing field n:DI(M) 
- D2(M) is a.directing field for which, at each pEM, there is 
a chart, say (fj oX) p' such that 

fi<€n = <€f,O). (4.14) 

Note that every geodesic directing field corresponds to a 
class of symmetric linear connections which are projectively 
equivalent. (See Ref. 12, Sec. 22, p. 56.) 

Theorem 2: A directing field is geodesic iff relative to 
any given chart (U,x) p 

n~(sf) = sf(n;us'lsf + 2n;:"s'l + n:,,) 
- (n;us'lsi + 2n~s'l + n~,,), (4.15) 

where the lI~k are functions only of peM and lIji = 0 [so 
that n~p and n~n can be eliminated from (4.15)]. 

Let n be a geodesic directing field satisfying (4.14). 
Then relative to the chart (U,x) p 

n(sf) = (X)(X)n(X)(X)(sf) 
= (X)fi(€n = (X)(€f,O). (4.16) 

Using the inverse of (4. 13), one obtains 

xa j;pj;u + 2X a j;p +xa 
na(Sa) = pu':> I':> 1 np~ I nn 

2 1 (X~ +X;SD2 

_ X;u€'1€i + 2X:p€'1 +X~n Sa. (4.17) 
(X: +X;S02 1 

Substitution for t i in terms of sf gives 

n~(sf) = - sf(X7jX~X ~s'lsi + 2X7jX~X ~s'l 
+ X7jX~X D + (XfjX~X ~s'lsi 
+ 2X0X~X ~s'l +XfjX~X D. (4.18) 

Since r~i = - XipqX rXr by (3.11), (4.18) is the same as 
(4.15) with the njk replaced by r~k' However, one can de
fine r i =r Z; and 

where n;j = O. The terms in (4.18) involving r i cancel, giv
ing (4.15). 

Conversely, suppose a directing field is given by (4.15). 
Then apply (4.13) (for simplicity chooseXp = 8 p) to 
obtain 
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fi2<€ f) = lI2( sf) +X;u5''1si + 2X~ps'l + X~n 
- si(n~(s f) +X;us'lsi 

(4.20) 

The right-hand side vanishes for the choice X ~k = n~k; so 
that, a coordinate chart exists in which (4.14) holds. 

Geodesic directing fields can all be obtained as cross 
sections of an AFB with PFB .?P(M). With apologies for the 
multiple use of the same symbols, consider the space of maps 
n:DI(JR~) - 1)2(R:;) such that1T~ on = idand with n 2(s 111) 
given by the expression (4.15) with the understanding that 
si denotes an element ofDI(R;;) [not ofDI(M p)] and that 
the n~k are just numbers (not functions ofpeM). This func
tion space, denoted by GE, is a manifold of dimension 
n2(n + 1)/2 - 4 (since n;j = 0). Again, there are n coordi
nate charts. Corresponding to the chart in which S ~ = 1 and 
S ~ = 0, one may choose to eliminate mb and mp ' An ele
ment (a)EGL2(n) acts on GE according to 

n _ (o)n(o) -I . (4.21) 

The effect of this transformation of the n~ car.: be found by 
successive application of (4.13) with the (X ~, X ~k) replaced 
by (oj, a~k)' Thus one can construct the AFB 

f1 E(M) = (GE(M),1TG:=,M,GE,f£2(M» (4.22) 

and every geodesic directing field on M is given by a cross 
section n:M - GE(M) ofGE(M). 

Finally, it is clear from Theorem 2 that if n is a geodesic 
directing field, then n 2( sf) is a cubic polynomial in S fin 
every coordinate chart (U,x) p' The converse is also true. 

Theorem 3: If with respect to every coordinate chart 
(U,x) p' the corresponding function E 2( sf) which deter
mines the directing field E is cubic, that is, if 

E2(s f) =A a +B;s'l + C;uS'lsi +D;UTS'lsis~ , 
(4.23) 

where the coefficients A, B, C, D are functions only ofpEM, 
then E is geodesic. 

Under a coordinate transformation, a directing field 
tranforms according to 

E= (X)E(X). 
In terms of the function E 2( S f). this law becomes 

X;E~(S f) +X;us'lsi + 2X~pS'l +X~n 
(X~ +X;SD2 

X;E~( s f) + X;us'\S i + 2X~ps'l + X~n 
(X~ +X;SD2 

(4.24) 

(4.25) 

whereEa( sf) is given by the second equationof(4.13). The 

expression for E 2( sf) is obtained by substituting (4.23) 
into (4.25) and by expressing 5 i in terms of € i using the 
inverse of the first ofEqs. (4.13). The result is not in general a 
polynomial unless the coefficients D ;UT have the form 

(4.26) 
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However, if this condition is satisfied, then (4.23) may be put 
into the form (4.15) by redefining the coefficients in the fol
lowing way. Set 

B; = 2B; + 8;B, 

B = [lI(n + l)]B ~ , 

and 

Cp = [lI(n + l)]C~p' 
Then it is only necessary to make the identifications 

Dpu = n;u' C;u = - n;u' 

B; = - n~p' A a = - n~n , 
from which follow (recall n;j = 0) 

B = B ~ = - n~n = n~n , 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

5. SYMMETRIES OF CURVE AND PATH STRUCTURES 

For the examination of differentiable manifolds and for 
the discussion of the symmetries of geometric objects defined 
on them, there are three qualitatively different scales to con
sider; namely, global, local, and micro. In each case, a sym
metry is an invertible, active transformation of the manifold 
which preserves the geometric object when attention is re
stricted to the appropriate scale. For a given scale, the set of 
transformations which preserve a given geometric object 
form a group or pseudogroup called its global, local, or mi
crosymmetry group, respectively. Note that the use of the 
term "infinitesimal symmetry group" instead of "microsym
metry group" would incorrectly suggest that the Lie algebra 
of some finite group was under consideration. The symmetry 
groups will be defined for the cases of curve and path struc
tures and for the corresponding acceleration and directing 
fields, the geometric objects of central interest in this paper; 
however, similar definitions would apply to any geometric 
object. 10 

First, consider global symmetries of a CS C((; . Let 
J:M --+ M be a diffeomorphism. Then for every YEC((; , yl 
= JOy is a curve in M and C((; 1 = {y/IYEC((;} is aCSfor M. If 

C((; 1 = C((;, thenJis a symmetry of C((; and the set of all diffeo
morphisms J:M --+ M such that C((; 1 = C((; is the global sym
metry group of C((; . 

Moreover, if 9 isaPSonMands = [y] isapath,sE9, 
then S 1 = [foy] is a path onM and 9 1 = [s IIsE9 J is a 
PS for M. If 9 1 = 9, thenJis a symmetry of 9 and the set 
of all diffeomorphisms J such that 9 1 = 9, is the global 
symmetry group of 9. 

Because of the bijective correspondence between CS's 
and acceleration fields and between PS's and directing fields, 
the above definitions may be reformulated in terms of these 
fields. Let A:J I(Ro' M) --+ J 2(Ro, M) be the acceleration 
field corresponding to the CS C((;. Then the acceleration field 
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A 1 corresponding to the CS, C((; 1 is given by 

AI=/(f)OAo/(f)~I, (5.1) 

where / (f):J k(Ro' M) --+ J k(No, M) is the k-prolonga
tion of J:M --+ M. The condition that the CS remain invar
iant underJis 

AI =A. (5.2) 

If y:I --+ M is a curve on M and J.l is a parameter transforma
tion, then since 

/(f)o j~(yo J.l) = /(foy)o j~(P), (5.3) 

This action of the / (f) can be factored by the projective 
transformations /(P) to define the action on Ok(M) 

/(f)o j~,(y) = jt(foy). (5.4) 

Consequently, if 8:01(M) --+ 02(M) is the directing field 
corresponding to the PS,9 then the directing field 8 1 cor
responding to the PS 9 1 is given by 

8 1 = /(f)08o /(f) ~ 1 (5.5) 

and the condition for in variance of the PS, 9, becomes 

(5.6) 

If the global diffeomorphism is replaced by a local 
diffeomorphism J: U --+ Vin the above considerations and if 
the invariance conditions are applied to the restrictions of 
curves and paths to U and V, then one refers to the local 
diffeomorphismJ as a local symmetry and the set of such 
local symmetries forms a local symmetry pseudogroup. If, in 
addition, the local diffeomorphisms are required to leave 
some point p EM fixed, the terms p-Iocal symmetry and p
local symmetry pseudogroup will be used. In this case, the 
in variance conditions are applied only to those curves and 
paths which pass through the point p . 

The set J k D (M p ,M p) of k-jets j~ (f) of diffeomor
phisms J:M --+ M which leave pEM fixed form a finite di
mensional Lie group GL~. The group product is k-jet com
position. The group GL~ is isomorphic to the group 
GLk(n). For I < k, there is a natural projection from GL~ to 
GL'p which maps j~ (f) into i p (f). The group GL ~ acts on 
J k (Ro ,M p) according to 

j~(f)o j~(y) = j~(foy) . (5.7) 

Again, parameter transformations commute with the 
action (5.7) so that the group GL~ also acts on O~(M) ac
cording to 

j~ (f)o j~, (y) = j~, (foy) . (5.8) 

[See (4.6) and (4.7).] 

As noted above, a diffemorphismJinduces transforma
tions (5.1) and (5.5) of acceleration and directing fields, re
spectively. IfJ(p) = p, then one may restrict these transfor
mations to the point pEM to obtain 

A ~ = j~(f)OApOj~(f)~I, 

(5.9) 

8 ~ = j~ (f)08 p 0 j~ (f) ~ 1, 

called the microtransformations at p of the curve and path 
structures. 
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Definition: A microsymmetry of CS, 'if (or a PS, &') at a 
point pEM is an element of G L ~ which leaves the corre
sponding acceleration field A (or directing field E) invariant 
at p . The set of such microsymmetries forms a group which 
is a Lie subgroup ofGL ~ called the microsymmetry group at 
p. 

The invariance conditions are 

A f - A :: f - :: (5.10) p- P' -p--p' 

Relative to a chart (U,x) p' the microtransformation 
j~ (f) is represented by 

'2 (01 0 -I) - (Ii Ii ) ix(p) X X - j' jk , (5.11 ) 

where Ij is thelacobian and Ijk is the Hessian atx(p). For 
(Y()EJI(Ro,Mp) , 

A f(y() = (f)A (I) -I(yi) 

= (f)A (f j liy{) = (f)(f j liy{,A ~ (f j liy{» 

= (y(,fjA 1(f j liy{) + Ijkll- Ij I ;;;Iky ~ yt). 
(5.12) 

Consequently, the transformation law is 

A fi(y') - liA j(1 -liyj) + Ii I -Ijl -Ikylym 
2 I - j 2 j I jk I m I I . 

(5.13) 

Replacement of y ( by Ij y{ gives for the invariance 
condition 

A ~(fjy{) = IjA~(Yi) + Ijky(yt· 

For an infinitesimal microtransformation 

(f) = (8j + EFj ,€Fjk), 

(5.14) 

(5.15) 

where € is infinitesimal; consequently, the infinitesimal ver
sion of(5.14) is 

F~yj(alayt)A ~ (y() = FjA 1 (Yi) + Ijk y{ Ylk. (5.16) 

The corresponding formulas for directing fields are ob
tained as follows. Choose one of the n coordinate charts for 
][}~ (M) and ][}~(M) corresponding to (U,x) p' say the nth. 
Then apply (5.9) in the form 

Ef(f) = (f)E. (5.17) 

Using (4.13), one obtains for S I E][}~ (M) 

E f(f)( Sa) = E f(/~ + IpS f) 
I Inn + I;n 

= (/~ + IpS f,Efa(/~ + IpS f)) 

I~ + I;n I~ + I;S\ 
(5.18) 

and 
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x (/~ + IpS f)) . 
I~ + I;S\ 

(5.19) 

Using the convention S ~ = 1, the result may be expressed 
more compactly as 

Efa(/~S'1 ) 
2 f7s'l 

l a :: f3( f;- a)/nf;- i In:: f3( f;- a)/af;- i f3- 2 !> Ii!> I - f3- 2 !> Ii!> I 

(f7S\)3 

l a f;-jf;-klnf;-i In f;-jf;-kl"f;-' + jk!> I!> I i!>1 - jk!>I!>1 i!>l. (5.20) 
(f7Si)3 

The invariance condition corresponding to (5.14) is obtained 
by replacing E f by E in (5.20). Finally, using (5.15), one 
obtains for the infinitesimal version of the in variance 
condition 

~:~( sf)[F :si + F! - S f(F;si + F~)] 
+ 2E~( S f)[F;S \ + F~ ] 

+E~(sf)[F/Jsf -Fp] 

= F';,aS fsf + 2F~pS f + F~n 
- sf [F~aS fsf + 2F~ps f + F~n]. (5.21) 

6. SYMMETRIES OF GEODESIC CURVE AND PATH 
STRUCTURES 

In this section, a number of theorems are stated and 
proved which serve to characterize geodesic curve and path 
structures geometrically in terms of their microsymmetry 
groups. 

Theorem 4: A curve structure ~ is geodesic if and only 
if its microsymmetry group for every pEM is a subgroup of 
GL~ isomorphic to GLI(n). 

Let A be the acceleration field corresponding to a geo
desic CS, 'if. Then with respect to any chart (U,x) p 

A~(YI)= -rjky{ylk. (6.1) 

Substitution of (6.1) into the invariance condition (5.14) 
gives 

Ijk = I~r~k - r~m 1~/'l:. (6.2) 

Thus the microsymmetry group is the subgroup ofGL~ of 
elements of the form 

<Ii lirl r i 111m) (6.3) 
j' I jk - 1m j k • 

It is straightforward to verify that this subgroup ofGL~ is 
isomorphic to GLI(n). 

Conversely, assume that the microsymmetry group is 
isomorphic to GLI(n). An infinitesimal element ofGL ~ has 
the form (5.15). For any element in the microsymmetry 
group, theFjk are determined by theFj. The product oftwo 
such elements is 

Wj + €(Fj + Gij),€(a'Jk(F;) + ajk(G;». (6.4) 

Closure requires linearity 

(6.5) 
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and a~k(F;) vanish when F; vanish since the identity ele
ment is (8~,Q) . Thus 

i (F') i sF' a jk S = a jk' s' (6.6) 

where the a~kr s depend only on the point peM. 
Now assume that A ~(rf) is at least C 4 and set 
iii i j i j k i i A 2 (rl)=A +Bjrl +Cjkrlrl +w(rl), (6.7) 

where A i,B ~, and C ~k depend only on peM and wier f) is of 
order (r f)3. Substitute (6.7) and (6.6) into (5.1) and note that 
the F~ are arbitrary. Set the coefficients of F~ equal to zero 
to obtain 

r'[B~ + 2Cjrr{ + w:r(r[)] 

= 8~ [A' + Bjrt + Cjk rfrlk + w(rf)] 

+ a~~rr{rlk. (6.8) 

Equating the coefficients of terms of corresponding order, 
one obtains 

8jB~ = - 8~Bj, 

ajtr = - 8~Cjk + 8jC~k + 8~C~r , 
r; w:r(ri) = 8~wS(r;) . (6.9) 

From the last equation of (6.9), w:r = 0 for i =1= r; so that, \;j i 
the ith component of w depends only on the ith component of 
r I . But then choosing r = i and S =1= i, w would have to be of 
first order in r; contrary to assumption; consequently, 
wier I ) = O. From the second equation of (6.9) by contracting 
on sand j 

B~ =8~(1/n)B~ =8~B. (6.10) 

The third equation of (6.9) shows that the a~:r have the form 
required in order that (81j + EF~,Ealj:rF;) is a microsym
metry group element which is the infinitesimal version of 
(6.3) where 

I C i rl a jk = jk=- jk' (6.11) 

Using these results in (6.9), one obtains 

A ~(rf) = Bit - r~kr{rlk. (6.12) 

The CS defined by (6.12) is geodesic since the term contain
ing B can be eliminated by a suitable choice of parameter. 

The fact that the microsymmetry group of a geodesic 
CS is isomorphic to GL I(n) is closely related to the existence 
of affine normal coordinatesll and the fact that such coordi
nates are unique up to a GLI(n) transformation. 

The next theorem characterizes the maximal micro
symmetry group of a geodesic path structure f!ll with corre
sponding directing field E. 

Theorem 5: If a path structure f!ll is geodesic then its 
microsymmetry group for every peM is a subgroup of GL ~ 
isomorphic to the subgroup ofGL2(n) with elements of the 
form 

(6.13) 

The proof of this theorem is tedious but straightfor
ward. Consider an arbitrary infinitesimal element (5.15) of 
GL~. To be an element of the microsymmetry group f!ll, the 
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parameters F~ and F~k must satisfy the invariance condi
tion (5.21) for arbitrary sf where the E~( sf) are given by 
the expression (4.15) for ll~( sf) in terms of the llljk which 
are known and depend only onpEM. Carrying out the substi
tutions, one obtains a polynomial in sf which must vanish 
for arbitrary sf. Equating the coefficients of this polynomial 
to zero yields the various components of the relation 

,. i I I,. Ii; i Fjk =F/ll jk -Fjnlk -Fklljl +8jFk +8k F j . 
(6.14) 

Consequently, the F~k are determined in terms of the pa
rameters F~ and F, which may be chosen arbitrarily. To 
organize the computation for (6.14), it is useful to define 

Fi = [1/(n + l)]F:" 
(6.15) 

i~k = F'~k - (8i
j Fk + 8kF j ), 

so that it = O. After substituting for F 'jk in terms of i ~k 
and F" the terms containing F, drop out and the i~k are 
determined by the first part of (6.14) involving the n~k' It is 
also useful to recall that nt = O. 

The finite form of the microtransformation (5.15) with 
Fjk given by (6.14) is 

(f~,f;njk -llim Ij l'k + I~ I k + f'k I j). (6.16) 

It is a straightforward matter to verify that the subgroup of 
GL~ of such elements is isomorphic to the projective sub
group of GL2(n) with elements given by (6.13). 

Corresponding to the normal coordinates of a space 
with a geodesic curve structure, there are for a space with a 
geodesic path structure special projective normal coordi
nates12 determined up to a projective transformation. 

Consider the action of GU(n) on a fiat n-dimensional 
affine space. Straight lines through the origin are mapped 
into straight lines through the origin. Moreover, the dilata
tion subgroup of GLI(n) of elements (eS8~) for SER (one 
might also include refiections) maps each straight line 
through the origin into itself. The following theorem states 
that if the paths of a path structure are straight to second 
order at every point pEM, then the path structure is geodesic. 

Theorem 6: If a PS, f!ll , admits at every pEM a micro
symmetry j;(f)EGL; with j~(f) = (A8~) and A =1= I, then 
9 is geodesic and conversely. 

The converse follows from Theorem 5. Let fp(/) be a 
microsymmetry of f!ll and let the corresponding directing 
field be E. The invariance condition is given by (5.20) with 
E fa = E~ • Since Ij = A8j with A =1=0 and A =1= 1, 

E~(sf) = [1/(..1, 2 -A )1[ljd{S~ - sf Ijd{s~], 
(6.17) 

which is of the required form (4.15). 
The following theorem states that if a path structure f7' 

is microisotropic to first order, then it is geodesic. 
Theorem 7: If a PS, f7' , admits at every pEM a micro

symmetry group G p(f7'), a subgroup ofGL~ , which in
duces a transitive action on [)~(M), then f7' is geodesic and 
conversely. 

Again, the converse follows easily from Theorem 5. 
Suppose, then, that G/9) induces a transitive action on 
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D;(M). An arbitrary infinitesimal element ofGL~ is given 
by (5.15). For every such element that is an element of the 
microsymmetry group Gp (9). the directing field E of 9 
satisfies the constraints (5.21). Since. Gp (9) acts transitive
lyon D;(M). an n-dimensional projective space. and since 
dilatations do not affect points of D; (M). the F~ in (5.21) 
may be chosen arbitrarily up to a dilatation. In particular. if 

Fj = xj + (l/n)8j X • 
(6.18) 

x~ =0. X=F;. 

Then the X~ .X~ and X'P may be chosen arbitrarily. Now. 
assume that E~( 51) is at least C 6 and expand in a Taylor 
series about 5 ~ = 0 • 

E~(51) =A (l + B~5 f + C~1T5 f5T +D~1Tu5 f5T5f 
+E~1T<TT5fST5f5r +Wa(51). (6.19) 

where it is assumed that wa
( 51) is of order five in the varia

bles 5 ~(a = 1 ..... n - 1). Substitute (6.19) into (5.21) and 
pick out the terms of order at least four in 5 ~. Expressed in 
terms of the X~ .X~X'P. and X. the result. which does not 
depend on the Fjk' is 

Xt[w~/3( 51)] + X" [ - 5fsrw~y( 51) +25 Fwa( 51) 
+ 5;'w/3( 51) - 25 FE~1TuT5 fS T5f5 r + 5fE : 1TUT 

X5 fST5f5r + 5~D~1Tu5 fST5f - 5 FD~1Ta5 f5T5fl 
+ x:[ - 5 rw:'/3( 51) + 81fi5;'w;( 51) 
- 8,Jwl'( 51) - 81fiw"( 51) + 4n E~ 1Ta/35 fS T5f 

- 8[~E;'1T{TT5 fST5f5~ + 281fiE~1TaT5 f5T5f5r] 
+ (l/n)x[ -25rW~y(51) + E~1TaT5 fST5n~] = O. 

(6.20) 

Since X ;:.X'P. and X: may be chosen arbitrarily. for arbitrary 
parameters A {3 Jl {3. and v1fi which depend only on pEM. one 
obtains the relations 

w~(J( 51) = A /3 [ -25rw~l'( 51) + E~1TaT5 fST5f5n . 
(6.21) 

- 5 F5 \w:;,( 51) + 25 Fw"( 51) + 5~w/3( 51) 

- 25 FE';, mn5 fS T5f5 r + 5~ E :1T(TT5 fS T5f5 r 
+ E:-" D (J E:- f' E:- TT E:- <T _ E:- /3 D " E:- p E:- 1T E:- u 

~ 1 P TT(7~ 1 ~ t ~ I !:I I P rra!:l 1 ~ 1!:1 1 

The terms of order four of (6.22) give 

5~D~1Tu5 fST5f - 5 FD';,ff(T5 fST5f 
=1l{3E~Tr(TT5 fST5f5r . 

Thus 

aE{3 + {3Ea -0 Il P1T(TT Il PTr(TT - . 

(6.24) 

(6.25) 

Suppose 3a E~1T(TT=I=O. Then (6.25) for (J = a giveslla = 0 
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and then (6.25) for {J=!=a gives Il {3 = O. On the other hand. 
suppose 3a lla =l=O . Then (6.25) for {J = a gives E ~ Tr(TT = 0 
and (6.25) for (J=J=a gives E ~ 1T(TT = O. 

Consequently. the right side of (6.24) must vanish. and 
it follows that 

D~1T(T =1 [8~D1T(T +8~Dp(T +8~DpTr]' (6.26) 

Moreover. one must have V aE'~ Tr(TT = O. for if 38 
E~ 1T(TT #0 then Valla = 0 and the right side of (6.22) van
ishes. The terms of order five of (6.22) then give for any a. {J 

- 25 FE~>1T'TT5 f5 T5'(5 r + 5~E: 1TaT5 fS T5f5 r = 0 
(6.27) 

and for a = (J = 8 this gives 

5~ E~ TraT5 f5 T5f5 r = 0 (6.28) 

whence E~, 1TaT = 0 which contradicts the assumption. Thus 

V"E';,1T(TT =0. 
Next (6.21) gives 

w~/3( 51) = - 2 A {3nw~,( 51)' 
Contraction with 5 F gives 

(1 + 25 FA (1 )n w~, ( 51 ) = 0 . 

Consequently. since w~/3( 51) is c I • 

nW:~(51)=0. W~{3(51)=0. 

Finally. (6.23) gives 

8'PWY(51) + 81fiWr1(51) = O. 

and by contraction of y and (J 

W
a (51) = O. 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

Since it has been shown that E~( 51) is a polynomial of de
gree at most three, the proof may be completed by appealing 
to Theorem 3 above in Sec. 4. Alternatively. since (6.26) is 
just (4.26). the redefinition argument following (4.26) may 
be applied directly. 

7. DECIDABILITY OF THE CONSTRUCTIVE AXIOMS OF 
GRT 

Recent criticisms of the geodesic method of EPS were 
outlined in the Introduction. Before proving their invalidity. 
we shall briefly analyze their philosophical basis and con
trast the latter with the conceptual motivation. significance. 
and aim of the constructive axiomatics of EPS. This will 
clarify to what extent the work ofEPS constitutes a solution 
to the controversy between realism and geometric conven
tionalism in favor of realism. 

Einstein suggested the distinction between principle 
theories and constructive theories. l3 The aim of a construc
tive theory is to reduce a wide class of diverse complex phys
ical processes to simpler ones. Our understanding of the for
mer is constructed out of hypotheses concerning the latter; 
for example. the kinetic theory of gases constructs mechani
cal, thermal. and diffusional processes from the hypothesis 
of molecular motion. On the other hand. a principal theory 
postulates abstract structural constraints which events are 
held to satisfy. Einstein's example is the classical theory of 
thermodynamics. 

The special and general theories of relativity are princi-
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pIe theories of spacetime structure. The four dimensional 
pseudo-Riemannian manifold is the mathematical model of 
the physical spacetime of the theory of general relativity. It 
was Weyl who first distinguished between two more primi
tive structures of the model: the conformal structure, and the 
projective structure of paths defined by the set of all unpara
metrized geodesics. 14 

Weyl suggested that the conformal structure represents 
the causal structure and may be identified with the propaga
tion of light, and that the projective structure represents the 
inertial structure of spacetime that is revealed by the path 
structure of free fall motions of suitable test particles. 

Using these structures and their compatibility relation, 
Ehlers, Pirani, and Schild l have derived a unique Rieman
nian spacetime metric solely as a consequence of a set of 
"geometry free" axioms concerning the incidence and differ
ential-topological properties of light propagation and free 
fall. 

The "geometry free" axioms are propositions about a 
few general qualitative assumptions concerning free fall mo
tion and light propagation that can be verified directly 
through experience in a way that does not presuppose the 
full blown edifice of the theory of general relativity. From 
these axioms, the theoretical basis of the theory is recon
structed step by step. Following Reichenbach, IS EPS call 
their approach constructive axiomatics. 

The aim of a constructive axiomatic approach to a prin
ciple theory of space-time is to exhibit the physical basis for 
the particular structural constraints which the principle the
ory postulates certain events must satisfy. The structures 
contained in themathematical model of a principle theory 
should all have in principle a link to physical experience. 
Spacetime models with inherent structures that do not relate 
to experience (e.g., absolute time) are defective for that rea
son. 16 Hence, it must be theoretically possible, that is, possi
ble in principle, to relate the various structures to experience 
in a way that is consistent with the theory. 

Hence a constructive axiomatic approach should satis
fy the basic requirement orany proper and complete theory. 
Completeness requires that the reconstruction of the various 
structures inherent in the mathematical model of a principle 
theory of spacetime be realizable by means of relatively sim
ple physical systems that are themselves well defined within 
the specific theory being considered, that is, that can be con
sidered as an interpretation of the inherent structures of the 
spacetime model and are consistent with the theoretical con
sequences of the theory which presupposes that model. Ein
stein was well aware of this problem and considered the use 
of clocks and rigid rods an undesirable makeshift. 17 Unlike 
light propagation and freely falling particles, rigid rods and 
ideal clocks are relativistically ill defined and are thus un
suitable for the determination of the inherent structures of 
the spacetime of general relativity. The concepts of a theory, 
its formulation and measuring devices should all lead to a 
unified, self-sufficient and conceptually coherent world pic
ture. There are essentially two types of conventionalist view
points. The less radical type may be called epistemological 
conventionalism. On this view, observationally indistin
guishable theories may utilize alternative geometries, but it 
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is in principle not possible to single out that theory whose 
underlying geometry is the true geometry of the world. Any 
such decision, whether or not it is guided by criteria of sim
plicity, is essentially epistemically conventional. Epistemo
logical conventionality permits the existence of a true geom
etry, but access to it is not possible in a nonconventional 
manner. 

Ontological conventionalism asserts that the continuous 
spacetime manifold is metrically amorphous. All nontopolo
gical structures are extrinsic to spacetime and are stipulated 
by means of the behavior of material entities such as clocks, 
light rays, and geodesic particles; that is, the metric structure 
of spacetime is always relative to which class of material 
entities is chosen as the standard of measurement (which 
choice is arbitrary). According to this view; metrical rela
tions within spacetime reduce to the relations of the chosen 
material standards of measurement; that is, the latter are 
ontologically constitutive of the former. 

We are now able to see what the criticisms leveled 
against EPS really amount to. The charge of epistemic circu
larity is directed against the geodesic method because the 
latter employs the concept of free fall as a standard of inertial 
motion. The criticism is thus essentially about the status of 
the infinitesimal law of inertia. Since, as the argument goes, 
the inertial law does not by itselffurnish independent criteria 
by which one can decide when a test particle is free, it is 
considered to be conventional in character. But this reason
ing rests on a serious misunderstanding of both the law of 
inertia and the geodesic method which employs it. 

First, the essential idea of the geodesic method is to 
discover through the behavior of physical systems various 
intrinsic, primitive geometrical spacetime structures. It is in 
spirit analogous to Helmholtz's procedure of deducing the 
existence and form of the metric of physical space. 18 Helm
holtz asked "what must the geometric structure of space be 
in order that a mechanics of rigid bodies is realizable in that 
space?" Thus Helmholtz is essentially asking what abstract 
structural constrainst must a principle theory of mechanics 
postulate that certain events must satisfy. According to 
Helmholtz, the structure of space follows from the possibil
ity of congruent transport of rigid bodies; that is, the struc
ture of space constitutes a necessary condition for the possi
bility of the realizability of certain physical processes and 
operations within that space; in particular, whether or not 
space possesses a constant curvature, or whether space is a 
general Riemannian space depends on whether or not phys
ics allows the introduction of ideal rigid bodies. 

The structure of space is, according to Helmholtz, the 
framework for possible physical laws. Certain types of laws 
presuppose certain types of spaces. Hence, on this view, the 
law of inertia presupposes an affine structure and may thus 
be regarded as a geometrical statement. 

The conventionalist view that considers the behavior of 
material entities as being ontologically constitutive of the 
metrical structure of spacetime is clearly at variance with the 
notion of a principle theory. It is clear that the views ofWeyl 
and Helmholtz are directly opposed to those of ontological 
conventionalism. According to Weyl, " ... the behavior of 
rigid bodies and clocks is almost exclusively determined 
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through the metric structure, as is the pattern of the motion 
of a force free mass point and the propagation of a light 
source. And only through these effects on the concrete natu
ral processes can we recognize this structure.,,19 Thus ac
cording to Weyl we discover through the behavior of phys
ical phenomena an already determined metrical structure of 
spacetime; that is, the metrical relations of physical objects 
are determined by the second rank physical metric tensor 
field which is only revealed by, not defined by, those rela
tions. Although distinct from physical objects in space-time, 
the metric tensor explains the geometric relations between 
them. 

Secondly, Newton's first law and the corresponding in
finitesimal version thereof, is physically realized by a suit
able class of objects in free motion. These laws are geometri
cal statements concerning the underlying spacetime 
structure. The inertial laws serve to define an affine structure 
on the spacetime manifold. It is the affine structure that 
plays the essential role in the formulation of all physical laws 
that are expressed in terms of differential equations. In both 
Newtonian physics and general relativity, all dynamical 
laws presuppose that structure. Now, inability to identify or 
single out a class of suitable test objects in an epistemologi
cally noncircular way whose free motion exhibit the projec
tive structure of spacetime means only that the truth of the 
axioms concerning free fall is epistemically undecidable. But 
any argument from the epistemic inaccessibility of free test 
particles-even if this inaccessibility has a sound logical and 
physical basis-does not establish that the structures de
rived from the axioms are ontologically conventional. The 
most that is entailed is epistemological conventionality. 

However, epistemological conventionality permits the 
assertion of the truth of the axioms and hence the inference 
from them to a unique metric structure at least in this condi
tional sense: 

If the geometry-free axioms are true of the world and 
are hence satisfied by an actual or possible nonempty 
class of suitable test objects (light rays and symmetric, 
nonrotating, neutral, freely falling particles), then there 
exists a unique and intrinsic spacetime metric. 

The truth of this conditional claim is incompatible with the 
truth of ontological conventionalism, for if the latter were 
true, then there could be no factual reasons, known or un
known, for preferring one metric over another. But EPS 
have at least shown that certain facts, ifknown, would single 
out a unique intrinsic metric. That we may not perhaps avail 
ourselves of these facts in an epistemically noncircular way 
supports only epistemological conventionalism. 

We shall now show that one does have epistemic access 
to freely falling particles in a way that does not beset the 
geodesic method ofEPS with either logical or epistemologi
cal circularity. First, note that freely falling particles are not 
required to construct the radar coordinate systems. For this 
purpose, any massive particles may be employed. Then, rela
tive to such a coordinate system the trajectory ,of any other 
particle may be determined. 

If the motion of a particle is governed by a directing 
field E, then, by definition, such a particle's spacetime trajec-
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tory is determined uniquely by an event on the trajectory and 
its direction at that event. Assume that there are many parti
cles governed by a given directing field E if there are any at 
all. Then collections of particles corresponding to various 
directing fields can be built up by means of the following 
comparison procedure. Two particles belong to the same di
recting field class if and only if whenever they are launched 
from infinitesimally neighboring spacetime events with di
rections which differ only infinitesimally, their subsequent 
spacetime trajectories remain infinitesimally near. Here, the 
notion of near does not require a metric. Only an appeal to 
the differentiable structure of the manifold is required. The 
fact that in practice such a differentiable topological concept 
of nearness would require limiting sequences of experi
ments20 would only complicate the matching procedure. 
Note that requiring the directions to differ only infinitesi
mally does not presuppose a connection since the infinites
imal transformation has been left arbitrary. This matching 
procedure permits the separation of particles into classes, 
each class associated with a distinct directing field. The EPS 
axiom regarding the existence of freely falling particles as
serts the existence of at least one such class. 

Particles with higher order gravitational multi pole mo
ments can almost be eliminated from consideration at this 
point. One would expect that their spacetime trajectories 
would not be uniquely determined solely by an event on the 
trajectory and the direction at the event but would also de
pend on the orientation of the multipole moment as is the 
case for particles with higher electromagnetic multipole mo
ments. The motion of such particles would not be governed 
by a directing field and the above matching procedure would 
fail. The analyses of the motion of particles with gravitation
al muItipole moments,21 both relativistic and nonrelativistic, 
indicate that the motion of such particles is indeed not gov
erned by directing fields; however, it is not possible to rely on 
such analyses here because they presuppose a metric. Conse
quently, the conceivable degenerate case in which only the 
scalar magnitude of such a particle's multipole moment in
teracts with the gravitational field must be considered. 

For each class of particles, the corresponding directing 
field E could be measured at any given spacetime event as 
follows. Take a large number of the particles and launch 
them from many different directions in such a way that they 
all pass through an infinitesimal neighborhood of the given 
spacetime event. Track each of the particles in some radar 
coordinate system. Then by curve fitting and differentiation 
(4.8), the one and two directions (51 ,52) for each of the parti
cles may be determined at the given event. These pairs in 
tum determine the directing field 

(7.1) 

at the event in the given coordinate system. By repeating the 
procedure for many spacetime events the directingfields for 
the given class of particles may be measured. 

Having measured the directing field with sufficient ac
curacy at a large number of spactime points, the analytic 
criterion (4.15) of Theorem 2 may be used to determine 
whether or not it is geodesic. Assume a polynomial form for 
the functions E ~ in (7.1) of degree greater that three, say five 
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or six. Then use the measured data pairs (t 1 ,52) at the given 
spacetime event to determine the coefficients by, for exam
ple, the method of least squares. Then if the coefficients of 
the terms of degree greater than three are essentially zero 
and if the third degree terms other than 5 f D pa 5 is f are also 
essentially zero, and if this turned out to be the case for every 
spacetime event considered, then one would conclude that 
the directing field was geodesic. If it turned out that E ~ were 
not cubic polynomials of the desired form even at a single 
spacetime event, then one would conclude that the directing 
field was not geodesic. This curve fitting technique also 
serves to determine the projective coefficients ll~k (ll;k = 0) 
as functions of the spacetime event. In turn, these coeffi
cients uniquely determine a geodesic path structure. 

The determination and measurement of the conformal 
tensor density [§ ab and the conformal connection 
coefficients 

Kjk = ![§il([§ Ij.k + [§ Ik.j - [§ jk,l) (7.2) 

is adequately discussed elsewhere in the literature. Ehlers, 
Pirani, and Schild have shown that the necessary and suffi
cient condition that a geodesic path structure determined by 
lljk is compatible with the conformal structure determined 
by [§ ab is that 1 

Ll)k ll}k - K}k = 5[§ jk [§ilql - 8~qk - 8~qj , (7.3) 

where the coefficients qj depend only on the spacetime event. 
The Eqs. (7.3) form a system ofn2(n + 1)/2 linear equations 
in the n unknowns qj. The structures are compatible if and 
only if a solution exists for every spacetime event. If (7.3) 
holds then the qj are given by 

_ 1 Gel GelpqA I 
qi - 180' i{ v 0'-1 pq (7.4) 

(for four dimensional spacetime); so that, the compatibility 
conditions that must be satisfied by the Ll }k may be obtained 
by substituting (7.4) into the right-hand side of(7.3). If the 
structures are compatible, the unique symmetric linear con
nection which preserves nullity of vectors is given by 

r> =Kjk +5 [§i/([§ jkql - [§Ijqk - [§Ikq) 

= ll}k -4(8jqk + 8"qk)' (7.5) 

It is clear from this relation that it is possible to have any 
number of distinct projective structures all compatible with 
the same conformal structure. 

If extensive investigation failed to reveal even a single 
class of particles governed by a geodesic directing field, then 
the EPS construction would fail to demonstrate the exis
tence of a unique Riemannian metric. Such a structure might 
still exist, but other means would have to be sought to estab
lish evidence for its existence. 

If one or more classes of particles governed by geodesic 
directing fields were found and if none of the projective 
structures were compatible with the conformal structure, 
the construction would fail as before. If two or more projec
tive structures were found which were compatible with the 
conformal structure, then not even a unique Weyl structure 
would exist let alone a unique Riemannian structure. There 
remains the case in which exactly one class of particles gov-
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emed by a geodesic directing field compatible with the con
formal structure is found. Then the projective path structure 
revealed by these particles and the conformal structure re
vealed by light propagation together determine a unique 
Weyl structure. As discussed by EPS, parallel transport 
along non-null curves is then well defined. Finally, the ab
sence of the second clock effect is then the necessary and 
sufficient condition for the existence of a unique Riemannian 
metric. 

In conclusion, the truth of the constructive axioms of 
EPS is epistemically decidable in a noncircular manner, and 
the metric structure derived from the conformal and projec
tive structures and their compatibility relation is therefore 
not even epistemologically conventional but constitutes an 
intrinsic feature of the spacetime manifold that is revealed 
through light propagation and free fall. 
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A mathematically rigorous definition of a global supermanifold is given. This forms an 
appropriate model for a global version of superspace, and a class of functions is defined which 
corresponds to superfields. This new construction is compared with several pre-existing 
definitions of supermanifold and graded manifold; it is shown to include all these definitions and 
to go beyond them, particularly in admitting the possibility of nontrivial topology in the 
anticommuting sector. Local differential geometry and potential applications to supergravity are 
considered. 

1. INTRODUCTION 

In the context of super symmetry Salam and Strathdee! 
have introduced the concept of "superspace," a space para
metrized by eight coordinates (x! ,x2 'X 3 ,x4 ,8! ,82 ,83 ,84 ) 

with the first four coordinates taking their values in the even 
part of a Grassman algebra and the second four in the odd 
part. Until now superspace has been used as a mathematical 
device for generating local structure. However, the question 
arises, do we actually "live" in superspace? More precisely, 
is supers pace a more appropriate model for the universe than 
the conventional four-dimensional space time? Such a ques
tion cannot immediately be answered, but, bearing in mind 
the importance of global topology in quantum field theory to 
monopoles, ins tan tons, anomalies, etc. (in both a Yang
Mills and a gravitational context), it seems natural to at
tempt to construct a global "supermanifold," with local co
ordinates of the kind described above (so that it is locally 
equivalent to the many local definitions of supers pace), mod
eled on the conventional definition of a differentiable mani
fold with real local coordinates. 

Such a construction, referred to as a G 00 supermani
fold, is described in this paper. The definition is a mathemat
ically rigorous one, and embraces the definitions of super
manifold and "graded manifold" given by several other 
authors in a manner made explicit in Sees. 3 and 4 of this 
paper. It is simpler than these definitions, but also much 
broader in scope, admitting a wider class of topologies, in
cluding a topologically interesting contribution from the 
"odd" part of the supermanifold, whereas all the other defi
nitions are essentially trivial in the 8 sector. Also, it allows 
for the case where the Grassman algebra is infinite dimen
sional. In applications to quantized superfields it is essential 
to use an infinite-dimensional algebra if one is to avoid plac
ing undesirable restrictions on Green's functions. 

Having constructed a G 00 supermanifold, it is possible 
to make local constructions such as tangent vectors very 
much as on an ordinary Coo manifold. The G 00 supermani
fold formalism seems to be an appropriate global formalism 
for the various local formulations of differential geometry on 
superspace given by Amowitt and Nath, Bedding, Downes
Martin and Taylor, Brink et al., Ogievetsky and Sokatchev, 
Siegel and Gates, Wess and Zumino,2 and other authors. 

As well as superspace, there are other objects one con
siders which have even and odd local coordinates, notably 
the local "super Lie group" obtained by exponentiating the 
graded algebra of super symmetry (cf. Salam and Strath
dee!). A G 00 supermanifold seems to be the appropriate glo
bal framework for this situation, with the vector field struc
ture allowing one to identify the infinitesimal algebra with 
the set ofleft invariant vector fields, and the exponential map 
becoming an integral curve exactly as in the classical case. 

The plan of the paper is to present in Sec. 2 a definition 
of differentiability of functions defined on a Grassman alge
bra, and various results of an analytical nature; Sec. 3 con
tains the definition of a G 00 supermanifold and a comparison 
with the supermanifolds of DeWiW and Batchelor4; in Sec. 4 
(with details in the appendix) the connection between G 00 

supermanifolds and the graded manifolds of Kostant5 (or the 
related supermanifold of Berezin and Leites6

) is analyzed; 
Sec. 5 contains a discussion of vector fields on supermani
folds and in Sec. 6 potential applications to supergravity are 
considered, and a comparison made with the work of Dell 
and Smolin. 7.8 Section 7 summarizes the paper and includes a 
table comparing the various definitions of supermanifolds 
discussed here. 

Throughout this paper all vector spaces, algebras, etc., 
are over the real field; extension to the complex field is rela
tively straightforward. 

2. REAL ANALYSIS EXTENDED TO GRASSMAN 
ALGEBRAS 

In this section classes of differentiable functions on 
Grassman algebras are defined; they are a key ingredient in 
the definition of a G 00 supermanifold. The definition is mod
eled as closely as possible on the usual definition of a C r 

function, but using the multiplicative structure of the Grass
man algebra rather than that of the real numbers; it agrees 
with the usual heuristic concept of superfield, and makes this 
concept more rigorous. 

First some definitions and results of an algebraic nature 
are required. Let L be a finite positive integer and B L denote 
the real Grassman algebra over RL. Employing Kostant's 
notation,' let ML denote the set of sequences 
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[JLIJL = (PI'JL2 ,···,f..lk)' 1 <JLI <JL2···JLk<L, 
JL; an integer for l<i<k j, 

Let n represent the empty sequence in M L' and (j) denote 
the sequence with just one elementj; then a basis of B L exists 
of the form [PI' IJLEML j with 

Pn = 1 (the unit of BL ) 

(2.1) 

and 

P(I)P(j) = - P(j)P(I) for 1 <i,j<L. 
A complete norm II II is now defined on B L as follows: 

given xEB L' with x = l:I'EML xl'PI' (where the xI' belong to R 
for all JL in M L ), 

let Ilxll: = I IXI'I· (2.2) 
J.tEML 

With this norm BL becomes a Banach space; it is easily 
shown that B L is a Banach algebra, i.e., 11111 = 1 and 
Ilab II <llall lib II for alla,b inBL" This algebraic structure of 
BL is crucial in much of the analysis which follows, and it is 
for this reason that the norm defined above is used rather 
than the usual Euclidean norm, which is an equivalent norm 
but does not make B L into a Banach algebra. B L is an exam
ple of a Z2 -graded commutative algebra which, again fol
lowing Kostant,5 is defined as follows: 

Definition 2.1: (a) A Z2 -graded vector space is a vector 
space B which is the direct sum of two subspaces Bo and B I . 

(b) A Z2 -graded algebra is a Zz -graded vector spaceB which 
is an algebra such that 1EBo,BoBo CBo,BoBI CBI ,BIBo 
C B I , and BIB I C Bo. (c) A Zz -graded algebra is graded 
commutative if ab = ( - l)pQba whenever a belongs to Bp 
and b belongs to B Q • 

Bo is called the even part of B, and BI the odd part; an 
element b of B is said to be homogeneous ifit belongs toBo or 
to B I . If b is homogeneous and nonzero, the degree of b is 
defined by I b I: = 0 if b belongs to Bo and I b I: = 1 if b belongs 
toBI' 

All the gradings which occur in this paper are Zz grad
ings, and the word "graded" may be taken to mean Zz grad
ed throughout. Statements which are made about homogen
eous elements can be extended to general elements by 
linearity. 

Definition 2.2: A graded leftB module is a graded vector 
space W which is also a left B module in the normal sense 
with Bo Wo C Wo,B I Wo C WI ,Bo WI C WI' and 
BI WI CWo· 

When one considers Green's functions of quantized su
perfields (see Sec. 6) it is desirable to consider an infinite
dimensional analog of B L' Let Boo be the vector space II of 
infinite sequences of real numbers (XI ,Xz , ... ) such that 
l:r~ I Ix; I < 00. With the usual II norm, i.e., 
II(x l ,Xz ,···)11: = l:t: I Ix; I ,Boo becomes a Banach space. 

A multiplication is now defined on Boo' under which 
Boo becomes a Banach algebra. To do this it is convenient to 
index the elements of each sequence with elements of 
Moo: = uN ~ 1M N' This involves setting up the following 
one-to-one correspondence between the positive integers 
and M oc : 1 +-+(1 ),2+-+(2),3+-+(1 ,2), etc., and in general r+-+JL 
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[where ris a positive integer andJL = (PI , ... ,f..lk) is an element 
of Moo] if r = !(21', + 21'2 + ... + 21"). The sequence 
(XI ,XZ,x3 , •.• ) is then written (x(l),x(Z),x(l.zp"')' GivenJL in 
Moo,definePI' to be the sequence in Boo withxl' = 1 and all 
other elements zero. Then an arbitrary element of B 00 may 
be expressed as a norm convergent sum in the following 
manner: 

(X(I),x(Z),X(I.ZP"·) = I xI'PI" 
I'EM, 

Multiplication on [PI' IJLEM oc J is defined by 

PnPI': =PI'Pn: = PI" for allJL in Moo ' 

(2.3) 

P(I)P(}): = - P(j)p(l) ' for all positive integers i,j, (2.4) 

and 

P(p,) "'P(p,): = PI" for all JL in Moo' 

The following proposition establishes that this multipli
cation can be extended by linearity and continuity to the 
whole of Boo' and that B oc is a Banach algebra under this 
multiplication. 

Proposition 2.3: Suppose a,b belong to B oc with 
a = l:I'EM, al'PI' ,b = l:I'EM, bl'PI' (where the al' and bl' are 
real numbers). Then, if ab: = l:I'EM. l:",M> al' bvPI'Pv, 
abEB oo and Ilab 11<llallllb II· Thus,B oc is a Banach 
algebra. 

Proof For each positive integer s let s(a,b) 

: = 11l:I'EM,l:VEM,al'bvP1IPvll· Thens(a,b)<llallllb II and 
thus [s(a,b)] is a monotonically increasing sequence which is 
bounded above, and so tends to a limit as s tends to infinity. 
ThusabEB oo and Ilabll =limHocs(a,b)<llallllbll. 0 

In the rest of the paper, except where indicated other
wise, L may be a finite positive integer or 00; m,n will always 
denote finite positive integers. 

Let B 'tn denote the set B'r,o xB 1,1' i.e., the Cartesian 
product ofm copies of the even part of BL and n copies of the 
odd part. A typical element of this set will be written 
(a l , ... ,am,bl , ... ,bn) = (a,b), or (c i '''''Cm + n) = (c). The 
norm on B 'r. n is defined by II(c)ll: = Ilc l II + ... 
+ Ilcm + n II, and the topology on B 'r,n is the topology in

duced by this norm (which is also the product topology). It is 
of course a Hausdorff topology and, in the the case where L 
is finite, is the usual topology on B 'r,n regarded as a 
2L - I (m + n )-dimensional vector space over the real num
bers. A crucial difference between the supermanifolds de
fined in this paper and those of Batchelor4 and DeWitt3 is 
that Batchelor and DeWitt both use a coarser, non-Haus
dorff topology on B 'r,n. 

Proposition 2.4: Suppose arE BL (r = 1, ... ,m + n) satis
fy l:;"~ I h;a; + l:; ~ I kpj + m = 0 for all (h,k) in B 'r,n. Then, 
(a) if 1 <i<m, a; = 0; (b) if 1 <j<n and L is finite, 
aj+ m = AP(I.Z"L)I where A is a real number; (c) if 1 < j<n 
and L = 00 ,aj + m = O. 

Proof (a) The result follows immediately on letting 
k = 0 and h = (1,0, ... ,0),(0,1,0, ... ,0), ... ,(0, ... ,0,1) in turn. (b) 
and (c) supposeaj+ m = l:IIEMlaj+ mPll (wheretheaj + mare 
real numbers). 

Putting h = O,kj = PiS) (1 <s<L ) and k/ = 0(/ *J) 
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shows that ~/lEMI af + mf3(s)f3/l = 0 for all s, 1 <s<L, and thus 
that af+ m = 0 if L = 00, or if L is finite and,u::j::(1,2, ... ,L). 
Hence, aj + m = Af3(1.2 ..... L) if L is finite, and a j + m = 0 if 
L = 00. 0 

The definition of a differentiable function is now given; 
this is of vital importance in the definition of a G 00 super
manifold. It is a simpler definition than Batchelor's,4 and 
more mathematically rigorous than DeWitt's.3 

Definition 2.5: Let Ube an open set in B 'tn and 
f U __ B L' Then, (a)fis said to be GOon Uiffis continuous on 
U. (b) f is said to be G I on U if there exist m + n functions 
GkfU--BL,k = 1, ... ,m + n and a function 1J:B'tn--BL 
such that, if (a,b) and (a + h,b + k)EU, 

f(a + h,b + k) = f(a,b) + f hi(GJ)(a,b) 
i= 1 

+ i k/Gj+mf)(a,b) + II(h,k)II1J(h,k) 
j= I 

(2.5) 
and 

111J(h,k)II--O as II(h,k)II--D· 
(It follows from proposition 2.4 that the "partial deriva
tives" Gk fmay not be unique if L is finite and m + I <k<n; 
it is shown later that there is a natural choice of Gk fin such 
cases.) (c) The definition of G P, where P is a finite positive 
integer, is made inductively.fis said to be G P on U iff is G I 

on U and it is possible to choose Gk f(l <k<m + n), which 
are G P - I on U. (d)fis said to be GOO on U iffis G P on U for 
any positive integer p. (e)fis said to be G W on U if, given any 
(p) in U, there exists a neighborhood Np of(p) such that, for 
all (q)ENp ,j(q) is equal to the sum of an absolutely conver
gent power series in (p - q) of this form: 

f(q) = ! ak •... k .. ",,(ql _PI)k, ... 
k. = O ... k", , " = 0 

(qm + n - Pm + n)km'" (with the ak,km ... in BL)' 
(2.6) 

(f) Let s be a finite positive integer and g: U--B ~ (i.e., the 
Cartesian product of s copies of B L); also let Pk denote the 
k th projection function [Le., Pk (c i , ••• ,cs ) = ck ]. Then, g is 
said to be G ron UifPk og is G ron Ufor k = 1, ... ,s. (rmay be 
a positive integer or 00 or cu.) 

The definition of a G r function bears an obvious resem
blance to the usual definition of a C r function (although the 
replacement of multiplication in the real numbers by multi
plication in the Grassman algebra means that it is in fact a 
much more restrictive definition, as is made clear below). 
The form of "differentiation" introduced is inspired by Sa
lam and Strathdee9 and seems to be effectively the same as 
that used by DeWitt3 in the case where L is finite; but it is 
difficult to compare the definitions directly because DeWitt 
does not use a norm on the Grassman algebra, and the infi
nite-dimensional algebra which he uses, being an algebra of 
formal power series, does not admit a Banach algebra struc
ture. After proposition 2.11, a detailed comparison of the 
classes of G 00 functions and differentiable functions (in the 
DeWitt sense) is made. 

In the rest of this paper attention is focused on G 00 
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functions. Many of the results can be generalized to G r func
tions, where r is a finite positive integer or cu, but G oc func
tions are physically the most useful class, corresponding as 
they do to a natural choice of superfield. 

A simple example of a G 00 function is 

fBZ2--BL (L>l), (fal,a2,bl>b2):=cala~blb2 (2.7) 

(with C some fixed element of BL •O); by differentiation "from 
first principles" one calculates that 

GI f(a l ,a2,bl ,b2) = ca~bl b2, 
G2 f(al ,a2 ,bl ,b2 ) = 2ca l a2bl b2, 
G3 f(al ,a2 ,bl ,b2) = cal a~b2' and 
G4f(al,a2,bl,b2) = -calaibl · 

In fact, any function which is a finite or absolutely con
vergent power series of the formf U __ B L (where U is open in 
B~,n), 

f(c) = ! ak,km'''C~' ... c~''':~, ak, .. k"""EBL , (2.8) 
kl···k". I ,,= 0 

is G 00 on U (and thus all G '" functions are GOO), but func
tions exist which are G 00 but not G W (as is evident from 
proposition 2.11). 

The two algebraic lemmas which now follow are used to 
prove the crucial proposition 2.8, which establishes that a 
G 00 function is also a C 00 function. 

Lemma 2.6: Let P be a finite positive integer and let 
feB ~,ny __ B L be of the form 

m + n 

f[(a(I»,(a(2», ... ,(a(p»] = L a~I/ ... a~;')ak.kl" (2.9) 
k, = I...k" = I 

where the ak,k" belongs to B L' Thenfbelongs to the space 
5f' [(B ~.ny,B L ] of continuous p-linear maps of (B ~,ny into 

B L • 

Prooffis easily seen to bep linear and it follows from 
the Banach algebra property of B L that 

Ilf[(a(I», ... ,(a(p»] II 
m +n 

<I l(a(I»II,··1 l(a(P»1 I L Ilak, ... k"II· 
k, = 1...k'J= 1 

(Note that this result is true whether L is finite or infinite.) 0 
The following projection maps (referred to by DeWitt 

as "body" and "soul", the former being more conventionally 
known as the augmentation map) are used in the next 
Lemma and frequently thereafter: 

E:BL --R,E( L a/lf3/l): = an (where the aILER), 
flEMI. 

E:B~·n __ Rm,E(a,b): = [E(al), ... ,E(am )], (2.10) 

s:BL --Bvs(a): = a - E(a)l, 

s(a,b): = [s(a] ), ... ,s(am ),s(bl ), ... ,s(bn)] . 

[Note that if b is an odd element of BL,E(b) = 0 and 
s(b) = b.] 

In the case where L is finite, B L =R Ell N, where N is the 
subspace of B L consisting of nilpotent elements; E is the pro
jection onto R, and s onto N. In the case where L = 00, the 
elements of s(B L) are not actually nilpotent, but very nearly 
so as the next Lemma shows. 
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Lemma 2.7: Let dEBL , and e = sed). Then, (a) if Lis 
finite, e is nilpotent (i.e, eq = 0 for some finite positive integer 
q); (b) if L = 00, there exist A., OER with 0 < 1 such that 
lIe'll <,.1.0', t = 1,2, .... 

Proof (a) If L is finite, eL + 1 = O. (b) Suppose L = 00, 

and that e = ~tLEM~ eJ3tL (where the etLER). Then, because 
~tLEM, ICtL I < 00, it is possible to choose a,bE s(B L) such that 
C = a + b, a = ~tLEM, aJ3tL (where N is some finite integer, 

and an = 0) and b = ~tLEM, b tL {3tL with ~tLEM, IbtL I = 8 < 1; 
i.e.,c = a + bwithaN + 1 = o and lib II =8< 1. Ifb = 0, the 
result follows immediately. Suppose b #0 (and thus N> I). 
Then 

IIch + N II = II(a + b )h+ Nil 

< rto (h :JllarIW+N-T 
<8

h rto (JllaIIT8N-r 

X (N + I) ... (N +h) 
(N - r + 1) ... (N - r + h) 

<8
h CI)1 N; k ) TtJJllaI\T8N-T 

=8
hCI)1 N;k )(Ila ll +8)N. 

Now let m be the integer such that ml(N + m)<8 
< [em +1)/(N + m +1)], and let 0 
= 8 (N + m +1)/(m +1); then, 0 < 0 < 1 and 

Ilch+NII<8m[ k~l (N+k)lk ]Oh-m(llall +8)N. 

Hence, if 

A. = max[ M I\
c2

11 ... o ' 0 2 ' , 

m+n 

then IIc' II <,.1.0 '. o 
The next proposition establishes that a G <X> function is 

also a C <X> function (regarding B 'J:.n and B L as Banach 
spaces) and gives the expression for the total derivative of a 
G '" function in terms of the partial derivatives Gk (k = 1, ... , 
m + n). The converse is certainly not true: it is easy to con
struct C <X> functions which are not G oc functions, such as 

(2.11) 

Propostion 2.8: If U is open in B 'J:.n andfEG '" (U), then 
fEC oc (U,B L)' the space of C 00 maps of U into B L' Also, 
regarding the pth total derivative off as an element of 
if [(B ,£,ny, BL ], 

[DP f(c)] [(1(1», (1(2», ... , (l(Pl)] 

m~n l~l) ... l<t')(Gk Gk , ... Gk , f)(c) , (2.12) Lip P P 

k, = l. .. kp = 1 

for all (c) in U, [(l (I», ... , (I (Pl)] in (B 'J:,ny. 

Proof Let (c), (c + h)EU. Then, sincefEG "'(U), 
m+n 

f(e + h) =f(e) + ~ hkGkf(e) + II(h)II1J(h) 
k=l 

[where II 1J(h) 11--->0 as lI(h)II--->o]. Thus,fis C 1 and 
m + n 

D 1 f(c)(I(ll) = ~ l~ll(Gk f)(c). 
k=l 

Proceeding by induction, suppose that fis CP and 

DP f(e')[(I(l», ... , (I(Pl)] 

m+n 

= ~ l~l ... I<t'l(Gk ... Gk f)(c') 
k I = l...k

p 
= I I p P 1 

for all (c') in U; then, 

DP fCc + h)[(I(ll), ... , (I(Pl)] = ~ l~l) ... I<t'l(Gk Gk ... Gk f)(e + h) 
k 1 = 1. .. k

p 
= lip P I' I 1 

m+n 

= DP f(c)[(I(ll), ... ,(I(P»] + ~ l~l) ... I<t')hk (G
k 

Gk ... Gk 
f)(c) 

k
1
=1. .. k

pf1
=1 I p p .... 1 p-ll P 1 

m+n 

+ lI(h)1I ~ l~l,) ... I~l1Jk,kp(h), 
k, = l. .. kp = 1 

where II1Jk,kp (h)II--->O as II(h)II--->o· Hence, DP fCc + h) = Dpf(e) + F(e)(h) + I\hll1J(h), where F(c)Eif [(B 'J:,ny + t,B
L 

] 

with 

Now it follows from the Banach algebra property of B L that 

Hence, il1J(h)II--->o as l\(h)II--->o. Thus, fis CP+l, F(c) = DP+l f(c), and the theorem is proved by induction. o 
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Corollary 2.9: 
Given (c)ElJ ,{.n, and q a finite positive integer, let 

(c)q: = [(c), (c), ... , (c)] (q terms). Then, (a) if (a,b), (a + h, 
b + k)EU, E(h) = 0, and L is finite, 

L 1 
f(a + h, b + k) = f(a,b) + I -Dqf(a,b)[(h,k)q] ; 

q~ 1 q! 
(2.13) 

(b) if (a,b) and (a,b + k)EU, 

n 1 
f(a,b + k) = f(a,b) + I -Dqf(a,b)[(O,k)F. (2.14) 

q~ 1 q! 

Proof An immediate consequence of Taylor's theorem 
in this form: 

p 1 
f(a + h, b + k) = f(a,b) + I -Dqf(a,b)[(h,k)q] 

q~ 1 q! 

+ (P~I)! DP+lf(a+8h,b+8k)[(h,ky+ l ] (2.15) 

(where 0.;;;8.;;; 1), together with the fact that (a) if L is finite, 
the product of L +1 (or more) nilpotent elements of BL is 
always zero and (b) for all values of L, the square of an odd 
element of B L is always zero. 0 

The fact that Taylor series in nilpotent elements always 
terminate has many uses; as far as nilpotent elements are 
concerned, the distinction between G wand G = disappears, 
and makes possible two kinds of "analytic continuation" of 
differentiable functions when L is finite, described in defini
tion 2.10 and proposition 2.11(c). It also allows one to speci
fy a natural choice of k th partial derivative when ambiguities 
arise. The first kind of continuation is now defined. 

Definition 2.10: 

Let L be finite, L;>n, let Ube open B ,{.n, and Vbe open 
in lRm with V = E(U). Definez:C = (V,BL)-+ (functionsofU 
into BL l by 

L 1 
z(f)(a l , ... , am' bl , .. ·,bn ): = I -. -, -.-, 

i\ =0 ... '-",=0 It···· l m· 

L 1 I -(DPf)(e,f)[(a-e,b- f))P 
p~o p! 

(2.16) 
I 

where aj denotes the unusualjth partial derivative. 
The definition allows one to extend any function in 

C = (V, B L) to an element of G '" (U), as is proved in the next 
proposition. The definition is motivated by the Taylor series 
expansion of J, which, in terms of partial derivatives, is 

+O(lIyIIP+ I), 

where x, x + YEVClR m. X and yare replaced by E(a) and 
s(a), respectively, and the nilpotence of s(a) is used. As well 
as establishing that z(f) is a G 00 continuation of the C 00 

function J, proposition 2.11 shows how a G = function may 
be uniquely continued. 

Proposition 2.11: Suppose L is finite. (a) If U is open in 
B '{.nandfEC = [E(U)], thenz(f)EG ""(U), Gjz(f) = z(aj f) 
(i = 1, ... , m) and a possible choice of Gj+ mz(f) is 
Gj + mz(f) = 0 (j = 1, ... , n). (b) z is an isomorphism of C oc 

[E(U),BL] onto its image. (c) Let Walso be open inB '{,n with 
UC WandE(U) = E(W), and let fEG oc(U). Then there ex
ists a unique f'EG oo(W) such that f'lu = J, i.e" I' is the 
unique continuation of fto W. (d) Let Vj:U-+BL' v/a,b) 
: = bj (j = 1" .. , n); also let v,,: = V"I"'V1£" where 
f.l = {j..tl ,"·,f.lk)EMn,f.l=l=fl, and let Vn: = 1. Then, given 
fEG 00 (U), there exist uniquely determinedf"E 
Coo [E( U), B L ] such thatf = l:"EM" v"z(f,,). (This will be re
ferred to as thezexpansion of f) Conversely, ifg:U-+BL and 
g = l:1.EM,,v,,Z(g,,), where theg" belong to Coo [E(U), BL ], 
thengbelongs to G oo(U). (Thez expansion is useful in defin
ing a natural choice of partial derivative Gj+ m ,j = 1, ... ,n). 

Outline of proof (a) This is proved essentially by "dif
ferentiation from first principles". (b) This follows directly 
from the properties of Taylor series. (c) Let (a,b)EW; choose 
(C,d)EU such that E(a,b) = E(c,d). 

Define 1': W-+BL by 
L 1 

f'(a,b); = I - [DP f(c,d)] [(a - c, b - dY] . (2.17) 
P~O p! 

This map is well defined because if (e, f) is another point in U 
such that E(a,b) = E(e, f), then 

L L 1 1 
= I I -- [Dp+qf(c,d)][(e - c, f - d)q(a - e, b - f)P] 

P ~ 0 P~ a p! q! 

=ptoptJ(P;q)I(P+q)!] [Dp+qf(c,d)] [(e-c, f-d)q(a-e,b- f)P] 

=.vtoqtJ(J1N!] [DNf(c,d)] [(e-c, f-d)q(a-e,b- f)N-q] 

= I _1_[D Nf(c,d)] [(a-c,b-d)N] [using symmetry properties of DNf(c,d)] 
N~O N! 

= f'(a,b). 

Direct calculation shows that f'EG oo(W). If 
L 1 

(a,b)EU,f'(a,b) = I - [DP f(a,b)] [(O,OY] f(a,b), 
P~O p! 
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and thus f'lu = f 
If f" is another element ofG OO(W) such thatf" I u = J, 

then (by Corollary 2.9) 

f"(a,b)= ± i.Dqf'(c,d) [(a-c,b-d)q] =/,(a,b) 
q~O q! 
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and thus I' = f", so that I' is unique. 
(d) Choose W = E -I [E( U)] n B Z'.n and, given 

fEG 00 (U), let I' be the unique element of G 00 (W) such that 
1'1 u = f [Such an I' exists by part (c) above.] Then, given 

n 1 
(a,b)EU,j(a,b) = L -DP l'(a,O)[(O,bY] 

P~ I p! 

Define p: G OO( U}----+C 00 [E( U), B L ] by [given 
gEG OO(U)] P(g)(XI ,. .. ,xm): = g'(x ll, ... ,xm 1) for all 
(XI , ... ,xm ) in E(U), whereg' is the continuation ofg to W. 
Then z[p(g)](a,b) = g'(a,O) and thus 

f(a,b) = L bj"z fp(Gj" I + m ... Gj", + m 1')] (a,b). 
ItEM" 

Now let 

for all Ii in Mn, where 1T L is the projection of B L onto the 
subspace spanned by {Pj" IIiEML , Ii ¥(1,2,3, ... ,L) J. Then 
f(a,b) = :lj"EM"bj"z(fj")(a,b), and finally f= :lj"EM"Vj"Z(fj")' 
where the fj" are uniquely determined by Eq. (2.18). The 
converse is easily proved. 0 

Although the preceding proposition is not valid when 
L = 00, indeed the z map is not defined in this case, a similar 
proposition, with entire functions instead of Goo and Coo, 
holds for all values of L; this may be proved using Lemma 
2.7. 

The result of proposition 2.11 (d) can be used to specify 
a natural choice of Gk in the cases where ambiguities arise, 
i.e., when L is finite and m + 1 <k<m + n. 

Let fEG OO(U)and f = :lj"EM" vj"z(fj")bethezexpansion 
of f Given an integer q with m + 1 <q<m + n, define 

[q](Vj"):=Vj"2",Vj",' if q=lil +m, 

[q](v,,): = (_l)s+I Vj"I", vj", I vj", 11",Vj",' if q = lis + m, 
(2.19) 

[q](Vj"): = 0, otherwise. 
Then a natural choice ofGk f, wherem +1<k<n + m, 

is 

Gk f: = L [k ](vj")z(J;,) . (2.20) 
j"EM" 

All future references to Gk will be to this particular Gk ; it is 
evident that Gk fEG"'(U) ifjEG OO(U). Although it is satis
factory to have eliminated the ambiguity in the Gk , it should 
be emphasized that the ambiguity was unimportant because 
any two possible choices of Gk would give the same result 
when substituted into an expression of the form (2.5). 

At this stage the definition of a G 00 function can be 
compared with DeWitt's definition of a differentiable func
tion3

• DeWitt works with the real part of a complex Grass
man algebra, rather than a real Grassman algebra, but this is 
not a significant difference. The topology DeWitt uses on 
B Z'.n (L finite) is a coarser topology than the usual topology, 
and is even non-Hausdorff. A subset U of B Z'.n is open in the 

1357 J. Math. Phys., Vol. 21, No.6, June 1980 

DeWitt topology if and only if U = E-I(V) for some Vopen 
in ]l{m. If U is open in B Z'.n with the DeWitt topology (and 
thus also open with the usual topology) and L is finite, the 
class of functions of U into B L defined by DeWitt as "differ
entiable" does in fact coincide with G OO(U) (so that it is the 
different topology on B Z'.n, rather than the use of a different 
class offunctions, which distinguishes a G 00 supermanifold 
from a DeWitt supermanifold). 

The infinite-dimensional algebra used by DeWitt is not 
Boo' but rather the algebra generated by a countably infinite 
number of odd generators, which will be denoted Woo . 
DeWitt effectively defines a differentiable function mapping 
an open set in W:·n (with the DeWitt topology) into Woo to 
be a function which can be expressed in terms of a z expan
sion (which now becomes a formal power series); this ap
proach avoids some of the difficulties that might be raised by 
the absence of a norm on Woo . 

Many of the usual properties of C 00 functions have di
rect analogies in the G 00 framework; but the G oc structure is 
richer in that it inherits a grading from the grading on B L • 

Proposition 2.12 contains the graded form of many of the 
classical properties of C 00 functions. 

Proposition 2.12: Let U be open in B Z'.n, f, gEG 00 (U), 
aEBL, and AElR. Then, (a)f + gEG ""(U) and Gk(f + g) 
= GJ + Gkg(k = 1, ... ,m + n). (bHfEG ""(U) and Gk(Af) 
= AGJ (k = 1, ... ,m + n). (c) If E, Q represent projection 
maps of BL onto the even and odd parts of BL, repectively, 
then Eofand Qofbelong to G ""(U). (d) G ""(U) is a graded 
vector space with grading defined by G 00 (U)o : 
= {flfEG OO(U),j(U)CBL.O J and 

G ""(U)I: = {flfEG ""(U),j(U)CBL.I J. 
(e) afEG ""(U) with G;(af) = aGJ (i = 1, ... ,m), and 
Gj + m (af) = ( - 1) la1aGj + m f (j = 1, ... ,n). (OfgEG ""(U) 
with G;(fg) = (GJ)g + fG;g(i= 1, ... ,m), and GJ+m(jg) 
= (Gj + J)g + ( - 1) IJIJGj + mg (j = l, ... ,n) (the graded 
Leibnitz property). Suppose also that V is open in B Z'"n" 
and h is a G "" function of Vinto B Z'.n. Let HI: = Ploh. Then 
(g) (chain rule)fohEG "" [h -I (U)nV], and 

m + n 

Gdfoh)(a)= :l (Gkhl)(a)(GJ)[h(a)] 
I~ 1 

for all aEh -1(U)nV, k = l, ... ,m' + n'. Finally suppose that 
I is open in]l{ and h 'EC ""(I,B Z'.n). Then, (h) (another chain 
rule)foh 'EC "" [h' -1(U)rJ,B Z'.n] and 

a m+n agk(t) 
-(joh ') = L -- (GJ)[g(t)], for t in 1. 
at k ~ 1 at 

Proof (a), (b), (e), (0, (g), and (h) may be proved very 
much as in the classical case; it is here that the Banach alge
bra property of BL is essential. (c) It is easily shown that Eo f 
and Qo fare G I with G;(Eo f) = Eo(G; f), 
G;(Qof) = QO(G; f) (i = 1, ... ,m) and Gj + m (Eof) 
= QO(GJ+ m f), GJ+ m (QOf) = EO(GJ+ m f) (j = l, ... ,n), 

and thus by induction Eof and Qof are G oc. 

(d) It follows from (a) and (b) that G ""(U) is a vector space. 
Also f = Eof + QOf, and EofEG "" (U)o, QOfEG "" (U) 1 • 

Thus, G ""(U) = G ""(U)o Ell G ""(U)I' 0 
This very long section concludes with the definition of a 
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useful subset of G 00 ( U). The definition appears a rather arbi
trary one at this stage, but is useful in comparing G 00 super
manifolds with the supermanifolds and graded manifolds of 
other authors, particularly in Sec. 4. 

Definition 2.13: Suppose U is open in B 'tn, and L is 
finite. The space C 00 [E( U)] of C 00 maps of €( U) into R may 
be identified with a subset of Coo [€( U),B L ] by the identifi
cation map 

i:C ao [€(U) ]_C ao [€(U),BL ],i(f)(p): = !(p)l, 
for all p in U. 

Define H OO(U):I!I fU-BL, there exists!" E C 00 [€(U)] 
such that! = "i."EM,zOiU;,)v,,). 

It follows from proposition 2.11 (d) that H 00 (U) is a sub
set of G 00 (U); clearly, there will always be many functions in 
G =(U) which are not inH OO(U), and this is one of the rea
sons why a G ao supermanifold is a broader concept than a 
Kostant graded manifold. 

3. DEFINITION OF A G 00 SUPERMANIFOLD 

Definition 3.1, which defines a G 00 supermanifold, is 
modeled on a standard definition of a C 00 manifold. 10 Just as 
an m-dimensional C 00 manifold looks like Rm locally and 
has local coordinates [XI (p), ... ,xm(p)] in Rm

, an (m,n)-di
mensional G 00 supermanifold over B L looks like B 'i.n local
ly and has local coordinates [u l (P), ... ,um(P), VI (P), ... ,vn(P)] 
in B 'i,n. As the definition uses the concept of the G ao func
tion, which is the natural mathematical form for a super
field, a G ao supermanifold is an ideal vehicle for superfields. 
Both the structure of a supermanifold, and the classes of 
functions which can be defined on one, depend crucially on 
the nature of the transition functions. It is here that the anal
ysis developed in the preceding section is used. 

Definition 3.1: Let Y be a Hausdorff topological space. 
(a) An (m,n) open chart on Yover BL is a pair (U,tP) with U 
an open subset of Yand tP a homeomorphism of U onto an 
open subset of B 'i,n, (b) An (m,n) G' structure on Yover BL 
is a collection 1 (Ua ,tPa)laEi1 ) of open charts on Ysuch that 
(i) Y = UaEA Ua , (ii) for each pair a, (3 in A, the mapping 
tPf3°tPa- 1 is a G' mapping of tPu (UaIlUf3) onto tPf3(UanUf3 ), 
(iii) the collection 1 (Ua,tPa)laEi1 ) is a maximal collection of 
open charts for which (i) and (ii) hold, [A collection of open 
charts satisfying (i) and (ii) is called an (m,n) G' subatlas on 
Yover BL ,] (c) An (m,n)-dimensional G' supermanifold 
over B 'i,n, is a Hausdorff topological space Y with an 
(m,n)G' structure on Yover BL , (d) Each Ua is called a 
coordinate neighborhood, and each tPa is a coordinate map. 
For each aEi1, m + n local coordinate functions are defined 
by 

U i : = Pi °tPa' i = I,,,.,m, 

(3, I) 

In the rest of this paper attention is confined to the case 
where r = 00. It will be useful in Sec. 4 to define an H 00 

supermanifold over B L (where L is finite) by repeating defi
nition 3.1 with H ao everywhere replacing G '. An H 00 super-
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manifold can always be given a G ao structure and thus made 
into a G 00 supermanifold, but the converese is not true. 

Some examples of G 00 supermanifolds are now given: 
(a) B 'i,n is itself an (m,n )-dimensional G 00 supermanifold 
over BL. (b) Any open subset of B 'i,n is an (m,n)-dimension
al Goo supermanifold. (c) The two-dimensional torus T2 can 
be given the structure of a (1, I)-dimensional G ao supermani
fold over BIas follows: 

Let 11,(3 ) be a basis of BI with (3 Z = O. T Z is defined to 
be 1zIR, where 12 is the unit square 1 (x,y) I (x,Y)ERZ, O';;x';; I, 
O.;;y.;; I) with the usual topology, and R is the usual equiv
alence relation, defined by (x,y)~(x',y') if and only if one of 
the following is true: 

(i) (x,y) = (x',y'), 

(ii) X = x' and Iy - y' I = I, 

(iii) y = y' and Ix - x'i = 1, 

(iv) Ix - x'i = Iy - y'l = 1. 

Let (x,y) denote the equivalence class of (x,y). 

A collection of (1,1) open charts 
1 (Ua,tPa)laEII,2,3,4}) on T Z over BI is defined by 

UI = l(x,y)l! <x<~.! <y< ~}, 

tPl [( x,y )] = (xl,y(3) , 

U2 = l(x,y)l! <x< ~,y< ~} 

ul(x,y)l! <x< ~,y> ~}, 

tP2 [(x,y)] = (xl,y(3), when y<~, 

tP2 [(x,y)] = [xl,(y -1)(3], when y>~, 

U3 = l(x,y)lx< ~,! <y< ~ Ju!(x,y)lx>~, 

! <y < ~ J ' 

tP3 [( x,y )] = (x 1 ,y(3 ), when x < ~, 

tP3[(x,y)]=[(x-I)I,y(3], whenx>~, 

U4 = !(x,y)lx< ~,y< ~ Ju!(x,y)lx< ~,y> ~ J 

ul(x,y)lx> ~,y< ~ Jul(x,y)lx> ~,y> ~ J, 

tP4 [(x,y)] = (xl,y(3), when x< ~ 
and y< ~, 

tP4 [( x,y )] = [xl,(y - 1)13], when x < ~ 
and y> ~, 

tP4 [(x,y)] = [(x -1)l,y(3], when x> ~ 
and y< ~, 

tP4 [( x,y)] = [(x -1) I,(y -1)(3 ], 

(3.2) 

when x> ~ and y>~. 

This collection of open charts is a (l,I)G 00 subatlas on T2 
over B I . A typical transition function is 

Alice Rogers 1358 



                                                                                                                                    

tP2°tP,-':I(A 1,,u{3)I! <..1.< ~d <,u< ~ Jul(A 1,,u{3)I! <..1.< ~d <,u< ~ J 

- 1(..1. 1,,u{3)I! <..1.< ~d <,u< ~ Jul(A 1,,u{3) I !<A<~, - ~ <,u< - ! J, 

tP2 0tP,-'(a,b) = (a,b), when (a,b)EI(A 1,,u{3)I! <..1.< ~d <,u< ~ J, 
tP2 °tP,-'(a,b) = (a,b - {3), when (a,b )E!(A 1,,u{3) I ! <A < ~ d <,u < ~ J . 

This function is evidently Goo. The subatlas can be extended 
to form a G 00 structure on T2, which then becomes a (1, 1)
dimensional G 00 supermanifold over B, . 

This last example shows that a G 00 supermanifold can 
be contructed which both is compact and involves patching 
in the anticommuting sector. In contrast, neither of these is 
possible for a "differentiable supermanifold" as defined by 
DeWitt. 3 His definition may be summarized as follows (in 
the notation of this paper): Given a set M, (a) an (m,n) chart 
onM over BL (L finite) or Woo isa pair (U,tP) with U a subset 
of M and tP an injective mapping of U into an open set (in the 
DeWitt topology) in B z·n (or W:·n

); (b) an (m,n) DeWitt 
differentiable structure on Mover B L (or Woo ) is a collection 
I (Ua,tPa)laEA J of(m,n) charts onM over BL (or Woo ) such 
that 

(i) u Ua =M, 
aEA 

(ii) 't/a,{3EA, tPa °tPi ' is differentiable (in the sense de-
fined by DeWitt), 
(iii) the collection of charts is a maximal collection satisfy
ing (i) and (ii). 
(c) an (m,n)-dimensional DeWitt supermanifoldM over BL 
(or W", ) is a set M together with an (m,n) DeWitt differen
tiable structure on Mover B L (or Woo), 

A DeWitt supermanifold Mover BL , whereL is finite, 
is also a Coo manifold [of dimension 2L(m + n)] and the to
pology of M is defined by DeWitt to be the topology of M qua 
C 00 manifold. The crucial difference between the definitions 
of a DeWitt supermanifold and a G 00 supermanifold is the 
different topology used on B z·n. Because DeWitt's topology 
is coarser, any (m,n)-dimensional DeWitt supermanifold 
can always be given an (m,n)G 00 structure, but the converse 
is not true-there are G 00 supermanifolds (such as the torus 
example above) which cannot be given a DeWitt differentia
ble structure. It is a consequence of proposition 3.4 that any 
(m,n)-dimensional DeWitt supermanifold is noncompact 
and contractible to an m-dimensional C 00 manifold, but this 
is certainly not the case with the torus example. 

Because Woo is not a Banach space, a DeWitt super
manifold over W is not a C 00 manifold; the topology of 
such a supermanifold is not defined by DeWitt. It is possible 
to define various topologies on Woo' such as the non-Haus
dorfftopology of DeWitt, or the standard topologies on the 
ring C[[X]] offormal power series,lI and then define the to
pology of the supermanifold to be the topology it inherits 
from Woo' The disadvantage of this approach, as opposed to 
that taken in the present paper using Boo' is that Woo is not a 
Banach algebra, and thus any notion of differentiation on 
w:·n must be much more involved than that of definition 
2.5. 

DeWitt makes the interesting observation that with ev
ery (m,n)-dimensional DeWitt supermanifoldM one can as
sociate an m-dimensional C 00 manifold which he calls "the 
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body of M". His construction (which resembles Batchelor's 
construction of the underlying manifold of a Batchelor su
permanifold4

) is essentially to define on M the equivalence 
relationSas follows: Suppose I (Ua ,tPa)laEA J is the DeWitt 
differentiable structure on M. Then, given x,y in M, x-y if 
any only if there exist a,{3 in A such that x belongs to Ua, Y 
belongs to Up, and 

tP,- l{€ - 1 [€ ° tPa (x)]nB z,n} 

= tPP- l{€ - 1 [€ ° tPp(x)]nB z·n}. (3.3) 

M B' the body of M, is then defined to be M IS. Given x in M, 
let x denote the equivalence class of x. The Coo structure on 
MB is I (Ua'¢a)laEA 'j, where 

Ua: = (XIXEUa J and ¢a(X): = € ° tPa(x). (3.4) 

DeWitt proves that, ifxEUanUp, 

tPa- l{€ - '[ € ° tPa (x)]nB z,n} 

= tPP- l{€ - '[ € ° tPp(x)]nB;:-n}. 

Thus, ¢ a is well defined because if x - y and x belongs to U a' 

theny belongs to tPa- l{€ - '[ € ° tPa(x)]nB z,n}. Thus, y be
longs to Ua and € ° tPa(Y) = € ° tPa(x). [This argument also 
shows that S can be more simply expressed by x - y if and 
only if there exists a in A such that x andy belong to Ua and 
€ ° tPa(x) = € ° tPa(Y)·] 

A similar process applied to an (m,n)-dimensional G 00 

supermanifold also yields an m-dimensional C 00 manifold; 
but an important difference between a G 00 supermanifold 
and a DeWitt supermanifold is that a DeWitt supermanifold 
always has the structure of a vector bundle over its body as is 
proved in proposition 3.4 while there exist G 00 supermani
folds (such as the torus example above) where this is not the 
case. As a result, a DeWitt supermanifold, despite being a 
2L - 1 (m + n)-dimensional topological manifold, is topo
logically little more interesting than its body which is an m
dimensional manifold; a much less restricted class of to polo
gies is possible for G 00 supermanifolds. 

Proposition 3.2: If M is an (m,n)-dimensional DeWitt 
supermanifold over B L' the triple (M,1T,M IS) (where Sis the 
equivalence relation defined above and 1T is the natural pro
jection map from M onto M IS) can be given the structure of 
a [2L 

- '(m + n) - m] -dimensional vector bundle. 
Outline of proof It can be shown that 

1T -'(X) = tPa-' {€-' [€ ° tPa (x)]nB z·n}. Let 

(l,y, ,00"Y2' I _, ) be a basis of BL •O and (8, ,82 ,00.,82 / ,) be a 
fi h '(;:'\ R 2' '(m+nl-mb basis of B L.' . De nd x: 1T - X J- y 

hX(tP,;I{€[p, ° tPa(x)] I + :'::: bLkYk,.oo,+€[Pm+n0tPa(x)]1 

h", is evidently a homeomorphism; also, it is easily proved 
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that 1T ~ 1( U
a

) is homeomorphic to U
a 

X R 2L - '(m + n) ~ m for 

all aEA; and that the necessary continuity conditions are 
satisfied. 0 

Another definition of a supermanifold is given by Bat
chelor. 4 Her definition again superficially resembles that of a 
G '" supermanifold, and of a DeWitt supermanifold, over B L 

where L is finite, but differs crucially (a) in that the!/Ja are 
required to be homeomorphisms of open subsets Ua of the 
supermanifold onto !/Ja(Ua), where !/Ja(Ua) is open in B't·n 
with the non-Hausdorff DeWitt topology (as in DeWitt's 
definition), and the topology on !/JAUa) is the restriction to 
!/Ja(Ua) of the DeWitt topology on B't·n (whereas DeWitt 
uses the usual topology); also, (b) in that the transition func
tions!/Ja O!/JfJ- 1 are required to be "smooth" in a sense which 
is defined by a rather involved process that appears to be 
equivalent to requiring them to be H 00. It is possible to de
fine a finer topology on a Batchelor supermanifold S by 
specifying a subset U of Sto be open if and only if!/Ja(UnUa ) 

is open in B 't,n (with the usual topology) for all a in A. A 
Batchelor supermanifold with this topology is evidently 
both a DeWitt differentiable supermanifold and an H 00 su
permanifold; the rather restricted definition of smooth used 
by Batchelor is motivated by her comparison with the grad
ed manifolds of Kostant,s which is discussed in Sec. 4 of the 
present paper. (Batchelor observes that a less restricted defi
nition is possible, which appears to be equivalent to requiring 
the function to be Goo, so that her alternative definition is 
equivalent to DeWitt's. Future references to Batchelor su
permanifolds will be to the more restricted definition.) 

Because of the coarser topology used on B 't,n by 
DeWitt and Batchelor, and the more restricted definition of 
smooth used by Batchelor, the class of G 00 supermanifolds is 
a wider class than either of these other two classes, and em
braces both of them. In the next section it is shown that the 
graded manifold formalism of Kostant5 may also be sub
sumed withing the G '" supermanifold formalism. 

4. GRADED MANIFOLDS AND Goo SUPERMANIFOLDS 

The definition of a graded manifold given by Kostant5
, 

and the related definition of supermanifold given indepen
dently by Berezin and Leites,6 at first sight bears little resem
blance to the definition of a G 00 supermanifold. However, it 
will be shown that there is a connection. 

An ordinary C 00 manifold X has defined on it the sheaf 
of commutative algebras Coo [i.e., with each U open in X, one 
associates the commutative algebra C "" (U)]; a graded mani
fold of dimension (m,n) is defined by Kostane to be a pair 
(X,A ) whereX an m-dimensional C 00 manifold and A a sheaf 
of graded commutative algebras over X with specified prop
erties-briefly, X has a covering of open sets X = Ua<=A Ua 

such that A (U,,)=C ""(Ua) Ii!) Bn for all a in A. Thus, this 
definition extends the definition of an ordinary manifold by 
extending the properties of the algebra C ""(X) rather than 
the properties of the point set X itself. 

The set of graded manifolds of dimension (m,n) can be 
identified with a subset of the set of (m,n )-dimensional G 00 

supermanifolds over B L (where L is a fixed finite integer not 
less than n) in the following sense: Given an (m,n)-dimen-
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sional Kostant graded manifold (X,A ), it is possible to con
struct an (m,n)-dimensional G 00 supermanifold Yover BL 
(which is in fact an H "" supermanifold) such that (a) 
YB = X, and (b) the sheaf A is isomorphic to the sheaf 
H"" 0 1T~ I (where 1T is the projection map from Yonto Yo, 
and, given Vopen in Y, 

H "'(V):IIif:V-BL,Jo !/Ja~ IEH '" [!/J,,(VnU,,) ]'\faEA j). 
(4.1) 

The construction is described in detail in the Appendix. 
It should be compared to the interesting work of Batchelor,4 
who proves that the category of Batchelor supermanifold 
(briefly described in Sec. 3 of the present paper) is equivalent 
to the category of Kostant graded manifold. Batchelor'S 
work seems thus to implicity contain the construction given 
in the Appendix, but the approach taken here is somewhat 
simpler and more direct than Batchelor's and may readily be 
used when assessing the suitability of the graded manifold 
formalism for applications to supersymmetry (see Sec. 6). 

Suppose Y(X,A) is the G 00 supermanifold constructed 
from a Kostant graded manifold (X,A). Then, Y(X,A) is a 
restricted type of G 00 supermanifold in two senses: It has a 

subatlas I (U",!/J,,)laExl (a) with all transition functions 
H "", not merely Goo, and (b) with all the sets!/J" (Va), a in X, 
open subsets of B 't,n in the DeWitt topology, not merely in 
the usualtopology. Thus, Y (X,A ) has more limited topologi
cal possibilities than an arbitrary G 00 supermanifold. This is 
consistent with Kostant's proof that the de Rham cohomo
logy of (X,A ) is isomorphic to the Cech cohomology 

5. VECTOR FIELDS ON A G 00 SUPERMANIFOLD 

Having constructed a G '" supermanifold, one can build 
on it local structure very much as on a C '" manifold. As an 
example, vector fields are considered in this section. Just as a 
vector field on an m-dimensional C'" manifold can be ex
pressed locally as ~7'~ I /'(x)(alax j ), where the/, are C "" 
functions, a vector field on an (m,n)-dimensional G '" super
manifold can be expressed locally as ~7'~ I /,(u,v)(alauJ 
+ ~]~ I 1m +lu,v)(alav), where the/, and/m +j are G 00 

functions. It is here that the formalism ties in with the local 
formulation of differential geometry on superspace. 2 

Suppose that Yis an (m,n )-dimensional G 00 supermani
fold with atlas I (Ua ,!/Ja)laEA I and subatlas I (Ua ,!/J,,)laEx I 
(with of course XCA ). If U is an open set in Y, then a set of 
functions of Uinto BL denoted G ""(U) may be defined [cor
responding to the definition of COO (V) when V is an open 
subset of a Coo manifold]. 

- Definition 5.1: (a) Given U an open subset of Y, 

G "'(u): = I/lfU-BL , 

with 

(5,1) 

(b) Given p belonging to Y, G "'(p): = I II there exists an 
open neighborhood N of p such that/EG ""(N) I. (5.2) 

Exactly as in the classical case, a sufficient condition for 
Ito belong to G "'(V) is that/ o !/J;; I belong to 
G '" [!/J,,(VnUa)] for all a in the subatlas index set X. If Vis 
an open subset of a COO manifold, C 00 (V) is a commutative 
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algebra; the analogous result for a G "" supermanifold is as 
follows. 

Proposition 5.2: Given Uopenin Y,(a)G oo(U)isagrad
ed commutative algebra over R, with 

G oo(U)o: = I fifEG "'(U),f(U)CBL,o J , 

G oo(U)I: = I fifEG oo(U),f(U)CBL,1 J ' (5,3) 

(b) G 00 (U) is a graded left B L module. 
Outline of proof The results follow directly from propo-

sition 2,12. 0 
The algebras G oo(U) are the equivalent in the G oc su

permanifold formalism of the algebras A (U) in the Kostant 
graded manifold formalism, 5 of the algebras M 00 (U, B L ) of 
smooth functions in the Batchelor supermanifold formal
ism, and of the algebras F (U) of differentiable functions in 
the DeWitt supermanifold formalism. Only the algebras 
G OC(U)andF(U) havea graded leftBL -modules structure as 
well as a graded algebra structure. 

A G 00 function is the natural form for a superfield, as is 
explained in the next section; Taylor's theorem (corollary 
2.9) leads easily to the conventional superfield expansion in 
powers of O. 

Let End [G oo(U)] denote the set of vector space endo
morphisms ofG oo(U), Then, End [G oo(U)] is a graded alge
bra (over R), with an element a of End G "'(U) belonging to 
End [G OO(U)]o if la(f)1 = I fl for all homogeneousfin 
G OC(U), and belonging to End [G oo(U)] I if la(f) I = If I 
+ I (mod 2), 

A vector field on an open subset V of a C "" manifold 
may be defined as a derivation ofC oo(V). Motivated by this, 
and Kostant's use of derivations of the graded algebras 
A (U), 5 the natural definition of a vector field on an open set 
U in Yis a derivation of G "'(U), with an extra condition 
relating to the left B L -module structure of G 00 (U )(for which 
there is no analog in the C 00 or graded manifold structures). 

Definition 5,3: Let Ube open in Y. A uector field on Uis 
an element X of End [G OO(U)] such that 

(a) X(fg) = (Xf)g + (_l)lfl!X~g, 
for all J, g in G oo(U) , 

(b) X(af) = (_l)lx~lalaXf, 
for all f in G oo(U), a in BL . (5.4) 

The set of vector fields on U is denoted D I( U). 
As is to be expected, the vector fields defined here give 

zero when they act on a constan t map. D I ( U) is both a grad
ed left B L module and a graded Lie algebra (over the real 
numbers). These two structures interplay in a manner which 
givesD I(U) the structure ofa "graded Lie leftBL module", 
defined as follows: 

Definition 5.4: A graded Lie left B L module is a graded 
Lie algebra W(over the real numbers) which is also a graded 
left B L module such that 

[aXI ,x2] = a [XI ,x2]' for all a in Bv X I ,x2 in W. 
(5.5) 

Proposition 5.5: D I(U) is a graded Lie left BL module, 
with bracket operation defined by 

[XI ,x2]: = X IX 2 - ( - 1)lx.lIX2IX2XI . (5.6) 
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Proof Let the grading on D I(U) be defined by 

D I(U)p: = D I(U)nEnd[G OO(U)]p' for p = 0,1. 

It is a standard result that, with the above bracket operation 
and grading, D I(U) forms a graded Lie algebra (see Kos
tant5

). Let X belong to D I(U) and a belong to B L • Then, 

aX(fg) = a(Xf)g + (_I)IXllflajXg 

= (aXf)g + (_l)<lxl + la'),f1faXg, 

for all J, g in G "'(U) . 

Also, aX (bg) = (_I)(IXI + iallbaXg, for allg in G =(U), bin 
BL. Thus,aXbelongstoD I(U)and laX 1= lal + IX I; hence, 
D I(U) is a graded left BL module. Finally, 

[aXI ,x2] = aXIX 2
f - (_1) Iax,llx,IX2aXI f 

= aX IX
2 

f - (_I)lux,llx,1 + lallx,IaX2XI f 

=a[XI ,X2 ]J, for allfin GOO(U). 

Thus, D I(U) is a graded Lie left BL module. o 
Coordinate derivatives can be defined on a G 00 super

manifold in the same way as on a C 00 manifold. 
Definition 5.6: Let (U,I/J) be a chart on Y. Define, for 

i= 1,oo.,m, 

~: G oo(U)-lfunctions of U into BL J ' 
aU i 

af:= [Gi(fol/J-I)]ol/J for allfin Goo(U); (5.7) 
aU i 

Also, forj = 1,oo.,n, 

~ : G OO(U)-I functions of U into BL J ' 
au) 

(5.8) 

The next two propositions contain useful and important 
properties of the a/au; and a/au). These correspond closely 
to the properties of coordinate derivatives on C 00 manifolds, 
and to theorem 2.8 of Kostant (Ref. 5, p. 197) which estab
lishes that, given a graded manifold (X,A ) of dimension 
(m,n), the set of derivations of each algebra A (U) is a free 
A (U) module with a basis consisting of m even and n odd 
elements. 

PropOSition 5.7: a/au; belongs to D I(U)o for 
i = 1,oo.,m, and a/au) belongs to D I(U)I forj = 1,oo.,n. 

Proof LetJ,g belong to G ""( U). Then, af /au; 0 I/J-I 

= Gi(f° I/J-I), which belongs to G 00 [I/J(U)]. Thus 
a f /aU;EG oo(U). Similarly, a f /aU)EG oo(U). It follows 
from proposition 2.12 that a /au; and a/au) belong to 
End [G oo(U)]. Supposefbelongs to G OO(U)p' wherep = 0 
or 1. Then,fo I/J-I belongs to G 00 [1/J(U)]p and 
G;(fo I/J -I) belongs to G 00 [1/J(U)]p for i = 1,oo.,m, 

G)+ m (fo I/J -I) belongs to G 00 [1/J(U)]p + I(mod 2) for 
j = 1,oo.,n. Hence, laf /au; 1= If I, i = 1,oo.,m and 
laf /au) I = If I +1 (mod 2),j = 1,oo.,n. Thus, a/au; belongs 
to End [G OO(U)]o and a/au) belongs to End [G OO(U)L. 
Suppose a belongs to B L' Then, by Proposition 2. 12(e), 
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and similarly 

aaf = (_ 1)la11 a;av)1 af. 

a~ a~ 
Finally, by proposition 2.12 (f), 

a(fg) = G
i 
[(fa t/'-J)(g ° t/'-I)] ° t/' 

aUi 
= ([Gi(f° t/'-I)](g ° t/'-I) 

+ (f0 t/' - 1)[ Gi(g0t/' - I)] j 0t/' 

(5.9) 

(5.10) 

= af g + (_l)lalau,llflf ag . (5.11) 
aUi aUi 

Thus, alau i belongs to D I(U). It can be shown in a similar 
manner that alavj belongs to D I(U). 0 

Having established that coordinate derivatives are vec
tor fields, it can be shown that they form a basis for D I(U) 
[regarded as a free left G '" (U) module], in complete analogy 
with the classical case. 

Proposition 5.8: (a)D I(U) is a graded left G "'(U) mod
ule. (b) If (U,t/') is a coordiante chart on Y, D I(U) is a free 
left G "'(U) module with basis 
{(alau;)li= 1, ... ,mju{(alavj )lj= 1, ... ,nj. 

Outline of proof (a) Givenfin G OO(U), X in D I(U), 
define 

fX:G"'(U~{functions of U into BLj 

by 

fX(g): = jXg for all g in G "'(U). (5.12) 

It can be verified by straightforward calculation thatf Xbe
longs toD I(U) and If XI = If I + IXI. Thus,DI(U)isa 
graded left G "'(U) module. (b) A straightforward extension 
of the proof of the classical caselO establishes the result. 0 

Tangent vectors can be defined on a G 00 supermanifold 
exactly as on a C '" manifold. 

Definition 5.9: Letp belong to YandXbelongtoD 1(Y). 
Define 

Xp : G "'(U)-BL' Xpf: = Xf(p), for all fin G "'(p). 
(5.13) 

The set (Xp IXED I(Y) j is called the tangent moduleatp and 
denoted Yp. 

It is an easy consequence of proposition 5.8 that Yp is a 
free graded left B L module with basis 

where the a lau i and alavj are defined with respect to any 
coordinate chart containingp. 

Suppose that Z is an H '" supermanifold and that U is an 
open subset of Z. It is easily seen that the set of derivations of 
H OO(U) is a graded left H oo(U) module [free, with basis 
{(alaui)li= 1, ... ,m}u{(a/avj )lj= 1, ... ,nj in the case 
where (U,t/') is an H 00 open chart], and also a graded Lie 
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algebra (but not a graded left B L module). This should be 
compared with Kostant's resule that [given (X,A ) an (m,n)
dimensional graded manifold, U open in X, and Der( U) 
: = {derivations of A (U)ll Der(U) is a graded left A (U) 
module (free in the case where U is an odd and even coordi
nate neighborhood) and a graded Lie algebra. Such a simi
larity is to be expected in the light of the results of Sec. 4. 

In view of the structure of vector fields on G 00 super
manifolds, it seems clear that if one defines a super Lie group 
to be a group G which is also a G 00 supermanifold with group 
operations which are Goo, then the set ofleft invariant vector 
fields will be a free graded Lie left B L module of dimension 
(m,n); and that conversely given any free graded Lie left BL 
moduleg, of dimension (m,n), there will exist a nonempty set 
of (locally isomorphic) super Lie groups of dimension (m,n) 
each of whose set of left invariant vector fields is isomorphic 
to the given module g. An example of this is the group ob
tained from the (4,4)-dimensional graded supersymmetry al
gebra with generators {PI' ,Sa j by exponentiation using the 
Hausdorff formula. There may be other, locally isomorphic 
but globally nonisomorphic, super Lie groups each of whose 
set ofleft invariant vector fields is isomorphic to this algebra. 

In this section attention has been concentrated on vec
tor fields. It is clear that many other constructions which are 
conventionally made on C '" manifolds, such as forms, can 
also be made on G 00 supermanifolds. 

6. POTENTIAL APPLICATIONS TO SUPERGRAVITY 

The definition of a G 00 supermanifold was motivated by 
the definition of supers pace given by Salam and Strathdee l 

and subsequently taken up by many authors. An obvious 
global definition of superspace, locally equivalent to the lo
cal definition of Salam and Strathdee, is to define superspace 
to be a (4,4)-dimensional G 00 supermanifold. Local coordi
nates will then be of the form (XI' X 2 ,X3 ,X4 , 8 1 ,82 ,83 ,84 ,), 

In curved superspace, as opposed to the homogeneous super
space of rigid supersymmetry, the 8 's are anticommuting 
coordinates but not Lorentz spinors. The action of the Lo
rentz group is defined on the tangent module at each point, 
and it is the odd part of each tangent vector which is a spinor. 

In the heuristic local formalism, a superfield is defined 
as a function cP mapping supers pace into the even part of the 
Grassman algebra (or sometimes simply into the Grassman 
algebra) with 

CP(X I ,X2 ,X3 ,x4 ,81 ,82 ,83 ,84 ) = I <P4(X I ,X2 ,X3 ,x4 )8/l , 

J.lEM4 

(6.1) 

where implicitly the <PI' (x) are differentiable functions in 
some unspecified sense, and are required to reduce to ordi
nary fields when restricted to the "body" of superspace. 

Corresponding to the global definition of superspace as 
a (4,4)-dimensional G '" supermanifold Y, it is natural to 
define a superfield to be an element ofG oo(Y)o [or simply of 
G "'(Y)]. Let cP be a superfield on Yand (U,t/') be an open 
chart on Y. Then, cp0t/' -I is G 00 on t/'( U) and the z expansion 
of cpot/' - I (cf. Proposition 2.11), 
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TABLE L Global definitions of supermanifold. 

Nature Possible 
Type of Topology Transition of values Equivalent Contained 
definition onBLm,n functions "superfield" ofL Topology to in 

Graded Manifold 
manifold + 

(A) (Kostant, sheaf (HOO) Hoo 
Berezin (or bundle) 
and Leites) 
Supermanifold Set 

(B) (Batchelor) with Coarse Hoo Hoc 
atlas 

Super Manifold 
(C) bundle + (HOO) Goo 

(Smolin) vector 
bundle 

Supermanifold Set 
(D) (DeWitt) with Coarse GOO Goo 

atlas 

G' Set 
(E) Supermanifold with Fine GX Goo 

atlas 

<PO¢-l = I V/,z(f!') (6.2) 
fJ. EM4 

(where the!" belong to C oc [E 0 ¢(U), B L]), is the equivalent 
of the usual superfield expansion (6.1). There is an apparent 
inconsistency in the expansion (6.1): The superfield is re
quired to be infinitely differentiable in the even part but ana
lytic in the odd part, and it is not evident that this property 
will be preserved under supersymmetry trnasformations 
which mix up the odd and even parts. However, as this "mix
ing up" only involves nilpotent elements, and Taylor's theo
rem (corrollary 2.9) shows that the distinction between infi
nitely differentiable and analytic disappears for nilpotent 
elements, there is in fact no inconsistency. 

In most work on superspace the dimension of the 
Grassman algebra used is unspecified; clearly, L must be at 
least as great as the odd dimension n if the superfield expan
sion is not to have trivial terms. If L is finite, then no product 

N II <Pi(X(I\ 9(1) , 

i~ I 

where the <Pi are superfields with 

can contain terms with more than L factors"'. (X(l) with 
o/',JlI 

none of the f-l i equal to n. This would seem to place an unde-
sirable restriction on N-point Green's functions, which can 
only be lifted by using an infinite-dimensional "Grassman" 
algebra such as Boo' 

It is evident that the graded manifold formalism (or the 
equivalent supermanifold formalisms such as that developed 
by Batchelor4 or by the author in the Appendix to the pre
sent paper) is inappropriate for applications to supersym
metry because the coefficients ,pi,!, in the superfield expan
sion (6.1) would all be commuting, which excludes the 
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(B) (C),(D),(E) 

Finite Non-Hausdorff (A) (C),(D),(E) 

(E) 

Finite Noncompact 
or vector (E) 
infinite bundle over 

body 
Finite Hausdorff; 
or maybe 
infinite compact or 

noncompact 

possibility offermions. An alternative approach to applying 
Kostant's graded manifold formalism is given ina recent 
paper by Dell and Smolin.7 They make use of Batchelor's 
theorem12 that, given a Kostant graded manifold (X,A ), it is 
possible to find a vector bundle E over X such that 
[X,F(AE)] is isomorphic to (X,A )(whereF(AE) represents 
the sheaf of cross sections of the exterior bundleAE associat
ed with E), and consider the exterior bundle of the spin bun
dIe over a four-dimensional space-time. The approach neat
ly incorporates the spinorial character of the O-s but still has 
the drawback that anticommuting classical fields are 
excluded. 

In a second paper,8 again motivated by Batchelor's 
theorem, Smolin constructs a further vector bundle X from 
E (denoted sup E) which has cross sections which may be 
expanded locally in the form (6.1) (with,p!' even when the 
sequence f-l has an even number of elements and odd other
wise). This appears to be equivalent to regarding superspace 
as a G 00 supermanifold of the type which can be constructed 
from a Kostant graded manifold by the construction given in 
the Appendix, and a superfield as an even G 00 function. 

However, there is no obvious physical reason why su
perspace should be restricted to being a supermanifold of 
this type, or to being a DeWitt supermanifold. On the con
trary, it seems very desirable to consider the full class of G 00 

supermanifolds, admitting as it does the possibility of nontri
vial topology in the fermion sector. 

7. SUMMARY 

A mathematically rigorous definition of supermanifold 
has been developed in this paper. Local constructions on G 00 

supermanifolds agree with the local differential geometry on 
superspace of other authors.2 The definition of a G 00 super
manifold includes other "global" definitions of supermani
fold in a way which is described in detail in Sec. 4 and 5, and 
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is summarized in Table I. It also includes possibilities not 
allowed for in any other global formalism, particularly in 
making possible patching and nontrivial topology in the an
ticommuting sector. 

The G 00 supermanifold formalism can be applied natu
rally to superspace and supersymmetry. It shows that the 
heuristic formulation of superspace and superfields can be 
made rigorous, and how supers pace can be enabled to have a 
variety of global topologies. 
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APPENDIX 

Given a Kostant graded manifolds (X,A ), a G 00 super
manifold Yis constructed such that (a) YB = X; (b) the 
sheaf A is isomorphic to the sheaf H 00 OtT - I (c.f. Sec. 4, and 
Batchelor's proor that the category of Kostant graded mani
fold is equivalent to the category of Batchelor 
supermanifold). 

Using the notation and terminology of Kostant, let 
(X,A ) be an (m,n )-dimensional graded manifold, and L be an 
integer with n<.L < 00. Let uaEA Xa = X be an open cover
ing of Xby odd and even coordinate neighborhoods. For 
each aEA, let r f(i = 1, ... ,m) sj(j = 1, ... ,n) be odd and even 
coordinates on X a , and C (Xa) be the function factor corre
sponding to the coordinates ! r n. Also, given 

a,{3EA,letrf(3: =pxxAvrf, 
U' ct"'-'p 

(AI) 

rfa: =Pxfftx,FXprf, 

with sj(3 and Ir defined similarly. Also, given U ex", let 
Ca (U) be the function factor on U corresponding to the even 
coordinates !pxa,Ur fli = 1, ... ,m). 

Now there exist unique 

P't/!EC,,(XanX(3)' i = 1, ... ,m, f.lEMn , 

and 

such that r fa = L P't/!s~(3, i = 1, ... ,m 
J..lEM" 

(A2) 

(A3) 

Given aEA, let CPa be the coordinate map on X corre
sponding to [rfJ, i.e., CPaECOO(Xa,]Rm) and, for i = 1, ... ,m, 
Piocpa = ria. Given a,/3EA, 
letSa (3: ~-I [CPa(Xa nX{1)]nB;.'.n. 

A set of functions will now be defined which are of great 
importance in the construction of Y, and will eventually be 
shown to be transition functions on Y. 

Definition A.l: Given a,pEA, let 7(3a : Sa(3---+S{1a be de
fined by 
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Pi 07{1a (a,b) : = L z(Pf,focp a-')(a)PI,(b), i = l, ... ,m , 
IIEM" 

(A4) 

Pi+mOT(Ja(a,b): = L Z(Q5;focp,;')(a)PIL (b), j= l, ... ,n. 
J1EM" 

Note that T{1a is defined on Sa{3 because cP a-I is defined 
on CPa (Xa nX{1) and P 't/! and Q ;;f are defined onXanXf1' Also, 
~ ° 7(3a = CP/3 0cp ;; 'o~, and thus T (1a (Sa/3) eS{3a' It will be 
shown below that 7{1a is in fact a homeomorphism of Sa{1 
onto S{1a' 

Having defined the T{1a' the next step is to show (in 
proposition A.3) that these functions have the necessary 
properties of transition functions; the proof of this proposi
tion requires the following lemma, which is the cornerstone 
of the entire construction: 

Lemma A.2: Suppose U is open in X,fECa (unX{1nX,,), 
and (a,b)E~ ., [cp U(unXanXj3)]nB ;.'.h (where h is an integer, 
O<.h<.n). Then 

z(]o cP ri ')[ L z(P~f,ocp a ')(a, , ... ,am)p,,(b, , ... ,bh ), .. ·, 

VEM" 

2~h z(P,:! 0cp ,;' )(a, , ... ,am )p,,(b, " .. ,bh ) ] 

L z(a~,focp a-')(a, , ... ,am)Pv(b, , ... ,bh ) , (A5) 
.'EM" 

where 

This lemma may be proved by induction on h. Note that 
in the case where h = n the lemma states that 

z(jo cP (1-')07{1o(a,b) = L z(a~focp a-')(a)pv(b)· (A6) 
VE_M" 

Proposition A.3: (a) Suppose a, P, y,EA. Then Ty{1°T(Ja 
= T ya' where both functions are defined, i.e., on T (1~,' (S{1y) 

rUny . (b) 'tJ aEA, taa is the identity map on Saa' (In future, 
Saa : = ~ .. , [CPa (Xa)]nB ;.',n will simply be denoted Sa') (c) 
'tJ a, PEA, 7a/3 °7 (1a is the identity function on S a{3' (d) T u{1 is 
a homeomorphism of Sa/3 and S{3a' 

Indication of proof The proof of (a) is too long to be 
included here. The method involves showing that the inter-

I t ' b t th P- a{1 Q- a{1 p- (1y Q- /31' par Q- ar b re a Ion e ween e ilL ' ill' ilL ' ilL ' ii' , ii' ,may e 
expressed in a form which after application of Lemma A.2 
gives exactly the required relationship betweenpk OTy{1°7{1" 
and Pk 071'''' (b) is proved quite simply after noting that 

Q50) = lA(X"p Qj,;' = 0 [f.l#(])]. 

(c) is a straightfoward consequence of (a) and (b). (d) follows 
from (c) (which shows that 7a/3 and T/3a are inverses) and 
from the fact that 7 a(3 and 7 (3a and G 00 functions and thus a 
fortiori continuous. 0 

Having established the necessary properties of the T a/3' 
the G 00 supermanifold can now be constructed by a standard 
patching technique. 13 

For each a inA, let Za : = [a] XSa ' and 
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(A7) 

by na [(a,p)] : = p, for all p in Sa . 

LetZ: = UaEA Za and define the following relation (R ) 
on Z: givenz1, Z2' in Z, letzlR Z2 if and only if1"Pa0na(zl) 
= np (Z2) (where a is the unique element of A such thatz1 is 

in Za and,Bis the unique element of A such thatz2 is inZp). 
It can be proved (using proposition A.3) that R is an quiva
lence relation. The set Y is then defined to be Z / R. 

Let Ya : = I [z] IZEZ'a I (where [z] is the equivalence 
class of z), and define 

I/Ja : Ya~Sa by I/Ja((z)): = na(z) 

where Z is the unique element in [z] which is an element of 
Za). Then, I/Ja is a bijective mapping and l/Ja(Ya) = Sa. 

Also, if[z]EYanYp, l/Ja([zD = na(z) and I/Jp«(z]) 
= np(z'), where zEZ'a' z'EZ'p and zRz'. Thus, I/Jp«(z]) 
= 1'paona(z) = 1'paol/Ja([z]). Hence, I/Jpol/Ja- 1 = 1'Pa and 

thus I/Jpol/Ja-1Ell 00 [I/Ja (YanYp)] e Goo [l/Ja(YanYp)]. Evi
dently, Y = ua~A Ya and thus I (Ya,l/Ja)laEA I gives Ythe 
structure of a topological manifold and of a G 00 
supermanifold. 

Proposition A.4: YB is diffeomorphic to X. 
Outline o/proof Recall that YB = Y /S (c.f. Sec. 3). It 

can be shown that, for all aEA, the mapping 
ha: [Ya]~Xa,ha([Y]): =tPa-1oEol/Ja(y)definesaho
meomorphism of [Ya] and Xa . Also, 
¢a([Y]) = tPa [ha([Y])]. 0 

Before defining and proving the isomorphism of the 
sheaves A and H 00 01T - 1, it is necessary to introduce further 
notation. If U is an open subset of Xa, defineza(u) : C OO(U) 
~I functions on 1T -1(U) I (where 1T is the projection map of 
Yonto Y IS, and Y /S and X are now identified by 

Za(U) (f) : = z(f° tP a-1)0I/Ja, for all / in C OO(U). (AS) 

Let C; [1T -l( U)] : = za [C ""(U)]. The, za(U) defines an 
isomorphism ofC OO(U) and C; [1T- 1(U)]. (The 
C; [ 1T - 1 (U)] correspond to Kostant's various function fac
tors.) Let 

tPa(U): =Px,,,X,I'U(tPa) ' 

l/Ja(U): =PY",TT '(X,l'u)(l/Ja); 

uf(U): = Pi ol/Ja(u) , i = I, ... ,m , 

Va(U). -p 0.1, J' - I n } . - }+m 'l'a(U) , - , ... , . 

(A9) 

(A 10) 

Then, H 00 [1T - 1 (U)] is equal to the set offunctions 
f1T-l(U~BL such that, for all aEA,jtEM"n, there exist 

/ a(u)EC"" [1T-l(UnX )] withp / = 1: ja(U)va(U). 
Jt a a U. unXa JtEM I' I' 

Now, H 00 01T - 1 has the sheaf properties specified by 
Kostant (Ref. 8, p. 187), i.e., (a) suppose U, V are open in X 
and U e V. Define 

p'u.v : H 0001T-l(U~H 0001T- 1(V) 

by (All) 

p'u.v(f): = /ITT-,(v) . 

(b) If Wis a further open set inX and we v,p~.woP~.w 
= P'u, w' (c) If U = ui<;r Ui is an open covering of U, and/, 
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gEll 0001T- 1(U), thenp'u.uf = pu.u,g for all iET'implies 
/ = g. (d) If hjEll 0001T- 1(U) is given for all i in rsuch that 

PU;.u(1u)hi = Pu)<u(1u)hj for all i,j in r, then there exists h in 
H 0001T- 1(U) such that hi =Pu.u;h for all iinr. (These 
sheaf properties of H 00 01T are a direct consequence of the 
properties of the sheaf C 00 over X.) 

The isomorphism of the sheaves H 00 01T - 1 and A will 
now be established: (a) Let Ube open in X with uexa. 
Define 

K';; : A (v)H 0001T- 1(U) 
by 

K';;( L /~(U)s;.(U»: = L Za(l~(U»v~(U»), (AI2) 
I'EM" I'EM .. 

whereeach/~(U)ECa(U)ands;.(U): =Pxa.us;.. ThenK';; is 
an isomorphism of A (U) and H 00 01T - 1 (U), since L >n. 
(b) Suppose uexanXp. Then the isomorphisms K';; and 
K'f., can be shown to be equal (using Lemma A.2) and both 
isomorphisms referred to unambiguously as K u. (c) Suppose 
ve ue Xa. with Uand Vopen. Then it can easily be shown 
thatKv °pu.v =pu.v oKu· (d) Suppose Uisanarbitrary 
open set in X. Define 

Ku :A(U~HOO 01T-l(U) 
by 
Pu,unXuKu /: =KunXaPu.unXa/, for all a in A. (Al3) 

Using the sheaf properties of A and H 00 01T - 1, it can be 
proved that K U is well defined, and is an isomorphism of 
A (U) and H 0001T- 1(U); and also that if Vis open in X and 
ve U, thenpu.voKu = Kvopu.v' 

Thus, the set K: = I K U I U open in X I defines an iso
morphism of the sheaves A and H 00 01T - 1. 
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To match the intrinsic accuracy of an expanded basis set solution of atomic orbitals by numerical 
orbitals requires integration formulas of comparable intrinsic accuracy. Integration of the coupled, 
integro-differential, Hartree-Fock equations is most easily done using Numerov's formula. To 
increase the accuracy ofNumerov's formula without increasing the number of mesh points, one must 
extend the basic formula to include more points, Herein is presented the derivation of the general 
(2N + I)-point Numerov formula, including the error term, as well as suggestions for numerical 
determination with specific formulas of 3-, 5-, 7-, and 9-point fits. 

I. INTRODUCTION 

The Hartree--Fock method1
•
2 for numerical atomic 

structure calculations requires the solution of coupled inte
grodifferential equations. The general form of the equations 
is 

vation of the extended Numerov method and present the 
formulae for a (2N + I)-point fit for N = 2,3,4. 

P "(r) + f(r)P(r) = g(r). (1) 

The most widely-used method3 for the solution of Eq. (1) is 
the Numerov formula4

: 

12Pi _ 1 -24P,+12Pi+1 -h 2(P;'_1 +IOP;'+P;'+l) 

= -doh6p;1 + {}(h 8
). (2) 

In Eq. (2), Pi = P (r) at r = ri , h = r, + I - ri and is constant 
for all i, and P i I is the sixth derivative of P (r) evaluated at 
r = ri • As indicated in Eq. (2) the neglected terms are of the 
order of h 8. Thus, the accuracy of Numerov's formula is 
dependent on the magnitude of h. 

Another popular method for atomic structure calcula
tions is the expansion method introduced by Roothan.5 

Since this method does not require numerical integration, it 
is capable of a very high intrinsic accuracy. However, the 
choice of a basis set for expansion becomes prohibitively dif
ficult for atoms of many electrons. Furthermore, the selec
tion of a basis set introduces a bias into the solution which 
may conceal important, although small, orbital variations. It 
is therefore desirable to increase the intrinsic accuracy of the 
numerical atomic structure calculations. 

With the wide variety of multiprecision packages avail
able with computers today, it is not difficult, in principle, to 
increase accuracy. It is obvious, from Eq. (2), that simply by 
decreasing the mesh size, h, the order of error is reduced. By 
reducing h we require more points in our integration mesh. 
While this represents no large problem from the point of 
view of storage for present-day computers with their large 
banks of virtual storage, it does present a problem in the time 
required to perform the numerous iterations required in the 
solution. 

Alternatively, the accuracy of the numerical calcula
tions can be improved by extending the Numerov formula to 
include more points, thereby raising the order of and reduc
ing the error term. The results of a 5-point fit have been given 
by Roothaan and Soukup.6 In this paper we present the deri-

II. DERIVATION 

Combine the even, central-point difference formula,? 

{j 2n'j(2p ) = .~ (-1) j(2n)r(2P) . fL· J+n-J" 
] ~O ] 

with a Taylor series expansion about x = Xi: 

00 h k (n _ j)"f (2p + k) 

f (2P) - '" ' 
i+n-j - k~O k! 

Thus 

or 

(3) 

(4) 

(5) 

00 h kf (2p + k) 2n (2n) 
{j 2"fFp) = k.?O ~! i~O ( -I) j j (n - H· (6) 

The following conditions on k will now be proved: 
(I) k even only, 
(2) k #0, 
(3) k)n. 

Let 

T",k =I (-1) j(2~)(n _])k, 
] ~ 0 J 

Let n - }-}, then 

Tn•k = t (-I) n -j( 2~ .\;k. 
j~_" n J)' 

Consider the sum, II' of the pair ofterms,j = ± I: 

(7) 

(8) 

t =(_I)n-/( 2n )lk+(_I)n+I( 2n )(_l)k. 
1 n-l n+1 

Now, 

(_1),,-/ (_I)n+l, (2n) (2n) 
n-l=n+l' 

and (_I)k=(_I)kl\ 

(9) 
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hence 

tl=(_l)n~IC2~/)lk[I+(-I)k]=0 ifk odd. 

Consider k = 0: 

Tn,o = I (-1) j(2~) (1 _/)2n = 0, n#O. (10) 
j~ 0 ) 

Let S Z = Tn,2k in Eq, (7), giving 

SZ = I (-1) j(2~)(n - JYk. 
j~O } 

(11) 

Now, 

(n-JYk= r (2k)n2k~I(_I)'.iI, 
I~O I 

(12) 

hence 

sz = I r (_I)j(2~)(2k)n2k--I(_I)'.i1 (13) 
j~OI~O ) I 

or 

sz = r (2k)n2k~l( -1) I I (-1) j(2~)i', (14) 
I~O I j~O } 

The Stirling numbers of the second kind8 are 

S,:= _1 f (_I)m~k(m)kn, (15) 
m! k~O k 

with the properties of importance here that S,: = 0 for 
m >n, andS~ = 1. 

Hence 

sz = r (2k)n2k~l( -1) 1(2n)!s;n (16) 
I~O I 

We require 2n<), but k,2k.'.2n<.2k or n<.k Q.E.D, 
Since r~2n, Eq, (16) may be written as: 

SZ = r (2k)n2k~l( -1) 1(2n)!S;n, 
I ~ 2n I 

hence 

(17) 

s ~ = G:)n2n ~2n ( -1) 2n(2n )!S ~~ =(2n)! (18) 

Incorporating conditions on k in Eq. (7), with the difinition 
S Z = Tn,2k enables us to write 

(19) 

Substituting Eq. (19) and conditions on k into Eq. (6) gives: 
h 2kf [2(p + k)j 

D2y(2p ) = f i SZ. (20) 
I k ~" (2k)! 

Multiply Eq. (20) by h 2p, let F FP) = h 2p fFp) and truncate 
the infinite series to form the 2N equations: 

2N~p F[2(P+ k)j 

8 2n F (2p) = I I S Z, 
I k ~ n (2k)! 

n = 1,2,.",N, P = 0,1. (21) 

We now form a sum of equations (21) such that derivatives of 
fourth and higher order vanish. 
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Let 
N I 

V = ~ ~ a D2n F (2p) 
~ ~ np " 

(22a) 
n~lp~O 

or 

N I 2" ~p a sn 
v= I I I ~F[2(p+k)j. 

" ~ I P ~ 0 k ~" (2k )! I 

(22b) 

Since S k = 0 if k < n, we can equally well begin the sum over 
kat O. Also perform the sum over pin (21) to get 

N ( 2N SZF (2k) 
v= I anO I I, 

n ~ I k ~ 0 (2k ). 
2N ~l S ZF~2k +2») 

+ anI k~O (2k )! . 
(23) 

In the second sum let k-+k -I so that 

N ( 2N SZF(2k) 
v= I ano I I, 

n ~ I k ~ 0 (2k ). 
2N sn F(2k») 

+ anI k~l (;~I_;)! . (24) 

Since the lowest value of n is 1, then the lowest value of k is 1, 
hence the first sum can equally well begin at k = 1, allowing 
us to remove the k summation outside the n summation: 

V= I F~2k)[ i (anos~ + anlSZ~:)]. (25) 
k~1 n~1 (2k). (2k-2). 

Replace the p summation in the large parentheses of (25): 

V= I F?k)( i ± anpSZ~p I)' k-p';;?n (26) 
k~1 n~lp~O [2(k-p)]. 

or 
N I a sn 

V = F;' I I np I ~ P , + 
n~lp~O [2(I-p)]. 

X I I anp k~p , 
( 

N 1 sn ) 

n~lp~O [2(k-p)]! 
k-p';;?n. (27) 

The condition, 1 - p > n, in the first term allows for the sin
gle possibility n = I, p = O. Since S: = 2, we get 

V= a1OF;' + I F~2k)( i ± anpSZ~p ,), 
k~2 n~lp~O [2(k-p)]. 

k -p';;?n. (28) 

Let U = V /a 1O, bnp = anp /a 1O. Then 

2N Nib sn 
U=F;' + I F~2k) I I np k~p , 

k~2 n~lp~O [2(k-p)]! 

k - p';;?n. (29) 

We now choose b np such that the coefficient of each F ~2k) in 
the sum over k is zero. Hence the conditions on the bnp's are 

NIb sn 
~ ~ np k~p 
£.. £.. -'------'-- = 0, k = 2,3,,,.,2N. 
n~lp~O [2(k-p)]! 

(30) 

By definition b10 = 1 so there are 2N -1 unknown bnp's and 
Eqs. (29) are 2N -1 equations so that the bnp's are uniquely 
determined. Furthermore, from Eq. (29) this choice yields 
U=F;'. 
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By the choice, a lO = 1, bnp = anp ' U = V = F;'. Com
bine Eqs. (22a), (22b), and the definition Fj2p) = h 2Pfj2P) to 
get 

r' = f ~ ~ a (-1) j(2n)F(2P) . 
I n=lp~O/~O np j l+n-J* 

(31) 

Let n - j = I, then have 

F;'= ntlptol~~n an/-l)n-IC2~I)F?t')" (32) 

Now the binomial coefficient is zero if n ± 1<0, i.e., if 
n < 1< - n. Hence one can equally well sum over I between 
± N and take I summation outside, 

F;' = ,~~ N pto Fj~), [ ntl anp ( -IY -I(n 2~ I)] . 

(33) 

The term in square brackets is the coefficient of the Fj2!), 
term in the Numerov procedure. 

A. Error term 

Let 

N ( 2n ) L an/-l)n-I -I' 
n~ 1 n 

1= -N, -N +1, ... ,N. 

Then rewrite Eq. (33) as 
1 N 
~ ~ C F(2p) - F~' = error term L L Ip 1+1 1 
p~OI~-N 

and by Eq. (22b) we find 

(34) 

N 1 a S~N 1 
error term = L L np - p + F~4N +2). (35) 

n ~ 1 p ~ 0 [2(2N - P + 1) ]! 
Since Fj4N +2) = h 4N +2 f?N +2) then the error is calculated 
by taking the 4N +2 derivative off(x) with respect to x and 
evaluate it at x = x; and not some arbitrary value of x within 
the range. 

Since the next missing order is FiN +4 then, if the error 
correction is applied in a given calculation, the error is 
O(h 4N +4). 

B. Numerical methods 

Consider Eq. (30) with bn.p replaced by anp and multi
plied by (4N)! 

N 1 4N' 
~ ~ . anpS nk p = 0, k = 2,3, ... ,2N. (36) 
n~IP~o [2(k-p)]! -

Now the coefficients of the a np 's are all integers. We may also 
write, for computational purposes, Eq. (36) as 

ntl pto (2(:~ p»)[ 4N -2(k - p) ]!S~_panp = 0, 
k = 2,3, ... ,2N. (37) 

The anp's may now be obtained as rational fractions. Let M 
be the least common denominator. LetAnp = Ma np , then the 
Anp's are all integers. 

Consider Eq. (34). We note that c/p =c -Ip so that we 
may rewrite Eq. (33) as 
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1 N 1 
~ ~ e (F(2p) + F(2p» + ~ e F(2p) - F~' 
~ ~ Ip I + I I - I £. op I t 

p~OI~1 p~o 

= error term. (38) 

Replacing anp by Anp/M in (34) gives 

c'p = ~ f Anp( -1) n -I( 2~ I) . 
M n~1 n 

(39) 

Now let e,p = Me,p and put into (38): 

liN 1 1 

M p~o I~I Clp (Fj2!), + F~~),) + M p~o CopFj2P) - F;' 

= error term. (40) 

Multiplying through by M leaves integer coefficients. Re
order terms, separating out second derivative terms, and in
clude error term Eg. (35) for the final formula: 

N 

L C'OU;+, +f-I)+Coof 
'~I 

( 

N 1 A sn ) = _ L L np 2N - P +1 
n~lp~O [2(2N-p+l)]! 

Xh4N+2f/4N+2). 

III. RESULTS 
N = 1, 3-point fit: 

(41) 

- 24 f + 12( f + 1 + f _ 1 ) - h 2 [10 I;' + f + 1 + f _ 1 ] 

= (-1/20) h ~;VI. 

N = 2, 5-point fit: 

-4770 f + 1920( f + 1 + f _ 1 ) + 465( f + 2 + f - 2 ) 

- h 2[2538f;' +688(f;'~1 + f;"-I) 

+23(/;'+2 +//'-2)] 

= ( -79/1260) h 10ft. (43) 

N = 3, 7-point fit: 

-3252620 f + 790965( f + 1 + f -I) 

+ 785862(f+2 + f-2) 

+49483(f+3 +f_3)-h 2[2175924f;' 

+ 989739(f;'~ 1 + f/'-I ) 

+110322(f;'~2 +1/'-2)+1857(1/~3 +f;''-3)] 

= (-114669/400400) h 1'i;XIV. (44) 

N = 4, 9-point fit: 

-64426815960 f +4610152960(f+ 1 + f-I) 

+ 23237683840(f+2 + f-2) 

+ 4238517760(f+3 + f-3) + 127053415(f+4 + f-4) 

- h 2[57889160040/;' 

+ 33004678656( f/~ 1 +//'- 1 ) 

+656546752(f/~2 +1/'-2)+390425088(f/~3 +//'-3) 

+3970884( 1/~4 +//'-4)] 
= (-15048903/425425) h 18/;xVIII. (45) 
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An application of Ray-Reid invariants 
M. Lutzky 
10111 Quinby St, Silver Spring, Maryland 20901 

(Received 15 January 1980; accepted for publication 22 February 1980) 

The formalism of Ray-Reid invariants is applied to a certain nonlinear system, first treated by 
Reid using a different approach. In addition, a generalization of the Ray-Reid invariant is given. 

It has recently been shown by Ray and Reid I that invar
iants similar to the Lewis invariant for the time-dependent 
harmonic oscillator2 exist also for more general systems; 
these new invariants may be written 

I
XIY IYIX 

1 = ~(xy - yi? + f(J.) dJ. + g(J.) dJ., 

and satisfy j = 0 if x(t ) and y(t ) satisfy 

ji + w2(t)y = f(x/y)/( y2x), 

x + w2(t)x = g(Y/X)/(X2y). 

(1) 

(2a) 

(2b) 

Thus 1 constitutes a conserved quantity for the dynamical 
system described by the coupled equations (2). Whenf and g 
are such that Eqs. (2) are uncoupled, algebraic consider
ations show that the invariant (1) yields a general solution of 
one equation in terms of particular solutions of the other2

•
3

; 

however, this procedure is not effective if the equations are 
coupled. In this note we present an alternative approach, 
valid for partially coupled systems, and use it to show that a 
certain class of nonlinear dynamical systems may be treated 
by means of the invariant (1), thus verifying a recent conjec
ture of Ray and Reid.4 In addition, we will exhibit an exten
sion of the invariant (1) which provides a constant of the 
motion for a natural generalization of (2). 

The dynamical system represented by the nonlinear 
equation 

ji + w 2(t)y = C I / - m(UV)(m -4)/2 + C2y l -2m(UV)m -2 (3) 

[u(t) and v(t) are any known, linearly independent solutions 
of the time-dependent harmonic oscillator ii + w2(t)u = 0, 
and C I , C2, and m are constants], has been treated by Reid,5 
who found the one-parameter family of solutions 

y = [(A /k)um + B(uv)m12 + (Ak)vm]l/m. (4) 

In Eq. (4) k is an arbitrary constant, B = 4C/(m -2)W 2
, 

W = uv - VU, and A = ! [C2/(m -1)W2] + ~B 2Jl/2. 

The quantity Wis the Wronskian ofu and v, and is easily 
shown to be constant; therefore A and B are also constants. 

On the basis of certain formal properties of the solution 
(4), Ray and Reid4 conjectured that (3) could be analyzed 
using the formulation (2). We will demonstrate that this is 
indeed the case. 

To derive the solution (4) using (1) and (2) we first set 

f(J.) = dlJ. m -3 + dzA 2m-3 

and 

g(J.) = - J. 

in Eqs. (1) and (2); we then find that the resulting partially 
coupled system 

ji + w2(t)y = d1xm -4/ - m + dzX2m -4yl -2m, (5a) 

X+W2(t)X= -lIx3
, (5b) 

possesses the invariant 

1 = Ha(x/y)m - 2 + (3 (x/ylm -2 - (y/X)2 + (xy _ yi)2], 

(6) 

where we have defined the constants a = 2d1/(m -2), 
(3 = d2/(m -1). If we let 5 = y/x, so that t = (xy - yx)/x2, 
then (6) yields the following differential equation for 5 (t): 

d5 = J.. (21 _ a5 2 - m _ (35 2 -2m + 52)1/2, (7) 
dt x 2 

in which x(t ) is considered a known function of t. It turns out 
that for the particular choice 1 = 0 the integral arising from 
(7) may be expressed in closed form; in particular, setting 
1 = 0 in (7) leads to 

f ix) 5m-ld5 It dt 

(5 2m - a5m -(3)1/2 = x 2 ' 

and evaluating the integral on the left then gives 

1 {[ (y )2m (y)m ]1/2 -In - -a - -(3 
m x x 

+ [ (: ym _ a (: r + :T12} = r :~ . (8) 

It has been shown by Ray and Reid4 that a solution of (5b) 
maybe represented in the form x = (2UV/W)I/2, whereu and 
v are linearly independent solutions of ii + w2(t)u = 0, and 
W = uv - vu is the Wronskian of u and v. We may therefore 
write S'dt /X2 = In(Cv/u)I/2, where C is a constant ofinte
gration. Using this result on the right-hand side of (8), solv
ing (8) for (y/x)m, and again using x = (2UV/W)I/2, leads to 

(9) 

where K is an arbitrary constant. Putting x = (2UV/W)I/2 in 
(5a) then shows that (9) provides a one-parameter family of 
solutions of 

.. (2uv)(m -4)12 
Y+W2(t)y=dl /-

m W 

+d2yl-2m c:r- 2 

(10) 
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We may define new constants by 

_ ( 2 )(m -4)/2 ( 2)m 2 
C)-d) W ,C2 =d2 W - , 

k = (~)(m -2)/2 K!{ ~ + [ 2C) ]2} 112. 
W m -1 (m -2)W ' 

if we express (9) and (10) in terms of these new constants, we 
obtain (3) and (4), and the proof is complete. 

The demonstration that (4) is a solution of (3) by the 
above technique furnishes another example of the usefulness 
of the formulations (1) and (2) for time-dependent invariants 
of coupled systems. In view of the effectiveness of the formu
lation, we have throught it worthwhile to present a general
ization of it to the following system: 

ji + oy + cu2(t)y = e -271

) f(~) , 
xy y 

(1Ia) 

x + o-x + cu2(t)x = --g L , e -20(1) ( ) 

yx2 x 
(lIb) 

whereg( ylx), a(t ),cu(t ),andf(xly)arearbitraryfunctionsof 
their arguments. To obtain the invariant for this system mul
tiply (11a) by e 2u(xy - yx)x, multiply (lIb) by e2u 

X (xy - yx)y, and subtract the results. The expression so 
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obtained may be written as a total time derivative, from 
which it immediately follows that the quantity 

f
X

/ Y fY/x 
I = ~e2u(xy - YX)2 + f(). ) d)' + g(). ) d)' (12) 

is a constant of the motion for (11). If we set g(). ) = 0 and 
f().) =). in (11) and (12) we obtain an invariant for the 
damped time-dependent oscillator, previously found in oth
er ways by Eliezer and Gray, 6 Leach,7 and Korsch. 8 As these 
authors have shown, an oscillator invariant can be specified 
by knowledge of any particular solution of a certain auxiliary 
equation; in our treatment (11 b) yields the oscillator equa
tion and (1Ia) is the auxiliary equation. 

Note added in proof The generalization (11) has also 
been obtained, independently and in another manner, by 
Ray and Reid.9 

'J.R. Ray and J.L. Reid, Phys. Lett. A 71, 317 (1979). 
2H.R. Lewis, Jr., Phys. Rev. Lett. 18, 510 (1967). 
3M. Lutzky, Phys. Lett. A 68,3 (1978). 
4J.R. Ray and J.L. Reid, J. Math. Phys. 20, 2054 (1979). 
'J.L. Reid, Proc. Am. Math. Soc. 38, 532 (1973). 
6C.J. Eliezer and A. Gray, SIAM J. Appl. Math. 30, 463 (1976). 
'P.G. Leach, SIAM J. Appl. Math. 34, 496 (1978). 
"H.J. Korsch, Phys. Lett. A 74,294 (1979). 
9J. R. Ray and J. L. Reid (to be published). 
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Gauge theory in Hamiltonian classical mechanics: The long range fields 
B. Boisseau 
Department de Physique, Faculte des Sciences de Tours, Parc de Grandmont, Tours 37, France 

(Received 21 November 1979; accepted for publication 11 January 1980) 

The generalization of a previous work leads us to a gauge theory in Hamiltonian classical 
mechanics whose elements are: First, the infinitesimal canonical transformations considered as 
gauge transformations and, second, an infinite sequence of gauge potentials. A hierarchy of 
approximation orders allows the physical interpretation of this formalism. At the zero order we 
obtain the electromagnetic field, at the first order the electromagnetic and gravitational fields. At 
the second order a new field is added to the former ones. We have studied the new physical 
features involved by this hypothetical field, in the motion of a classical particle. In the 
approximation of a Keplerian motion, we have given the period. This last result could be 
eventually used to test this theory. 

I. INTRODUCTION 

In a recent paper! the electromagnetic and gravitational 
fields were obtained as gauge fields associated with a special 
class of canonical transformations continuously connected 
to the identity. We propose in this work, to generalize the 
process to all the canonical transformations continuously 
connected to the identity. We shall use here, for practical 
reasons, the infinitesimal transformations. The Hamiltonian 
of the free particle is not form invariant under such transfor
mations. Invariance can be obtained by the introduction of 
gauge potentials according to a minimal coupling principle. 
The variance of these potentials is determined by requiring 
that the Hamiltonian should be form invariant. 

Section II, after a transposition a relativistic picture of 
Hamiltonian mechanics, carries the scheme described above 
into effect. Thus we introduce the gauge functions Ka (p,x). 
By expanding the power series in P of K a' one defines an 
infinite sequence of gauge potentials. Additional assump
tions of physical origin on the convergence of series allow 
one, according to the selected approximation, to limit the 
development to a given order and so have a physical inter
pretation of this formalism. In Sec. III we study the first
order approximation. The latter yields the only two long 
range fields that we know: the electromagnetic and gravita
tional fields. (This result was obtained in Ref. 1.) Then we 
are particularly interested by the immediately upper ap
proximation (second order) which will permit us to see what 
new effects it is possible to expect ofthis theory. We work out 
this study in Sec. IV. Thus one introduces a new long range 
field that one specifies by its variance and its influence on the 
motion of the particle. Finally we perform the Newtonian 
limit and in the case of a Keplerian motion we give the modi
fication of Kepler's third law. 

II. GAUGE THEORY IN HAMILTONIAN CLASSICAL 
MECHANICS 
A. General formalism (c = 1) 

Let us consider a Minkowski space (xa
) to which one 

associates an eight-dimensional phase space (xa,Pa)' The 
equations of motion of a free particle are Hamilton's 

equations 

d aHo dxa 

d7' Pa = - axa ' d7' 

where the Hamiltonian2 

(2.1) 

H o =(1I2m)PaPf31Jaf3 (1Jaf3 = -1,1,1,1), (2.2) 

is a scalar quantity and 7' designates the proper time 

d7' = (- dxu dx f31Ja(3)I!2. (2.3) 

In order to consider canonical transformations in that 
eight-dimensional space, we suppose T is an evolution pa
rameter external to the space-time. We shall give it back its 
meaning of proper time at the last moment to solve the equa
tions. Therefore the theory of canonical transformations is 
identical with the usual theory. Let us consider the canonical 
transformations in this eight-dimensional phase space 

In the new system, the equations of motion become: 

d , 
d;P" = 

where 

aH~ 

ax'" 

d aH~ 
_X'I'= 
dT a P;, 

since 7' does not occur in the transformations (2.4). 

(2.4) 

(2.5) 

(2.6) 

All the infinitesimal canonical transformations can be 
generated by functions of type3 

(2.7) 

where c is an infinitesimal parameter and G (p,x) is an arbi
trary function that will be named a generating function. The 
canonical transformations (2.4) generated by (2.7) are given, 
to first order in c, by4 

X'I' = x" - c(aG fa p,,)(p,x) , 

(2.8) 

P;, = PI' + c(aG fax")(p,x) . 
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In the same way we can write the inverse relations: 

X 'L = x'l' + E(aG la p~)(p',x'), 

P,L = P~ - E(aG lax'I')(p',x'). 

By substituting (2.9) in (2.2), Eq. (2.6) gives 

H b = (1I2m)(p~ - E(aG lax''')(p',x'» 

X (p~ - E(aG lax'(3)(p',x'»Tj" f3 . 

(2.9) 

(2.10) 

By comparing (2.2) and (2.10) it is obvious that the Hamil
tonian is not form invariant. 

If one considers these transformations as gauge trans
formations, invariance will be obtained by a minimal cou
pling principle5

: In the Hamiltonian H b one substitutes the 
functions K,,(p',x') for the derivatives EaG lax'''(p',x') 
coming from the gauge transformations. The variance of 
these functions will enable us to obtain the form invariance 
of the new Hamiltonian so obtained. Therefore let us per
form, in the Hamiltonian (2.10), the substitution 

Thus one obtains, after dropping the primes, the new 
Hamiltonian 

(2.11 ) 

H=(1I2m)[p" -K,,(p,x)][Pf3 -Kf3 (p,x)]Tj"f3. 
(2.12) 

It will be convenient to introduce the quantity 

h" = p" - K,,(p,x) . 

The Hamiltonian (2.12) is then written 

H = (1I2m)h"h f3'T/a f3 . 

(2.13) 

(2.14) 

Let us examine the variance of this Hamiltonian under 
infinitesimal canonical transformation. It is sufficient to deal 
with ha • Introduction of (2.9) into (2.13) gives 

h ~(p',x') = p~ - E(aG lax,a)(p',x') 

- K" (p/ - E(aG lax') ,x' + E(aG la p'»~ . (2.15) 

Ifwe define 

K ~(p',x/) = E(aG lax/")(p',x') 

+ K,,(p' - E(aG lax') ,x' + E(aG la p/» , (2.16) 

Eq. (2.15) can be written 

h;, = p~ - K ~(p/,x'), (2.17) 

and the Hamiltonian 

H' = (1/2m)[p~ - K ~(p',x/)] [pp - K p(p',x/)]'T/"f3. 
(2.18) 

The comparison of Eqs. (2.12) and (2.18) shows clearly the 
formal in variance of the Hamiltonian on condition that the 
functions Ka should be transformed jointly according to 
(2.16). 

Let us examine the transformation (2.16). By expand
ing the last term of the second member to first order in E 

K" (p' - E(aG lax/),x/ + E(aG la p'» 

= K,,(p',x') - E(aG lax'I')(aKala p~) 

+ E(aG la p~)(aKalax'I'), (2.19) 

the transformation (2.16) becomes 
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K ~(p',x') = K,,(p',x') + E(aG lax,a)(p/,x') 

+ E(Ka,G ]x',p' , 

where 

[KaoG ]x',p' = (aKalax'I')(aG la p~) 

- (aKala p~)(aG lax'I') , 

is a Poisson bracket. 

(2.20) 

(2.21) 

Let us remark that the transformation (2.20) is perfect
ly similar to those of gauge potentials in the usual theory of 
Yang and Mills. One simply substitutes a Poisson bracket for 
a commutator of matrices. Nevertheless we are going to use, 
later on, the transformation (2.20) in a slightly different 
form: 

K ~(p',x/) = Ka(p',x) + E(aG laxa)(p',x) 

- E(aKala P;J(p/,x)(aG laxl')(p/,x) . (2.22) 

This can be obtained for example, from (2.20) by expanding 
K a (p' ,x') to first order in E 

Ka(p',x') = Ka(p',x) - E(aG la p~)(p',x') 

X (aKalaxl')(p',x) , (2.23) 

and by remarking that we may indifferently use the primed 
or unprimed variables in the terms enclosing the factor E. 

B. The long range fields. 

Now we must interpret this general formalism and give 
a physical meaning to the gauge functions Ka (p,x). In phys
ics, it is not a strong limitation to suppose that the functions 
are analytic. Therefore, let us express G (p,x) and Ka(P,x) 
by a power series in p: 

G = g<0) + g(l) + ... + g(1) + ... , (2.24) 

Ka = k <;}) + k ~l) + ... + k ~) + ... , 
with 

(2.25) 

g(O) = G (O,x) = G (O)(x), g(l) = ~ G (Oil, .. 1' ( ) ., 'x PI" ... pl', ' 
1. 

[G (I)I', ... ,l, d K(i)I', .. )L, . 1] an a are symmetnca . 

(2.26) 

(2.27) 

Let us add an arbitrary hypothesis whose physical 
meaning will be understood later on. We suppose that the 
series (2.25) converges rapidly and more precisely: 

IK~+l)(x)l< IK~)(x)l, 

IK~)(x)I·IK~P(x)I-IK~+J)(x)l· (2.28) 

The diverse quantities K ~)(x) will be interpreted as the gauge 
potentials of the long range fields, K <;}) for the electromag
netic field, K ~l)" for the gravitational field, etc. Expressing 
Ka (p,x) by a power series expansion in p allows us to carry 
the transformation (2.22) onto the gauge potentials K~)(x). 
For convenience we denote 

(ag(l)(p',x)lax") = g~(p',x), 

(ak ~)(p/,x)la p~) = k ~)'''(p',x) . (2.29) 
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By using Eqs. (2.24), (2.25), and (2.29) we may write Eq. 
(2.22) in the form 

I k ~(i)(p',x') = I (k ~)(p',x) + Eg~2(p',x» 
i i 

- E( ~ k~)'!'(P"X»)( ~g~)(P"X»). 
(2.30) 

Remarking that k ~) and g~2 are ith power of p' and 

k(I),!, = __ I_ K (I)!',··-!', ,!' p' p' 
a (i _ I)! a I', ,., !" I ' 

is a (i - 1 )th power of p', we can arrange (2.30) in ascending 
powers of p': 

" k ,(i) = "{k (I) + Eg(1) - E [k (I ),!'g(i) + ... L a L a ,a a ./1 
i i 

+ k (i)'I'g(l) + k (i + 1),!'g(O)]}. 
a,1-1 a .Il (2.31) 

From which, identifying the same powers of p' in the two 
members of (2.31), one obtains 

K ~O(x') = K~»(x) + EG~~)(X) - EK~)!'(x)G~)(x), 

K ~(i)ll'll,(X') 

= K~)!"ll,(X) + EG:~ll'I"(X) - E[K~)!'(x)G~:!"ll,(X) 

+ C:K~;)I"I'(X)G::,-I)II'II,(X) + C~K~)I"ll'll(X) 
X G ::1- 2)ll,I',(X) + ... + C ~I- I) K ~)I"l'i II'(X)G ~)I"(x) 

+ K:: + 1)/1 'llJl(X)G ~~)(x)] . (2.32) 

Equations (2.32) describe the variance of gauge potentials. 

C. Approximation of nth order 

Let us make use of hypothesis (2.28). We say that we are 
in the approximation of nth order if we neglect the potentials 
K~? with i > n. In this approximation, the ith equation (2.32) 
(with i<,n - 1) is not altered, on the contrary we neglect the 
last term of the second member of the nth equation: 

K;;' + 1)II'll"I'(X)G~~)(x) = O. 

Let us define: 

h ~') = Pa - K ~~) - K ~1)ll(X) Pil - ... 

1 K (n)ll, "-1',,( ) - I" a X Pll,'" Pll" . 
n. 

The Hamiltonian is written 

H = (l/2m)h ~;)h <;;)1/a{3, 

(2.33) 

(2.34) 

(2.35) 

where one eliminates the products such as K~) K~) with 
i + j> n. 

Let us introduce now new notations in order to make 
the physical interpretation of gauge potentials easier. In Eq. 
(2.34) it is possible to group the terms in P 

P - K(l)!'p = (8':. - K(I)!')p 
a a 11 a a /1. 

Let us define 

and vall the inverse matrix (one suppose it exists). 

Let us introduce 

B - va K(O) K(O)-B V I' 
1'.- fl a' a-Ila' 
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(2.36) 

(2.37) 

N(I)!', .. ·ll, = va K(i)I', .. ·II, K(i)!', .. !" 
Il Ii Cl , a 

= N~)ll'I"V,/ (i>2). (2.38) 

Therefore Eq. (2.34) is written 

h ~') = h ;,<n) V,/l 

= ( - Bil + PII -! N~2)1"II' PII, PII, - ... 

_ ~N(n)II'"-I''' )v I' ,II PI', ",PII" a , n. 
(2.39) 

and the Hamiltonian 

H = (l/2m)h ,(n)h «n),.,!,,' 
11 \' l5 , (2.40) 

with 

(2.41 ) 

In Eq. (2.40) one eliminates the products such as Ni;1.N;!) 
with i + j>n. 

We shall now recognize the nature of gauge potentials 
that we have introduced, on the one hand by their variances 
[Eqs. (2.32) and (2.33)], on the other hand by the equations 
of motion that one obtains from the Hamiltonian [(2.35) and 
(2.40»). To do this, we envisage two cases: First, the approxi
mation n = 1 which generates all the known long range 
fields (electromagnetic and gravitational fields), second, the 
immediately upper approximation n = 2 which will permit 
us to see what new effects it is possible to expect in the frame 
of this theory. Let us remark that the form of the Hamilton
ian (2.40) places in a prominent position a breaking between 
n <,1 and n > 1. The fact of restricting the investigations to 
n = 2, if it simplifies computations, would not be likely to 
singularize essentially the problem n> 1. 

III. APPROXIMATION n = 1: THE ELECTROMAGNETIC 
AND GRAVITATIONAL FIELDS 

The Hamiltonian is reduced to 

H = (l/2m)(pll - Bil )(p" - B,,)g''''. (3.1 ) 

The variance of potentials [Eqs. (2.32) and (2.33)] is the 
following: 

K :,(O)(x') = K ~)(x) + EG ~~l(x) - EK ~1)ll(X)G ~)(x) , (3.2) 

K ;,<I)II(X') = K~I)II(X) + EG~~)ll(X) - EK~I)p(X)G~~;!'(x). 

(3.3) 

By using Eqs. (2.36) and (2.37), the relations (3.2) and (3,3) 
become: 

B;,(X') = [15;; +EG~)''(x)][B,,(X)+EG(~)(X)], (3.4) 

V ;:'(X') = [t5~~ - EG ~~)I'(x)] Va V(x) . (3.5) 

Interpretation of this result is simple. IfG (p,x) is reduced to 
G (O)(x) +G (l)I'(x) Pil , we have: 

t5li - EG~~)ll = (Jx'!'IJx V
), 15;; + EG~;h' = (Jx'/Jx'll). 

(3.6) 

Therefore it suffices to go back to Ref. 1 in which Eqs. (2.41), 
(3.1), (3.4), and (3.5) were obtained. 

Let us be reminded here of the results. The potential Bil 
has the variance of an electromagnetic potential [Eq. (3.4)], 
g'''' is a Riemannian metric associated with tetrad6 Va I' [Eqs. 
(2.41) and (3.5)], the proper time is 

dr = gil" dX11 dx". (3.7) 
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Hamilton's equations yield 

m(dUA/dr) + {~}UILUV) =i'PeFpaUo, (3.8) 

with FILl' = alLAv - avAIL' BIL = eAIL (e is an electric 
charge), U A = dxA /dr is the four velocity and {;v}desig
nates Christoffel's symbols. The Eq. (3.8) describes the mo
tion of a charged particle in electromagnetic and gravitation
al fields. We deduce from this that AIL and gILl' [or K r;}) and 
K ~1)IL] are the gauge potentials of the electromagnetic and 
gravitational fields. Finally, let us notice that the approxima
tion n = 0 gives us only the electromagnetic potential AIL [or 
Kr;}l). 

IV. APPROXIMATION n = 2 

In this approximation the Hamiltonian is written 

H = (l12m)(plL - BIL)(pv - Bv)giLV - (l/2m)gIL" 

X(PIL - BIL)NS2)v,v, Pl', Pv, ' (4.1) 

The variance of gauge potentials 

K ~(O)(x') = Kr;})(x) + EG~~)(X) - K~I)IL(X)G~)(x), 

K ~(l)IL(X') = K~)f'(X) + EG~~)IL(X) - €K~)P(X)G:~IL(X) 

- €K~2)ILP(X)G~~(x), (4.2) 

K ~(2)IL'IL'(X') = K~2)IL'IL'(X) + €G~,;)IL'IL'(X) - €K~)P(x) 

X G ~~'ll'(X) - €2K ~)IL' P(x)G ~~Ii'(X) , 

is intricate and the understanding is not improved in the new 
notations. On the contrary, if one examines the variance of 
these potentials when G (p,x) is reduced to G (l)IL(X) PIL , that 
is to say when the canonical transformation is reduced to a 
transformation of general relativity, we obtain 

B ~ (x') = (ax''Iax'IL)Bv(x) , 

(4.3) 

K ~(2)IL'IL'(X') = (ax'IL,/axV')(ax'Ii'/axV')K~)v,V'(x). 
Accordingly N~2)!',!" is a three-tensor. 

We propose, for a better understanding of the new field, 
to eliminate the variables PI' from Hamilton's equations 

aH aH 
(d/dr)x!'= -, (d/dr)pli = - -, (4.4) 

apI' ax!' 

and, in this way, to obtain the equations of motion of the 
particle in a form similar to Eq. (3.8). 

A. Neutral particles 

In order to simplify computation, we exclude the elec
tromagnetic field (we suppose the particle is not charged). 
The Hamiltonian (4.1) becomes: 

H = (l/2m)(g''''PI' Pv - ~,!,*, PIi , PIL, P!'), (4.5) 

in which we have introduced the symmetric tensor 

~,!"!,, = gil' vN~2)Ii'IL' + g'"l'NS2)IL,ll, + gIL,vNS2)!',!', . (4.6) 

From the first Eq. (4.4) associated with the Hamiltonian 
(4.5) we deduce that 

II' = (dx!'/dr) = (l/2m)(gILv p" - ¥'v p Pl' P p), (4.7) 

since e'VP <gil" [hypothesis (2.28)], we are going to solve Eq. 
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(4.7) by iterative approximation. To first order in ~VP (i.e., 
to second prder), we obtain 

PI' = mgy,'vV + (m2/2)~VPg!,ygvxgpavxva. (4.8) 

We must now introduce Eq. (4.8) in the second Eq. (4.4). 
First, let us compute 

(4.9) 

By inserting Eq. (4.8) in (4.9) and limiting ourself to first 
order in ~"P we have, after some computations 

(aH lax)) = (m12)ayg
y
,hgy,v,gy,y,VV,VV, 

Moreover 

(d /dr)py = (d /dr)(mgyvvj + m2€yxavX(dva/dr) 

+ (m2/2)av€yxOVVvxvo. 

So the second Eq. (4.4) is written 

(d /dr)(mgyvvj 

+ m a gy,y'g g vV'uV, + m2€ vX(dv<I/dr) 2 y y. v, Y1Vl yxa 

or 

mgyv(d /dr)v" + L,vvJvv,vv,) + m2€yXUvx ~: 

= -m2gyl'{ v }vv'vv'vv" 
v, V2 VJ 

Where we have used the Christoffel's symbols 

{ v} = !gVY(av,gyv, + a,.,gyv, - aygv, v) , 
V,V2 

and symbols constructed in a similar way 

{ v} = (l/3!)gvY(av Eyv " + a" Eyv v 
Vi V

2
V

l 
I 2.\ ~ J I 

+ a", €Y'"v, - ayE"""",). 

Equation (4.13) can be written 

(4.10) 

(4.11 ) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

One multiplies two members of(4.16) by ~~ - mgY'!'€yX'vVX
', 

by remembering that {v"v } is a first-order term (g = 1'1 
I 2 /-LV "'Ill' 

+ first order) one obtains finally to second order: 

(4.17) 

Thus we came to the equation of a particle of mass m in the 
first-order field (graviatation) and in the hypothetical sec
ond-order field. We observe that this second-order field will 
have an influence proportional to the mass of the particle. 
This leads to search for an eventual illustration of this field 
among the celestial objects. 
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B. Newtonian approximation, Keplerlan motion 

Let us consider a particle with a large mass m moving 
slowly. It is possible to neglect dx/dr with respect to dt /dr, 
Eq. (4.17) becomes 

(d 2xY/dr) + {~}(dt /dr)2 + m{~}(dt /dr)3 = O. 

(4.18) 

We suppose that the fields are stationary, Eqs. (4.14) and 
(4.15) give 

{~} = -!gvrargoo , (4.19) 

{~} = - (1/3!)gvrarEooo . (4.20) 

Weare specially interested by the second-order field, so we 
are going to suppose the grlj.vitational field is weak: 

gl'v=1Jp-v+hp-y, Ihl'vl<1 (or IK~)I'I<I), (4.21) 

from which 

{v} = _ I1J vra h = 1Jvra K(I)O 00 2 rOO rO' (4.22) 

{ v} = _ I1Jvra E = _ I1Jrva N(2)OO 
000 (; r ooo 2 rO 

=-l1J~K~ (~n) 
2 r ° . 

Equations (4.18) give 

d
2
x

i 
+ aK(I)O(dt /dr)2 _ Ima.K(2)OO(dt /dr)3 = 0 

dr I ° 2 I ° , 
(4.24) 

(d 2t /dr) = ~dt /dr) = const, (4.25) 
from which 

(d 2Xi/ dt 2) = - aiK ~I)O + !m(dt / dr)a;K ~2)OO. (4.26) 

This equation is given with (c = 1) units, in the usual units 
we obtain 

(d2xi/dt 2) = - aiK~I)Oc2 + !mc3aiK~2)OO 
«dt /dr) = 1) . (4.27) 

Finally, let us introduce the nonrelativistic potentials 

(jJ = c2K~I)O, ,p = _ ¥,3K~2)OO . (4.28) 

Therefore the Newtonian equation of the particle is 

d 2x 
m - = - mV(jJ - m2V,p. (4.29) 

dt 2 

If the gravitational potential is owed to a spherical mass 
M at a distance r from the particle, it takes the form: 

(jJ = - GM /r, (4.30) 
which give the force 

F(I)= -(GmM/~)(r/r). (4.31) 

On the contrary we know scarcely anything on the potential 
,p. We just know by Eq. (4.29) that the force is proportional 
to the square ofthe particle mass. We may imagine in order 
to respect the symmetry between the action and reaction that 
,p is proportional to M 2. Moreover the gravitostatic and elec
trostatic potentials in the considered approximation are in 
1/ r, it is reasonable to induce from this, that", is also a poten
tial in 1/r. So we guess: 
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,p= ±EM2/r, 
whence 

F(2) = ± E(m2M2/r)(r/r). 

(4.32) 

(4.33) 

We cannot say anything either on the sign or on the value of 
the constantE except that it is very weak (E /G< I). Equation 
(4.29) is written 

d 2x E r 
dt 2 = - GM(1 ± (imM) ~. (4.34) 

Equation (4.34) gives a Keplerian motion whose period Tis 
connected to the half axis a of the ellipse by 

a
3 

GM ( E )( m) -=- 1±-mM 1+-. 
T2 4~ G M 

(4.35) 

or with m/M<I: 

a
3 

GM( E ) ?= 4~ 1±(jmM . (4.36) 

This last formula could be eventually used to test this theory. 

v. CONCLUSION 

This work constitutes an extension of the covariance of 
the particle equations from the group of general relativity to 
a larger one: that of the infinitesimal canonical transforma
tions. The two essential results of this theory are on the one 
hand the identification of infinitesimal canonical transfor
mations with gauge transformations, and, on the other hand 
the introduction of the long range fields in a unitary way. 

The ad hoc hypothesis of decreasing gauge potentials 
[Relations (2.28)] is consistent with the present physics; the 
coupling constant of the electromagnetic field 
(e2/47rlic = 1/137) is very large compared with the one of 
the gravitational field (Gm 2Hic = 10 -39; m = proton 
mass). This hypothesis explains also why we do not see, at 
the present time, the other fields. We may nevertheless hope 
to put them in evidence, if they exist, in the motion of large 
masses, which will probably lead us to extend these investi
gations to the scope of the astronomy. The hypothesis (2.28) 
replaced the hypothesis ofthe large unit of mass which was 
used in an earlier paper. Indeed this hypothesis amounted to 
supposing the existence of a large fundamental unit of mass 
playing a part analogous to the one of the velocity oflight. 
But in the present state of physics we have not any informa
tion at all about the existence of such a unit. 

This theory does not give the way of deducing the equa
tions of evolution of fields. But, besides, we know the equa
tions of electromagnetic and gravitational fields. The formal 
analogy between the new field analyzed in Sec. IV and the 
gravitational field [Eqs. (4.14), (4.15), and (4.17)] allows us 
to hope constructing equations for this new field analogous 
with those of Einstein. 

'8. Boisseau and C. Barrabes, J. Math. Phys. 20, 2058 (1979). 
2J.W. Leech, Classical Mechanics (Methuen, London, 1957), Chap. 10. 
'See Ref. I, Sec. 3. 
4H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 
1950), Chap. 8, Sec. 6. 

'For justification of such a denomination see Ref. 1, Sec. 2. 
6S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), pp. 
365-373. 
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Using a family of coherent state representations we obtain in a natural and coordinate
independent wayan explicit realization of a projective unitary representation of the symplectic 
group. Dequantization of these operators gives us the corresponding classical functions. 

1. INTRODUCTION 

Canonical transformations and their relations to quan
tum mechanics have been studied extensively and in many 
different settings. 1-10 See, for instance Refs. 2 and 3 for a 
representation in terms of coherent states, Ref. 4 for applica
tions of this treatment of the homogeneous linear canonical 
transformations, Ref. 5 for an application of the inhomoge
neous linear canonical transformations, and Ref. 6 for a rela
tion with Bogoliubov transformations and quasi-free states 
on the CCR algebra. In Ref. 7 it was advocated that the most 
natural way to study canonical transformations (we are only 
concerned with the linear ones here, even if we don't specify 
so further on) is (1) to work in a phase space realization, and 
(2) to consider a suitable family of closed subspaces of 
L 2(E;dv), the square integrable functions on phase space, 
instead of only one Hilbert space as the basic setting. We 
follow this point of view here, and use it to derive a simple 
and natural expression for the operators of the symplectic 
group, the so-called metaplectic representation. This meta
plectic representation was constructed already some ten 
years ago by Bargmann2 and Itzykson3 independently, who 
both used a holomorphic representation of the canonical 
commutation relations. Another approach can be found in 
Ref. 4. In this latter treatment, however, a certain class of 
linear transformations cannot be treated by the direct for
mula, and can only be recovered by taking products oflinear 
transformations outside this class; this is not the case in ei
ther Refs. 2, 3, or the present paper. Our treatment differs 
from the ones given in Refs. 2 and 3 in that we obtain the 
representation almost automatically from the structure of 
the family of closed subspaces of L 2(E;dv) mentioned above. 
In fact, for any state 1/1 with wave function ¢J", in the coherent 
state representation, we obtain the image Ws¢J", of ¢J", under 
a canonical transformation S simply by a substitution 
(Us¢J",)(v) = ¢J",(S -I v), followed by a projection. This pro
jection has to be introduced because the naive substitution 
above does not always leave invariant the Hilbert space of 
coherent states. It turns out that this succession of two sim
ple operations (a naive substitution, and a projection back 
onto the right space when things threaten to go wrong be-

"'Part of this work was done at the CNRS Marseille. 
"'Research fellow at the Interuniversitair Instituut voor Kernwetenschap

pen (Research Project 21 EN). 

cause the substitution has taken us out of it) is, up to some 
constant factor, a unitary operator. The family of these oper
ators gives us our projective representation. We work with 
intrinsic and coordinate-free notations differing from the no
tations used in Refs. 2, 3, or 4. At the end of the paper we 
rewrite some of the results in the more familiar x-p 
notations. 

Following the prescription given in Ref. 11 for the de
quantization of these operators, we proceed then to compute 
the classical functions corresponding to the symplectic 
transformations. This calculation of classical functions for 
symplectic transformations has been done for one-param
eter subgroups of the symplectic group.8.9 One then only 
catches a small part of the symplectic group at a time; more
over, since the group is not exponential, not every symplectic 
transformation can be considered as an element of such a 
one-parameter subgroup. In Ref. 10 a general formula for 
the classical functions corresponding to symplectic transfor
mations is given, valid whenever the symplectic transforma
tion S is nonexceptional, i.e., whenever det(l + S) # O. The 
case of an exceptional S is also tackled in Ref. 10 but in an 
indirect way. In this paper we derive an explicit expression 
(7.1) or (8.1) which holds for all cases, whether S is excep
tional or not. Of course, if we assume S to be nonexceptional, 
our result simplifies, and we fall back on Huguenin's result 
[see Eq. (7.2)]. 

The paper is organized as follows: In Sec. 2 we intro
duce some definitions and notations, which are essentially 
those used in Refs. 7 and 11. We also state our results at the 
end of this section. In Secs. 3-6 we construct a unitary pro
jective representation of the symplectic group using the fam
ily of Hilbert spaces mentioned above. In Sec. 7 we dequan
tize these operators to obtain the corresponding classical 
functions. Up to Sec. 7 everything is written in intrinsic and 
coordinate-free notations. In Sec. 8 we show in which way 
the results can be rewritten in the usual x-p notations. Sec
tion 9 contains some applications: calculation of the classical 
functions for some one-parameter subgroups of the symplec
tic group; a method for calculating any matrix element of the 
evolution operator associated to a quadratic Hamiltonian. 
We end with some remarks. 

2. DEFINITIONS AND NOTATIONS 

Note: Following A. Grossmann, we are borrowing most 
of the following notations from D. Kastler, who introduced 
them in a slightly different setting. 12 
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We denote by E a real vector space of even dimension 
2n < 00. On this vector space a symplectic form a (i.e., a 
bilinear, antisymmetric map from E xE to R) is defined, 
which we assume to be nondegenerate [i.e., a(u,v) = 0, 
't/uEE:=;.v = 0]. Using this symplectic form we can define an 
affine function q:J on E xE XE 10.13: 

q:J (u,v,w) = 4(a(u,w) + a(w,v) + a(v,u», 

which can be interpreted as the surface of the oriented trian
gle with vertices u,v,w, and which plays a role in the so-called 
twisted product (see for instance Ref. 11). 

We normalize the invariant measure dv on E by requir
ing F2 = 1, where F is the symplectic Fourier transform 

(F f)(v) = 2 -" f dw eia(v,w) few) . 

Let JY be the Hilbert space L 2(E;dv). 
On JY we define a family of unitary operators 

I W(a);aEE J by 

(W (a)t/!)(v) = eia(a.v)t/!(v - a) . 

These operators W(a) satisfy the relation 

W(a) W(b) = eia(a.b)W(a + b); 

hence, they form a representation of the Weyl commutation 
relations. This representation is not irreducible, but we can 
build a family of irreducible subrepresentations by introduc
ing complex structures. 

A linear map J:E -+ E is said to be a a-allowed complex 
structure if 

J2 = -1, 

a(Jv,Jw) = a(v,w), 't/v,w,EE, 

a(v,Jv) > 0, if v:;fO. 

For any such a-allowed complex structure we define the 
function 

flAv) = exp [ - ~ a(v,Jv)] . 

These fl J are elements of JY. We define now the following 
subs paces of JY: 

JYJ = I t/!.flJ It/! is holomorphic w.r.t. J 

(i.e., VJat/! = iVat/!, 't/ aEE) and t/!.fl JE.!irJ . 

These JYJ are closed subspaces of JY, 14 which are left 
invariant by the W(v). Furthermore, the restrictions WAv) 
= W(v) I W J of the W(v) to the spaces JYJ form irreducible 

representations of the W ey I commutation relations. 14 (The 
notations used in Ref. 14 are different from the ones used 
here. The reader who would want to compare should make 
the obvious unitary transformation.) 

In each of the JYJ we can consider the elements 

fl ~ = W(a)flJ; 

they are in fact the coherent states with respect to the choice 
of complex structure (or equivalently of complex polariza
tion) J. The closed span of the fl ~ is the Hilbert space JYJ ; 

the fl ~ have moreover the following useful "reproducing 
property,,14.15: 

(2.1) 
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As a result of this any operator AJ on JYJ can be represented 
by its matrix elementsAAa,b) = (fl~, AJfl ~): 

'PE.!irJ:=;.(A J 'P)(a) = f dbAAa,b)'P (b) . 

Because of this property we also call A (-,.) the kernel of the 
operator A. 

Whenever a functionf on phase space is given, we can 
compute its quantal counterpart on the Hilbert space JYJ : 

QAf) = 2 -" f dv(F f)(v) WA - v/2); (2.2) 

this is the usual Weyl quantization procedure when an irre
ducible representation of the Weyl commutation relations is 
given. We can rewrite this expression as l5 

QAf) = 2n f dvf(v)IlAv) , (2.3) 

wherellAv) = WA2v)ll,and(1l 'P)(v) = 'P( - v) for any 'P 
inJY. 

Note that both expressions (2.2) and (2.3) can be used to 
define Q (f) as an operator on the big space JY (at least for 
reasonable f) which, when restricted to the different JYJ , 

yields QJ(f) again.? The correspondencef -+ QAf) can be 
inverted, i.e., an operator AJ onJYJ can be "dequantized" as 
follows I I: 

(2.4) 

with 

(2.5) 

It is easy to check that the dequantized function of QJ (f) is 
always f, regardless of the chosen J. 

In these notations our results can be stated as follows: 
For any symplectic transformation S (i.e., any linear map on 
E leaving a invariant; see Sec.4) we have a classical function 
Ws given by 

ws.Av) = (det[(1 - iJ) + S(1 + iJ)]) 1/2 

X f dbflAb + Sb - 2v)ei<p [(b 12).v,(Sb 12)] 

[see Eq. (7.1); we have chosen one fixed complex structure 
J]. Here one can choose either of the two square roots of the 
determinant. If there is no good reason to do otherwise, we 
choose the one with argument in] - 11"/2,11"/2]. If 
det(1 + S):;fO, this simplifies to give [see Eq. (7.2)] 

2" WSJ(v) = e4ia(,'.(I+S) 'd 

, V det(1 +S) 

which is the result obtained in Ref. 10. 
The operators WJ (S) in JY J which are quantizations of 

these functions are given by 

WJ(S) = 2 - n(det[(1 - iJ) + S(1 + iJ)]) 112 

X f db Ifl ;b)(fl ~ I 
[see Eq. (7.4)]. Another form of this operator can be found in 
Sec. 6. These operators form a unitary projective representa
tion of the symplectic group: 
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WAS\)WAS2) = pAS\,S2)WAS\,S2)' 

The multiplier p takes only the values ± 1; given S\,S2 it is 
possible to determine the sign of P(S\,S2) once one has fixed 
one's choice of the square roots of the corresponding deter
minants det[(1 - iJ) + S (I + iJ)] (see Sec. 6). 

Moreover, the operators are the representation on the 
quantum level of the linear canonical transformations on 
phase space. We have indeed for any symplectic transforma
tion S (the symplectic transformations are in fact just the 
linear canonical transformations) and for any functionf on 
E: 

WJ(S)QJU)WY(S) = QASf) with Sf(v) = f(S -IV) 

[see Eq. (6.4)]. Analogous relations hold for the ws.J : 

WS"Jows,.J = pASI,S2)WS,.S,.J , 

ws.Jo fow!.J = Sf , 

where ° denotes the twisted product (see, for instance, Ref. 
11). These formulas depend on the choice of J. The relation 
between the WS,J and the wS,J' are given in Sec. 9. 

3. PROJECTION OPERATORS ON THE!It"J 

Since the!lt"J are closed subspaces of !It", there exist 
orthogonal projection operators PJ mapping !It" to !It''J. 
With the help of the n~, these projection operators can be 
explicitly constructed. 

Indeed, since the n ~ span the subspace !It''J' we have 

PJ I/' = O¢=:::?(n~, 1/') = 0 . 

On the other hand, we have also Eq. (2.1): 

PJ I/' = I/'<;=:::::>I/' (a) = (n~, 1/') . 

It is now obvious that PJ is given by 

(PJI/')(a) = (n~,I/'). (3.1) 

Written more explicitly this means that the projection PA' of 
any square integrable function I/J on K J is given by 

(PJI/J)(a) = f dv n a(v) I/J(v) . 

This function PJI/J has automatically the right holomorphy 
properties. 

This can also be written as (in Dirac's bra-ket notation) 

PJ = f InDda(n~l· 
Since on the other hand the K J are invariant under the 
W(v), we have 

PJ W(v) = WAv)PJ, 'VvEE. (3.2) 

4. THE SYMPLECTIC GROUP AND ITS NATURAL 
REPRESENTATION IN L 2(£;dv) 

The symplectic group Sp(E,o) is defined as the set of 
real linear maps from E to E which leave 0 invariant: 

SESp(E,o)<;=:::::>o(Sv,Sw) = o(v,w), 'Vv,wEE. 

Note that for any given complex structure J, and for any 
SESp(E,o), the map SJS - I is again a complex structure. 
The converse is also true: Whenever two complex structures 
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J, J' are given, there exists a symplectic transformation Sin 
Sp(E,o) such that J' = SJS - I [For any J one can construct 
aJ-symplectic basis of E, i.e., a basis! el, .. ·,en ,fl, ... ,fn I in E 
such that o(ejte) = 0 = o(/;,fj)' o(e;,fj) = Dij andfj 
= Je j' The map S mapping a J-symplectic basis to a J'-

symplectic basis is in Sp(E,o), 16 and satisfies SJS - I = J'.] 
A symplectic transformation always has determi

nant 1. 16 Since any complex structure J is obviously in 
Sp(E,a), we have in particular det J = 1. This will be used in 
calculations later on. 

As in the case of the Galilei group or the Poincare group 
we can define the inhomogeneous symplectic group 
ISp(E,a) by taking the semidirect product of Sp(E,a) with 
the translation group on E: the elements ofISp(E,a) are pairs 
(S,a) with SESp(E,a), aEE; the product of two such pairs is 
defined as 

(S,a)(S',a') = (SS',sa' + a). 

The natural representation of Sp(E,a) on L 2(E;dv) is 
given by 

(Us!f/)(v) = !f/(S -IV). 

This is obviously a unitary representation ofSp(E,a). Note 
that the K J are not invariant under Us unless SJS -\ = J. 
An easy calculation yields 

(4.1) 

Taking into account the definition (3.1) of the orthogo
nal projection operators PJ , we see that this implies 

(UsP1'n~)(a) = (n~.-la,nD 

hence, 

= (n~1's I ,n~~s I) 

= (PSJ 'S' UsnD(a); 

UsoP1' i,;vJ = PS1's I oUs i;fJ . 
It is easy to see that 

Us W(v) = W(Sv)Us . 

(4.2) 

(4.3) 

Hence, we have also a unitary representation ofISp(E,a) on 
L 2(E;dv) given by 

US.a = W(a)Us ' 

5. INTERTWINING OPERATORS BETWEEN THE K J 

(SEE ALSO REF. 7, AND IN A SOMEWHAT DIFFERENT 
CONTEXT REF. 17) 

We will use the natural representation ofSp(E,a) on 
L 2(E;dv) to define a projective representation on each K J. 
Since the Us map each K J to KSJS 1, we will need some 
device to map everything back from KSJS I to K J. This 
device will be given by the maps intertwining the WAv): 
moreover, we will be able to construct these intertwining 
maps explicitly. 

Let any two J, J' be given. Since the WAv) form an 
irreducible representation of the Weyl commutation rela
tions on K J, and the same is true for the W1' (v) on 71"1" von 
Neumann's theorem tells us there exists a unitary map Tj' J 
fromKJ to 71"1' intertwining the WAv) and W1'(v). Henc~, 

T1'.J WJ(v) = W1'(v)T1'.J . (5.1) 
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We proceed now to compute these TJ'", 
Combining T ,~,; [Eq. (5.1)] T ,~,; with Eq. (3.2), we see 

that 

PJ' IwJ ;;,; WJ' (v) = PI' lx, W,(v)T ,~,; 

= WAv)PJ' I}(,T ,~,; . 

Hence, the operator PI' I ,w ,T ,~';E,qjJ (dY'r ) commutes with 
all the WI' (v) , which implies that it is a multiple of l w ,., or 

PI' I )( , = YJ',J TJ',J . (5.2) 

The constant Yl',' is always different from zero: If it were 
zero, we would haveJY'l'lJY',; hence, (fl",fl,) = 0, which 
is impossible since this inner product is the integral of a 
strictly positive function. On the other hand, if lyJ',' I = 1, 
then IIPl' IJIII = IIIJIII; hence, Pl' IJI = IJIfor any lJIin JY'" or 
JY'" = JY',. From Eq. (2.1) we see that this implies that the 
JY', are all different (J' =l=J =? JY'J' =l=JY',), have trivial in
tersection (this is essentially Schur's lemma), but that no 
nontrivial vector in JY', can be orthogonal to all vectors 
JY'l' . 

Note also that Eq. (5.2) implies that, up to some con
stant, PI' P, is a partial isometry in JY' with initial subspace 
JY', and final subspace PrJ' which, as a map from Prj to 
,'}'f'l" intertwines WJ with Wj" From Eq, (5.2) we see that 

IY1',J 12 = II Pl'il,1I 2 = (il"Pl'fl,) 

= f dal(fl~"flJ)12. (5.3) 

For the time being, we choose Yl',' = I YJ',J I. This amounts 
to fixing the up to now undetermined phase factor in Tl'". 

Putting now f3l',J = Y,~'; (which we are allowed to do, 
since Yl',J =1=0) we have 

T1',' = f3l'"P, , Iff, . (5.4) 

We can use Eq. (5.3) to computef3l','; after some calculation 
[see Eq. (A16)] we get 

f3J ',J = 2 - ,,/2 [det(J + J ')] 114 • 

It is obvious from Eq. (5.5) that 

13]'" = f3l',J , 

f3s1's ',SJS • = f3l'," 'v'SESp(E,o) , 

(5.5) 

Moreover, if we consider three subspaces JY'J' JY'1" JY']" , 
then the map TJ",,' 0 Tj,j is a unitary map intertwining the 
WAv) and the W]" (v). Owing to the irreducibility of the 
Wj(v), this implies the existence ofa phase factora(J" ,J',J) 
such that 

TJ",j,oTl',J = a(J ",J',J) TJ" " . (5.6) 

With our choice for f3J',J' this a is given by 

a(J" ,J ',J) = IIPl' ,fl, 11-1I1PJflJ" 11- 1 PJ" ill' 11- 1 

Since 

X (P,,, fl"P"fl,) 

(Pl" flJ ,Pl'fl,) 

I (Pl',flj,Pl'flJ) I 

(PJ"ilJ,Pl'il,) = f da(fl"fl~" )(fl ~"fl,) 
= f da(fl j- a,ill" )(ilJ' ,fl ,- a) 
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(5.7) 

= (flj"PJilJ")' 

we can also write a as 

(fll' P,il],,) 
a(J" ,J',J) = --'---

I (fl l' ,P,fl r ) I 
(5.7') 

In particular, a(J" ,J,J) = a(J,J' ,J) = a(J',J' ,J) = 1. 
Note, incidentally, that as a by-product of our reason

ing above we have proved that 

l(fll',PJilr ) I 
= I(Pj" flJ,P",ilJ) I = IIPJ,il,IIIIPJilJ" IIIIPj"ilj' II, 

Since a(J,J',J) = 1, we have 

TT',J = T ;:,; = TJ,1' . (5.8) 

Inverting Eq. (5.6) and using Eq. (5.8), we get 

a(J,J',J ") = a -1(J ",J',J) = a*(J ",J',J) , 

Combining this with Eq. (5.7') one can easily show that 

a(J",J',J) = a(J',J,J") = a(J,J",J'). 

From Eq. (5.7) or (5,7') one sees again that 

a(SJ "S -1 ,SJ'S -1 ,SJS -1) = a(J" ,J',J), 'v'SE Sp(E,o-). 

We have of course also 

a(J"',J ",J') a(J"',J',J) = a(J"',J" ,J) a(J ",J',J) , 

We can calculate a explicitly from Eq. (5.7') (see Appendix 
A), The result is 

a(J" ,J',J) 

= lim (exp(iargY det(2J+J'+J" -ifll-isJ'J") ): 
,. 1 

S • (5.9) 

Here the argument of the square root of the determinant is 
determined by the requirement that it be continuous in sand 
equal to zero for S = ° (see Appendix A). 

6. A PROJECTIVE REPRESENTATION OF THE 
SYMPLECTIC GROUP ON THE PrJ 

We have now a device to map from a Prj to a Yt'j': It is 
given by the orthogonal projection operator onto ,WOj' , 
which, when restricted to Pr" is a unitary map up to some 
constant we can compute. This device will now be used to 
define a family of maps! VJ (S); SE Sp(E,o) I which will be 
unitary maps from Prj to itself: 

VJ(S) = TJ,SJS • oUs I}(, 
= f3J,SJS I PIoUS I )(, ' (6.1) 

Here 13 is given by Eq. (5,5): 

13 = 2 - nI2[det(SJ + JS)] 1/4, ',SJS • 
Since both the Us and the Tl'" are unitary, and since UsYt'J 
= PrSJS 1, the VJ(S) are obviously unitary maps. In some 
sense they are even the most natural unitary maps in 
,qjJ (JY'J) representing the symplectic transformations: For 
any S, we simply apply Us; since Us does not leave JY'j 
invariant in general, we project back onto JY'J' and we 
normalize. 

The VAS) form a projective representation ofSp(E,a), 
and we can even give an expression for the multiplier. In
deed, we have 
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UsoTJ',J = /3J',J UsoPJ' IJI"'J = /3sJ's -I ,SJS -I P SJ'S -I oUs IJI"'J = T SJ'S -I ,SJS -I oUs IJI"'J ; 
Hence, 

VJ(SI)O VAS2) = TJ,S,JS I I o Us, oTJ,S,JS
2 

I o Us, IJI"'J = TJ,S,JS I I o TS,JS I-I ,S,S,JS
2
- ISI 1 o Us, o Us, l,w'J 

= a(J,SIJS I-I ,SIS~S 2-IS 1-I)TJ,s,s,J(S"S,)-' oUs,s, IJI"'J 
= a(S I-IJSI,J,S~S 2-I)VASIS2)' 

SO we have indeed a projective representation ofSp(E,u), with multiplier ii(SI,S2) = a(S I-I JSI,J,S~S 2-
1
), where the right

hand side is given by Eqs. (5.7') and (5.9): 

ii(SI,S2) = a(S I-IJSI,J,S~S 2-
1) = exp(i arg(JJsI-'JS, ,PJJJs,JS 2-

1 » 

= eXP(iarg( f da(JJJ,Us,JJD(JJ~,Us,JJJ») 
= lim (exp(i argY det(2J + S~S 2- 1 + S I-IJSI - isI- iSS I-IJSIS~S 2-

1») . 
s~1 

Here the argument of the square root of the determinant is 
determined by the same continuity requirement as at the end 
of the preceding section. 

These ii have the usual multiplier property 

ii(SI,S2S3)ii(S2,S3) = ii(SI,s2)ii(SIS2,s3) . 

The properties of the a(J " ,J' ,J) listed at the end of the pre
ceding section imply 

ii(S,I) = 1 

or even 

Also 

ii(S 1- I ,S 2- I) = ii*(S2,s I) , 

ii(S,S - I) = 1. 

(6.2a) 

(6.2b) 

(6.2c) 

(6,2d) 

The operators VJ(S) thus form a projective representatiOn 
of Sp(E,u) which is, however, not the metaplectic represen
tation. In this latter representation one deals in fact with a 
true representation R of a two-sheeted covering ofSp(E,u) in 
which the representation images of the two lifts.2' 1,.2'2 of the 
same symplectic operator S differ only by a sign: 
R (.2'1) = - R (.2'2)' This implies that the multiplier of the 
projective representation of Sp(E,u) induced by the meta
plectic representation takes only the values ± 1, which is 
not the case for our multiplier Ii. We can, however, reduce 
our representation above to the metaplectic one. To do this, 
one should define 

WAS) = tJ,S VJ(S), 

where tJ,S is a phase factor (ItJ,s I = I), These WAS) form 
again a projective representation of Sp(E,u) with a new 
multiplier: 

P(SI,S2) = tJ,S, tJ,s,t J--:s:S,ii(SI,S2)' 

We want this multiplier to take only the values ± 1; hence, 

[ii(SI'S2)] 2 = t ]'s,s,t 1.~, t 1.~, . 
So any decomposition of ii2 in this form will give us a 

possibility to reduce our representation to the metaplectic 
one. However [see Eq. (B5)], one has 

[ii(SI'S2)] 2 = exp(i arg(det(I - iJ) + SIS2(l + iJ) 
·det[(1 + iJ) + SI(l - iJ)] 
.det[(1 + iJ) + S2(l- iJ)] . 
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This decomposition has exactly the right form. Moreover, 

I det[(1 - iJ) + S(I + iJ)] I = 2n [det(SJ + JS)] 1/2 

22n /3 2 = J,SJs- I 

[see Eq. (B6)], 
Hence, we can define 

TJJ,S = 2 - n(det[(1 - iJ) + S (1 + iJ»)) 112 (6.3a) 

(since ITJJ,s I = /3J,SJs -I, this is always different from zero) 
and 

WJ(S) = exp(i argTJJ,s)VJ(S) 

= TJJ,SPJoUS L*"J . (6.3b) 

In the definition of TJ J,S we choose the square root with argu
ment in] - 17'/2,17'/2]. [A continuity procedure to determine 
the phase ofthis square root would not be unambiguous for 
all S: There do exist S for which det(I + S) = 0.] In fact, 
there is absolutely no reason to prefer the root with positive 
real part to the one with negative real part. It is just a topo
logical fact of life that it is impossible to choose the signs of 
the TJJ,S in such a way that the projective representation of 
Sp(E,u) becomes a true one. Changing the sign of TJJ,S for a 
subfamily of Sp(E,u) means only changing some signs of 
multipliers where elements of this subfamily occur. We will 
use this freedom in the choice of the sign of TJ J,S in the treat
ment of nonexceptional S later on. 

Note that our constant TJJ,S leads to the same matrix 
elements as Bargmann's constant Vg 2 (see Appendix B), 

By construction the WAS) form a projective represen
tation of Sp(E,u) with a multiplier which takes only the val
ues ± 1: 

WJ(SI)WAS2) = pASI,S2)WASIS2) , 

pJ (SI,S2) = ii(SI,S2)exp [i arg(TJJ,S, TJJ,S, TJJ--:S:s,)] = ± 1 . 

Note that the constant TJJ,S depends explicitly on S and not 
only on SJS - I . Indeed it may happen that SJS - I = J, and 
hence/3J,SJS ' = l,yet TJJ,s;(= 1. As a consequence of this p 
does not inherit ii's nice property (6,2b). Properties (6.2c) 
and (6.2d) also fail to hold in general for p: One can find S 
such that TJJ,S = i, and hence TJJ,s ' = i, which implies 
peS,S - I) = - 1. So the only property of ii which passes on 
to pis Eq. (6,2a). 
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Using Eqs. (4.3) and (5.1) we see that for any 
SE Sp(E,o), 

W,(S) W,(v) = 'TI,.s f3 J-:~s I TJ,sJS I W SJS I (Sv)Us \.w J 

= WASv)WAS) 

or 

WAS)WAv)WAS)-1 = WASv). (6.4) 

Combining this with Eq. (2.2) or (2.3), we see that 

WAS)QAf)WAS)-1 = QJ(Sf), (6.5) 

where Sfis the function defined by (Sf)(v) = f(S -I v). 
Of course, we can extend all this to the inhomogeneous 

group ISp(E,o). We have 

WAS,a) = WJ(a) WAS) , 

with 

WASI,a l )WAS 2,a2) 

= eia{a"s.a')W;(a l + S la2)p(ShS 2)WAS\S2) 

= eia{a .. S.a,) P(SI,S2)W;(Sha \)(S2,a2» . 
Generalizing Eq. (6.4), we get 

WAS, a) WAv) WAS, a) -I = e2ia{a.sv)WASv) 

or 

WAS,a)ll;(v) WAS,a) -I = llASv + a); 

hence, 

WJ(S,a)QAf) WAS,a) -I = QJ«S,a)f), (6.6) 

with 

«S,a)f)(v) =f(S-IV - S-Ia). 

Note that, for n even, the operators W( ± 1,a) are the 
W ( ± ;a) introduced in Ref. 13, and that, as was to be expect
ed, this representation ISp(E,o) is thus an extension of the 
Wigner-Weyl system as defined in Ref. 13. [For n odd a 
phase factor has to be introduced: in this case we have indeed 
WJ = (- 1,0) = iIlJ = i W( - ;0).] 

From Eqs. (6.4) and (6.5) we see that our operators 
WJ(S) are exactly the quantal counterparts of the functions 
w in Ref. 10, up to some phase factor. Hence, we can apply 
the dequantization procedure given in Ref. 11 to calculate 
these functions. This will be done in the next section. 

7. DEQUANTIZATION OF THE OPERATORS WJ(S) AND 
WJS,a) 

To apply the dequantization procedure sketched in 
Eqs. (2.4) and (2.5), we have to compute first the matrix 
elements of the operators WJ(S) with respect to the coherent 
states: 

WAS)(a,b) = (il~,WAS)iln = 'TIJ,s(il~,il~SI)' 
We calculate now the corresponding function WS: 

Ws(v) = 2n'TIJ,S f f da db (n ~,ll (v)il n(il ~,il ~~SI ) 

= 2n'TIJ,S f db(il~,ll(v)il~~s-I)' 
A straightforward calculation (Appendix C), using FilJ 

WS(v) = Idet[(I- iJ) + S(l + iJ)] ll12 

X f dbilAb + Sb - 2v)eilp (b12.v.Sb/2) , (7.1) . 

where ip is defined in Sec. 2. 
Formula (7.1) is valid for any Sin Sp(E,u). If Sis excep

tional, i.e., if 1 + S is singular, we see that for some direc
tions in EtheilJ factorin theintegrand ofEq. (7.1) plays no 
role, which leaves us with an integral of the phase factor ei'P, 
and hence gives us {) functions in the final result. If, however, 
1 + S is regular, we can always find u = (1 + S) - I v such 
that v = (I + S )u; hence, 

ws(v) 

= 2n'TIJ.s f dbilJ[(1 +S)(b_2u)]ei'P(b12,u+su.Sb/2) 

= ( 2n'TIJ,S f dbilJ [(1 + S)b ]e,a{b.Sb»)e4ia{SU'U) 

= Ks exp[ 4iu(v,(1 + S) -IV) 1 

=Ks exp (2iu(V, ~ ~~v)]. (7.2) 

Since S is nonexceptional, we can use our freedom in the 
choice of a sign for 'TIJ.s to redefine 'TI as 

'TIJ.s = 2 - n 
X lim (exp(i argY det[l + S - iSl(l - S)] l), 

S--I 

with again the assumptions that the root of the determinant 
is continuous in 5 and positive for 5 = O. With this choice for 
the sign of'TI, we have 

,----
Ks = 2nN det(l + S) . (7.3) 

The calculation is given in Appendix A. 
Note that the result (7.2) and (7.3) is exacly what was 

obtained in Ref. 10 for the classical functions corresponding 
to nonexceptional S. 

When S is exceptional, but J ker(l + S), we can again 
simplify formula (7.1) to obtain something anaologous to 
Eq. (7.2). Indeed, in this case we can decouple the degrees of 
freedom associated with ker(l + S), i.e., we can write E as a 
direct sum E = E' Ell E" [E" = ker(l + S)], such that 
a(E',E") = 0, JE' = E', JE" = E"; Scan then be con
sidered as a sum S = S' + S " , where S' is a non exceptional 
elementofSp(E', UE'XE')' andS" = - IE"' Formula (7. 1) 
can then be simplified to give (v = v' + v", with v'EE', 
v"EE") 

WS(v) = Ks{)(v")exp[ 4iu(v',(1 + S) -I v') 1 , 

o 
2 

= ilJ and formula (6.3) for 'TI, yields FIG. I 

1382 J. Math. Phys .• Vol. 21. No.6. June 1980 Ingrid Daubechies 1382 



                                                                                                                                    

with 

2n'2 - n" ( 1 - ( - It" . 1 + ( _ I)n") 
Ks = +1. 

y' detE.(1 + S) 2 2 

Here n' = !dimE', n" = !dimE ". 
The extra factor gives a coefficient 1 if n" is even, and i if 

n" is odd. In particular, we have 

W _ I (v) = 2 - n£5(V)( 1 - (2- I)n + i 1 + (2- I)n ) . 

There exist, however, exceptional S for which no J can be 
found such thatJker(1 + S) = ker(1 + S). For theseS, we 
have to apply directly formula (7.1). 

Note that the integrand in the general formula (7.1) has 
the following nice geometric interpretation: Take the trian
gle with vertices O,b,Sb. The midpoints of the sides of this 
triangleareb 12,Sb 12,andb + Sb 12. Then.p(b 12,v,Sb 12) is 
exactly the surface of the oriented triangle (b 12,v,Sb 12), 
while log!] A b - 2v + Sb ) is -2 X the distance of v to the 
third midpoint (b + Sb )/2 ["distance" being defined with 
respect to the Euclidean forms(u,w) = u(u,Jw)] (see Fig. 1). 

We can of course also calculate the functions corre
sponding to the W(S,a) for the inhomogeneous group; this 
gives 

WS,a(v) 

= r'TJJ,Se2ia(a.v) f db flAb - 2v + a + Sb )ei<P(b12,V - a12,Sb12) 

= e2ia(a.v)ws (v - a12) . 

As a special case we have the well-known result 

wa(v) = wI,a(v) = e2ia(a,v). 

Requantization of the functions (7.1) along the procedure 
sketched in Eq. (2.3) yields (for the detailed calculation, see 
Appendix C) 

WJ(S) = r f dv ws(v)llAv) 

= 22n'TJJ,s f dv f dbflAb + Sb _2v)ei<p(b12,v,Sb12) 

xllAv) 

= 'TJJ,S f db I fl~b)(fl~b I 
= 2 - n [ det [(I - iJ) + S (1 + iJ)] J 112 

X f db I fl ~b)(fl ~ I . (7.4) 

This is of course again the same operator as given by Eq. 
(6.1), as one can easily check by comparing the kernels corre
sponding to Eqs. (6.1) and (7.4). 

8. THE TRANSLATION TOx-p NOTATIONS 

The translation of our intrinsic notation system to any 
particular more explicit notation system is completely deter
mined once one has given explicit expressions for E, u, and J. 

Writing everything in coordinate notations amounts to 
taking 
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E = Rn Ell R n (with usually n = 3N, 
N being the number of particles), 

J. Math. Phys., Vol. 21, No.6, June 1980 

E3v = (x,p), 

u«x,p),(x',p'» = ! (p.x' - x.p'), 

J «x, p» = (p, - x). 

Hence, flAv) = exp[ -! (x2 + p2)] and 

1 dv = --dnxdnp. 
(21TY 

A symplectic transformation can be represented by a matrix 
Ct: ~) ,whereA, B, C, D, are real n Xn matrices such that 

S «x,p» = (Ax + Bp, Cx + Dp). 

The fact that S is symplectic is equivalent to 

{

A tc - C tA = 0, 

BtD-DtB=O, 

CtB-DtA = 1. 

Another explicit but less frequently used notation system is 
Bargmann's. Here one takes 

E=Cn
, 

E3v=z, 

u(z,z') = Im(z.z') = ;i (z.z' - z.Z') , 

J(z)=iz. 

Hence, flAz) = exp[ -! (Z)2] and 

dv = (l/~)d (Re z)d (1m z) . 

9. APPLICATIONS 

We have computed the operators WAS) of the meta
plectic representation on one hand, and on the other hand 
the corresponding classical functions. Both these results can 
be used for applications. 

A. Applications of the classical function formula 

We give here some explicit calculations of the classical 
function corresponding to a given symplectic transforma
tion. In the first three cases the symplectic transformations 
form a one-parameter subgroup ofSp(E,u) which is defined 
as the classical evolution group for a quadratic Hamiltonian. 
Since for any quadratic Hamiltonian h the quantum me
chanical evolution operator exp(iQh t ) is exactly given by 
W (St ), where St is the one-parameter symplectic transfor
mation group associated to h, one sees that the calculated 
functions are, at least formally, the twisted exponentials of h 
(see also Refs. 8 and 18). It is to be noted that one can show, 
using some recent results,19 that these functions really are 
the twisted exponentials (not only formally), i.e., that the 
series of the twisted exponential makes sense in Y', and does 
converge (again in Y') to ws, This means that the quite 
complicated proofs (see, for example, Ref. 18) for this con
vergence in particular cases are no longer necessary. 

We give our different results in the x-p notation. Since 
we are here on the level of the classical functions, the results 
are independent of the particular representation ()fthe Weyl 
commutation relations we used: 
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(I) The harmonic oscillator (n = 1): H = ! (Xl + p2) 
gives rise to the evolution 

{
X, = Xo cos ~ + Po sin t, 

p, = -XoSlOt+Pocost; 

hence, (x, ,p,) = s, (xo,Po), with 

S = ( cos t sin t). 
, - sin t cos t 

Calculating the classical function corresponding to this, we 
find [we can apply Eq. (7.2) sinceS, is nonexceptional when
ever t =1= (2k + 1 )1T; for the special values t = (2k + 1)1T we 
have S, = - 1 and ws, =! 8(x)<5(p).] 

WS,(X,p) = (cos [t /2]) -Iexp( - i(X2 + p2)tan [t 12]) . 

This is the result found in Refs. 9 and 18. 
(2) The same for H =! (p2 - X2) gives 

and 

S = (COSh t 
, sinh t 

sinh t ) 

cosh t 

WS,(X,p) = (cOSh ~ )-l e - 2i(P'-X
2
)tanh('12). 

(3) The same for H = ~p2 + x gives (x"p,) = S,(xo,Po) 
+ a" with 

S, = (~ ~) 
and a, = ( - ! t 2, - t). We have ws,(x,p) = e - i'P'; hence, 

W (xp) = e -2i(p"/2) + 'x +, '/8). 
S,.a ( , 

Again these are the same expressions as in Ref. 9. 
In our last calculation we treat a "general" exception S. 

It is general in the sense that no J can be found such that 
J ker(l + S) = ker(l + S), which compels us to use the 
nonsimplified formula (7.1). 

(4) Take (0- 1 a_I ), with a > O. We have lIJ.s 

= (iMYV 2 + ia and 

f db ilJ(b + Sb - 2v)eio(b,Sb) +2io(Sb,v) +2io(v.b) 

. V-;V2' 1 
= (after some calculatlOn) -- ~ r- --;:=== 

2 V a Va-2i 
X8(p)e -4ix'la . 

Hence, 

ws(x,p) =! V 1Tla iVf8(p)e-4ix'a-' . 

B. Applications of the expression for WJ(S} 

We have [see Eq. (6.3b)] WAS) = lIJ,sPJoUS IJY
J 

• 

Hence, for any <jJ, l/J in K" 

(q;,WAS)l/J)=lIJ.s fdV<jJ(V)l/J(S-IV). (9.1) 

Suppose we are interested in the time evolution operator ei
' H 

associated with a quadratic Hamiltonian H. Dequantizing H 
we get a quadratic function h on phase space, for which the 
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corresponding classical time evolution on phase space is giv
en by a symplectic one-parameter group (Sh)" It is easy to 
check that ei

' H = W (Sh ),. Hence, the matrix elements of the 
time evolution operator ei

' H for an at most quadratic Hamil
tonian are given by 

This formula is of course only true if the chosen representa
tion of the Weyl commutation relations is a K J representa
tion. However, we can use an extension for arbitrary repre
sentation spaces. 

Indeed, let K be any Hilbert space carrying an irredu
cible representation of the Weyl commutation relations 
[usually one chooses K = L 2(JRn

) with the Schrodinger re
presentation]. Choose a nice complex structure Jon E, (1, 

and let .oJ~be the ground eigenstate of the harmonic 
oscillator Hamiltonian corresponding to hAv) = sAv,v) 
= IT(v,Jv). [Usually one takes J (x,p) = (p, - x); hence, 

h (v) = ! (x2 + p2); .oJ is then-in the Schrodinger represen
tation-the well-known Hermite function 1T - n12 

X exp( - ! x 2
),] We define the coherent states .0 ~ to be the 

translated [by W(a)] of .oJ:1i ~ = W(a) Ii,. For any vector 
l/J in K we define the function ¢'" by 

¢J,,,,(a) = (n ~,l/J)JY . 

One can easily check that, as a function of a, these ¢J,,,, 
are elements of K J • The converse is also true: To any func
tion in K J corresponds a unique vector in K for which the 
relation above holds. The matrix elements of the evolution 
operator ei

' H for any quadratic Hamiltonian H = Qh are 
then given by 

(q;,ei' Hl/J) = 1I"s •. , L da ¢J,,,, (a)¢"", (Sh, _ ,a) . (9.3) 

So once the classical solutions of the Hamiltonian equations 
for the Hamiltonian h are known, we can compute any ma
trix element of the quantum evolution operator for the corre
sponding Hamiltonian H = Qh' This Hamiltonian H, 
though at most quadratic, may be quite nontrivial, e.g., a 
system of N particles, in a homogeneous electromagnetic 
field (with arbitrary strength), with harmonic oscillator pair 
potentials, is described by a Hamiltonian falling into this 
class. 

The procedure given above for applying our formula for 
WAS) even if the representation chosen is not a K J repre
sentation can of course also be applied if one is not interested 
in one-parameter subgroups but in the whole symplectic 
group: We can define a projective representation ofSp(E,u) 
on any Hilbert space :JI" carrying an irreducible representa
tion of the W eyl commutation relations 

(q;,W(S)l/J) = lIJ.s f da ¢"",(a)¢J,,,,(S -Ia). (9.4) 

In the case where K = L 2(Rn), with the Schrodinger 
representation 

(W(Xa,Pa)l/J)(x)=exp( - ~ XaPa)eiP"x1/J(X-Xa), 

Ingrid Oaubechies 1384 



                                                                                                                                    

one can check that this yields 

(cp,W(S)t/!) = f f dx dx' cp (x) Us(x,x')t/!(x'), 

where Us(x,x') is given, up to a phase factor, by expression 
(3.27) in Ref. 4 for the cases considered there. The phase 
factor occurs because we really have a (projective) represen
tation of the whole group Sp(E,o) while in Ref. 4 only indi
vidual symplectic transformations were studied. 

10. REMARKS 

(1) In the preceding section we showed how one can 
reconstruct, using our expression in :JrJ, the metaplectic 
representation on any Hilbert space carrying an irreducible 
representation W(v) of the Weyl commutation relation. To 
do this, we introduced the coherent states (with respect to 
some J) in:Jr. We can avoid these coherent states in the 
reconstruction if we use the classical functions WS: Let nbe 
the representation on:Jr of phase space parity (v ---+ - v). 
Then define W (S) on :Jr as 

W(S) = 2n f dv ws(v)W(2v) n. 

(2) We have given explicit expression (6.3b) and (7.4) 
for the operator WAS). [In fact, Eq. (9.4) shows us that 
expression (7.4) is also valid in other representation spaces 
than :JrJ.] We can use these expressions to calculate the 
matrix elements of WJ(S) between coherent states: 

WAS)(a,b) = (fl~, WAS)fl~) 
= eia(Sb,a)(fl ~ - Sb, WJ (S)fl J ) 

= 1JJ,Seia(Sb,a) f dv fl ~ - Sb(v)flsJs ' (v). 

Using Eq. (AS) this gives 

WAS)(a,b) = (1JJ.s) -lexp[io(Sb,a) - iu(a - Sb, 

JZ(a - Sb» - u(a - Sb,Z(a - Sb »], 

with 

Z = - (J + SJS - I) - I . 

It is easy to check that this is in fact the same expression as in 
Bargmann.2 

(3) Formula (7.1) for Ws depends on the choice of J. So 
let us denote for the time being this function by WS,J' For two 
J, J' there exists of course a relation between WS,J and the 
WS,J" Since one sees easily from Eq. (6.3) that 1JJ.s 'ss' 
= 1Js'JS' ',S' a simple substitution in the integration in Eq. 
(7.1) gives us the following relation between ws,J' and WS,J 
(we put J' = S 'JS '-I): 

(10.1) 

On the other hand, we know that for any function! on phase 
space 

!(S'-IV) = S'!(v) = (ws',J o !owt,,J)(v), 

where ° denotes the twisted product (see for instance Refs. 
11 and 13). Substituting ws ' sS'.J forf, and introducing the 
multipliers p, we get 

Ws 'ss'.J(S' -IV) = pAS',S' -ISS')pASS',S' -lws,Av). 
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Combining this with Eq. (10.1), we see that 

WS,J' (v) = pAS ',S' -I SS') pASS ',S' -I )WS,J(v) . 

So, up to a sign depending on J, J', and S, ws,J' is equal to 
wS•J ' Ifwe choose to consider our representation as a double 
valued representation of Sp(E,u) instead of as a projective 
representation, this implies that the double valued represen
tation S -++ ± wS,J is independent of J. 

(4) Formula (9.4) is only valid for linear canonical 
transformations. In fact, once the canonical transformation 
Tis nonlinear, there does not exist any more a bounded oper
ator VT satisfying 'tJ I: QJVT = VTQJoT ,. (This can easily 
be seen if one realizes that up to a constant this V T would 
have to be unitary. One can then use an argument found in 
Ref. 10 to show that T cannot be linear.) One can of course 
try to find V T satisfying the relation above for just n indepen
dent functions!} (see, for example, Ref. 20). The operator 
constructed in this way is however dependent on the choice 
ofthel}· 
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APPENDIX A 

All the calculations in this Appendix are based on the 
following general principle: 

Let B be a real linear map E ---+ E such that 

o(u,Bv) = o(v,Bu), 'tJu,vEE, 

u(u,Bu) > 0, if u#O, 

(AI) 

(A2) 

then the function flB(V) = exp[ - ~ o(v,Bv)] is integrable, 
and 

(A3) 

Here we choose the positive square root of det B. 
By a simple analyticity argument one can extend (A3) 

to all complex combinations B + iC of real linear maps from 
E to E, where B is chosen as above [B satisfies both Eqs. (A 1) 
and (A2)] and C is symmetric [i.e., it satisfies Eq. (A 1)]. For 
any such complex combinations we have again 

f dv e - a(u,Bv)/2 e - ia(v.Cu)/2 = 2n [det(B + iC)] c- 1/2 • 

(A3') 

Here we have introduced the notation [det(B + iC)] c± 1/2 in 
the following meaning: let! ± : [0,1] ---+ C be a continuous 
function with! + (O)ER + and/ + (5) 
= [det(B + isC)] ± 112 • The co~tinuity of/and its initial 
value in R + select without ambiguity one of the two possible 
roots of [ det(B + iSC)] ± I as the value off ± (5) at any S. 
Then we define 

[det(B + iC) L± 112 = ! ± (1) . 
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As usual in Gaussian integrals, the integration variable in 
Eq. (A3) can be shifted by a complex vector: 

f dv I1B(V + a + ib) = 2n(det B) -112 , (A3") 

where we define O(U + iu',v + iv') to be the obvious complex 
linear extension: 

o(u + iu',v + iv') = o(u,v) - o(u',v') + io(u',v) + io(u,v'). 

For any real linear mapB satisfying both Eqs. (AI) and 
(A2), we can construct B = - B-1 [B is regular because of 
Eq. (A2)]. It is ea~y to check that Eqs. (AI) and (A2) are 
again satisfied by B. As a corollary ofEq. (A3") we have now 

f dv eio(Q.V)I1B(v) = f dv eio(Ba.Bv) e - o(v,Bv)12 

= f dv e - o(v - ilJa,B (v - iBa»/2 e - o(a,Ba)12 

= 2n(det B) - 112I1B(a) . 

Finally, note that the family of real linear maps satisfying 
Eqs. (At) and (A2) is a convex cone containing the u-aI
lowed complex structures. 

We can now start with our calculations. We begin with 
f3J',J' Equation (5.3) tells us that f3J',J is given by 

( f )-112 

f3J'.J = dal(I1~·,I1J)12 . 

So we start by calculating (11 ~. ,11 J). Put Z = J + J'. Then 

(11~, ,I1J) = f dv e - io(a,v)flJ' (a)eo(a,J'v)l1J' (v)I1J(v) 

= 11J'(a) f dv eio(iJ'a-a.v)l1z{v) 

= 2n(det Z)-1I211J'(a)l1i(a - il'a) 
= 2n(det Z) -112 e - io(a,J'ia) 

Xe-a(a,(J'+i+J'iJ')a)/2. 

Since, however, Z = J + J', and J2 = 1'2 = -t, we have 
J'ZJ = - Z; hence, JiJ' = - i, or 
1'iJ'=ziJ'-JiJ'= -J'+i. (A4) 
This implies 

(11~, ,I1J) = r(det Z) -1/2 e - io(a,J'ia)11 ~(a) . (AS) 

Hence, 

f da 1(11~, ,I1J) 12 = 22"(det Z) -I f da 11 i(a) 

= 2"(det Z) -I(det i) -112 

= 2"(detZ)-I12. 

So finally 

f3J',J = (f da 1(11~, ,I1J) 12) -112 = 2 - nl2(det Z)1I4 

= 2 - n12[det(J + J')] 114. (A6) 

• We now compute a(J ",J',J). From Eq. (5.7') we see that 

a(J",J',J) = expli arg[(I1J',PJflr )] l ' 
Put ZI = J + J', Z2 = J + J". Using Eq. (AS) we can 
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now calculate arg(11 J' ,PJ I1 r ): 

arg« I1J' ,PJl1r » = arg[ f da(l1J' ,11 ~)(11 ~,l1r)] 

= arg( f da exp[ - o(a,(il + i 2)a)] 

- io(a,J (i2 - i})a») . 

From Eq. (A4) we see that Ji. = - 1 - if' hence 
J (i2 - i l) = - (i2 - il)J. Combining thi; with the fact 
tha~J,iiAsatisfy Eq. (AI), weseenowtha~both?1 + i 2 and 
J(Zz - ZI) fulfill condition (At), while ZI + Zz obviously 
satisfies Eq. (A2). Hence, 

arg«I1J "PJ l1r » = arg([det(i1 + i2 

- iJ(il - i 2)L- 1I2 ) . (A7) 

The determinant in Eq. (A 7) can be simplified. Indeed 

i l + iz = i l( - Zz - ZI)i2 , 

J(i l -i2) 

= Ji l ( - Z2 + ZI)i2 

= - ilJ( - Zz + ZI)iz + ilZI( - Zz + ZI)i2 . 

Hence, 

det(i l + i2 - iJ(il - i z» 
= deal det( - Zz - ZI - iJZz + ilZt + iZtZz - iZtZt) 

Xdeti2 

= det(i1i z)det(2J + J' + J" + il + iJ'J") . 

Finally, 

a(J" ,J ',J) = exp(i arg( [det(2J + J' + J" 

- il - i1'J")] ~/2» . (AS) 

Our last calculation concerns the coefficient in Eq. (7.2). 
We have to calculate 

1= f dbl1A(l + S)b )eio(b,Sb) 

= [det(1 +S)] -I f dbI1Ab)e- io(b,(l+S) Ib) 

= [det(1 + S)] -I f db exp [ -1 ~b,Jb + i ~ ~ ~ b )) . 

One can easily check that (1 - S) (1 + S) -I satisfies Eq. 
(AI) (see also Ref. 10). Hence, 

1= 2" [det(J+i 1 - S ))-1I2 
det(1 +S) 1 +S e 

2" --:;==== (det[J(1 + S) + i(1 - S)])e-I/Z 
V det(1 +S) 

2" --:;==== (det[1 + S - iJ(1- S)]);1/2 . 
V det(1 +S) 

Combining this with the other coefficient in ws(v), this 
yields the result stated in Eq. (7.3). 

APPENDIXB 

Our first calculation here will be the decomposition of 
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a2 (see Sec. 6). Before computing this, we derive some simple 
relations which will tum out to be very useful. 

The first of these is 

J(I±iJ)=J +il= +(1±iJ); 

hence, 

(I + iJ)(1 - iJ) = (I - iJ)(1 + iJ) = 0, 

(I ± iJ? = 2(1 ± iJ). 

(Bl) 

(B2) 

(B3) 

On the other hand, we already mentioned the existence for 
any complex structure J of J-symplectic bases, i.e., of bases 
ej,/j of E such that/j = Jej , a(ej,ek) = a(/j'/k) = 0, 
a(ej'/k) = Ojk' With respect to such a basis J is represented 
by the matrix 

M J = (~ -~). 
Hence, there exists a complex unitary matrix U such that 
UMJ U - I has the form 

Let now L be any linear map from E to itself, with matrix 
representation ML w.r.t. a J-symplectic basis. We can write 
UM L U - I as (~~), where X, Y, Z, Ware n X n matrices. 

Now, 

U«I - iMJ) + ML(I + iMJ»U -I = 2 (0
1 

(I 
U«l - iMJ) + (I + iMJ)ML)U -I = 2 \z 

U«I - iMJ) + (I + iMJ)ML(1 + iMJ»U- I 

=2(~ 2~)' 
This implies 

det[(1 - iJ) + L (I + iJ)] 

~), 

~), 

= det[U(1 - iMJ) + ML(I + iMJ»U -I] 

= 22ndet W 

and analogously 

det[(I- iJ) + (I + iJ)L] = 22ndet W, 

det[(1 - iJ) + (I + iJ)L (1 + iJ)] = 23ndet W. 

Hence, 

det[(1 - iJ) + L (1 + iJ)] 

= 2 - ndet[(1 - iJ) + (I + iJ)L (I + iJ)] 

= det[(1 - iJ) + (I + iJ)L ]. (B4) 

We can now proceed to compute the decomposition of 
a2(SI,S2)' 

Let SI' S2 be any symplectic transformations. Define 

J I = S I-IJS1> J2 = SzlS 2- 1 
, 

ZI =J +JI, Z2 =J +J2, 

i l = -z I-I, i 2 = -Z2- 1 • 

Then (see Sec. 6 and Appendix A) 

1387 J. Math. Phys., Vol. 21, No.6, June 1980 

a; (SI,S2) 

= exp{ - i arg(det[(l - iJ)i l + (1 + iJ)i2])}. 

SinceJZI = - ZIJ - 1 (see Appendix A), we have 

det[(1 - iJ)ZI + (1 + iJ)Z2] 

= det[ZI(1 + iJ) + il + (I + iJ)Z2] 
= (det Zidet Z2) -Idet[ - iZIZ 2 

+ (1 + iJ)Z2 + ZI(I + iJ)] 

= (detZIZ 2) -ldet[(1 - iJI )Z2 + (I + iJI)ZtJ 

(we have used - J + ZI = J I and ZIJ = JIZI). However, 

det[(1 - iJI)Z2 + (I + iJI)ZI](det ZI)-I 

= det[(1 + iJI) + (1 - iJI)Zz{ - ZI)] 

= det[(1 + iJI) - Z2ZI(1 - iJI)] [use Eq. (B4)] 

=det[(1 +iJI)ZI +Z2(I-iJ)](detZt)-1 

= det[ZI(1 + iJ) + Z2(1 - iJ)](det ZI) -I. 

Hence, 

a; (St,S2) 

= exp{ - i arg(det[ZI(l + iJ) + Zz{1 - iJ)])}. 

We have 

[Zt(1 + iJ) + Zz{1 - iJ)]J 

= - i(J + J I)(1 + iJ) + i(J + J2)(1 - iJ) 

= - i( - 2il + JI - J2 + iJIJ + iJzl) 

= - (I + iJl + iJ - JIJ + 1 - iJ2 - iJ - Jzl) 
= - (I + iJI)(1 + iJ) - (1 - iJ2)(1 - iJ). 

Hence, 

det[ZI(l + iJ) + Zz{1 - iJ)] 

= det[(1 + iJI)(1 + iJ) + (1 - iJ2)(1 - iJ)] 

(remember that detJ = detSt = detS2 = 1!, see Sec. 4) and 

= det[S 1-1(1 + iJ)SI(1 + iJ) 

+Sz<I- iJ)S 2-
1(1- iJ)] 

= 2 - 2ndet{[S 1-
1(1 + iJ) + S2(1- iJ)] 

X [(1 + iJ)SI(1 + iJ) + (1- iJ)S 1-1(1- iJ)]} 

= 2 - 4ndet[S 1-
1(1 + iJ) + S2(1 - iJ)] 

X det{[ (1 + iJ)SI(1 + iJ) + (I - iJ)] 

X [(I + iJ) + (1- iJ)S 2-
1(1- iJ)]} 

= 2 - 3n det[(1 + iJ) + SISz{1 - iJ)] 

X det[ (1 - iJ) + SI(l + iJ) ]{det[ (1 - iJ) 

+S2- 1(1 +iJ)]}* 

= 2 - 2ndet[(1 + iJ) + SIS2(1 - iJ)] 

X{det[(1 + iJ) + SI(I- iJ)]}* 

X {det[(1 + iJ) + S2(1 - iJ)]}* . 

So finally 

a;(SI,S2) = exp{i arg(det[(1 - iJ) + SIS2(1 + iJ)] 
xdet[(1 +iJ)+SI(I-iJ)] 

xdet[(1 + iJ) + S2(1- iJ)])} . (BS) 

This is exactly the decomposition of &2 as used in Sec. 6. 
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Our next calculation is the computation of 
Idet[(1 - iJ) + S(I + iJ)]I: 

Idet[(I- iJ) + S(I + iJ)] 12 

= det[(l- iJ) + S(I + iJ)]det[(1 + iJ) + (I - iJ)S] 

= det{[(1 - iJ) + S(I + iJ)] 

XJ [(I + iJ) + (I - iJ)S J) 
= det[2i(1 - iJ)S - 2iS (I + iJ)] 
= 22"det(iS + JS - is + SJ) 
= 22"det(JS + SJ) . 

Hence, 

I det[(1 - iJ) + S(I + iJ)] I 

= 2" [det(SJ +JS)]1/2. (B6) 

Finally, we give here the connection with Bargmann's con
stant (det A) -1/2 ? We introduce the x-p notation (see also 
Sec. 8): S «x,p» = (Ax + Bp,Cx + Dp). In Bargmann's no
tations one has A =! (D + A + iB - iC), and Vg 

= (det A) -1/2 = 2"/2[ det(A + D + iB - iC)] -1/2. This 
constant Vg is in fact the matrix element (fl" WAS)fl,) (see 
Ref. 2). We have 

(flJ,WJ(S)flJ) = 1]J.s(flJ,flSJS ,) 

(J 2 ( * ) -- I = 1]J.S J.SJS' = 1]J.s 
= 2"{det[(1 + iJ) + S(I - iJ)J}-1/2. 

However, 

hence, 

det(1 + iJ) + S (I - iJ) 

= det ( 
I +A +iB il +B-iA) 

- il + C + iD I + D - iC 

= det(A + D + i(B - C) - i(A + D) + B - C\ 
- il + C + iD I + D - iC } 

So 

(
A + D + i(B - C) 

= det 
- il + C+ iD 

= 2"det(A + D + iB - iC). 

(flJ,WAS)flJ = 2"/2(det(A + D + iB - iC» -1/2. 

Comparing this result with Bargmann's (B7) we see that 
they coincide, as was to be expected. 

APPENDIXC 

We give here the details of the calculation leading to 
formula (7.1): 

(Cl) 

with 

f db(fl~,Jl(v)fl~~s ' ) 

= f db (Jl(v)fl ~,fl~~s ,) 
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= f db f dee2io(v.b)fl;V-b(e)fl~~s ,(e) 

= f db f de e2ia(l'.b)e - 2ia(v.,,) + io(b.c) 

Xeio(Sb'c)flA2v - b - e)flJ(b - S . Ie) 

= f db f de e2io(v.b) 

Xe -2io(u.Sc) + ia(b.Se) + io(b.e)flA2v - b - Se)flAb - e) 

= f db f de ei0(2v- e - Se,b) 

xe- 2io(v.se)flJ( V2b + Se V;2V) 

fl (se +e -2V) 
X J V2 

= 2 .- " f de ( e - 2io(".Se) e - i0(2v - e - Se.Se - e - 2,,)/2 

XflJ (Se:v;2V) f dbei0(2,,--e-se.b)/VTflAb ») 

= f de e - 2io(".Se) ei0(2" - Se.e) fl; (se :v; 2v ) 

= f de ei<p(e12.v.Scl2)flASe + e - 2v). 

Combining this result with Eq. (Cl), we get formula (7.1). 
For the requantization of ws(v) we have to calculate 

2" f dv ws(v)Jl (v) 

= 22"1] f dv f db flA2v - e - Se)ei<p(e12.".Scl2)Jl (v) . 

(C2) 

We give here the calculation of this integral: 

1= f dv f db flA2v - e - Se) ei<p(b/2,".SbI2)JlAv) 

= f dv f db flA - 2v) ei<r(b.2l' + b + Sb.Sb)/4 

X WJ (2v + b + Sb )Jl 

= f dv f db fl J (2v) e - io(b,Sb) + 2io(Sb.u) + 2ia(u.h) 

X WJ (b + Sb ) WA2v)Jl e2io(l'.h + Sh ) 

= f db WAb + Sb) e - io(b.Sb) f dv flA2v) e4io(v.b)Jl (v) . 

Using the notations of Ref. 11, we have 

hence (see Ref. 11, Sec. S.B.l), 

f dv flA2v) e4io(l'.h)JlAv) = 2 -" f dvl b, - b IV]JlAv) 

= 2 2"QAlb, - b I·]) 
= 2 -2" Ifl J- h)(fl ~ I . 
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This implies 

1= 2- 2n f db WJ(Sb)WAb)lnJ-b)(n~1 

=2- 2n f db WASb)lnJ)(n~1 

= 2 - 2n f db In ~b)(n ~ I . 
Combining this with Eq. (C2), we get Eq. (7.4). 
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The regularization of the Kepler problem proposed by Kustaanheimo and Stiefel provides an 
example of quantum mechanics on the quotient of a conformally flat manifold. 

1. INTRODUCTION 

The quantization of a particle on a Riemannian mani
fold described by the classical Lagrangian 

YIu{3quq{3 - V(q) (1.1) 

is of interest, particularly in view of its repercussions in field 
theory. Despite the eminent reasonableness of the Schro
dinger equation 

iJ¢IJt = ( - ~2 + V(q»¢, 

where.1 2 is the scalar Laplace operator, as Dowker l says, 
"Logically there is no reason why the Schrodinger equation 
should take this particular covariant form nor, indeed, why 
it should be covariant at all." Dowker l goes on to say that the 
pragmatic approach to quantization is to guess the Schro
dinger equation and compare it with physical reality. 

Duru and Kleinert2 describe a path integral solution for 
the hydrogen atom. This solution, although inspired, is rath
er cavalier, both in its treatment of the underlying transfor
mation of Kustaanheimo and Stiefel3 and the well known 
ambiguities of the path integral formulation. 4

,5 This com
ment reinterprets the solution without the use of path inte
grals and then goes on to give the skeletal form of the path 
integral omitted by Duru and Kleinert. 2 The interpretation 
provides an example of a physical situation, all be it once 
removed, in which a particle moves on a Riemannian space 
which is conformally flat. The Schrodinger equation takes a 
conformally invariant form. The physical situation is recov
ered as a quotient of this conformally flat space so this solu
tion also provides a rare example of quantum mechanics on a 
quotient space.6 

2. THE HYDROGEN ATOM ONCE REMOVED 

In order to regularize the Kepler problem Kustaan
heimo and Stiefee construct a map from R 4 into physical 
space R 3. The map is given by x i = A iuqU (Roman indices 
run from 1 to 3 and Greek indices run from 1 to 4), where A is 
the matrix 

In terms of polar coordinates 

~ I) (SinOCOStP) 
x 2 = r sinOsintP , 

3 cosO 

(2, I) 

It is clear that points on the circle in R 4 parameterized by a 
are mapped onto a single point inR 3. ThusR 3 can be realized 
as a quotient of R 4 by a one-parameter subgroup, S02, of the 
full rotation group S04. (Note that the quotient for r = 1 is a 
quotient of spheres: S 3 IS 1 = S 2.) Dowker6 describes how to 
treat quantum mechanics on quotient spaces. LetM denote a 
manifold, H a Lie group of transformations of M, and M I H 
the quotient of M by H. If q and h are representatives of M 
and H, respectively, let hq denote the action of H on M, The 
Green function on M I H can be described in terms of the 
Green function on Mby GM1H(q, q'; E) 
= SHdh GM(hq, q'; E). 

3. QUANTUM MECHANICS ON CONFORMALL Y FLAT 
SPACE 

The classical Coulomb Lagrangian on R 3 

kXixi + flr -I, fl > 0, 

where for a reason which will be apparent in the next equa
tion the mass is taken as !, becomes 

!q2ququ + flq-2 

on R 4, where q2 = q u q u, and this is of the form (1.1), where 
the metric is conformallY flat. The scalar curvature R is 
_18q-4 so that the Lagrangian takes the scalar form 

YIU{3quq{3 + fl( - R 118)1/2. 

The canonical momenta of the system arepu = q2qu 

= gu{3q{3 and the classical Hamiltonian is 

y;a f3 Pa P f3 - fl( - R 118)1/2. 

The conformal nature of the classical free particle leads 
one to guess that the quantum free particle should possess 
conformal invariance. With this in mind the wavefunctions 
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are taken to be tensor densities of weight! so that the nor
malization condition 

J d 4q gl/4ltPl2 = 1 

is somewhat unconventional. The Laplacian for a tensor 
density of weight i is gl/S..::1 ~_1/8, where 
..::12 = g-I/2aag"(3gl/2a (3' The quantum free particle Hamil
tonian is taken to be 

- !(gI/S..::1~-I/S _ R /6) = - !q-2a~, 

where the additional term in the curvature makes the Hamil
tonian conformally invariant. That is, under a conformal 
transformation g-+fl 2g in four dimensions 

(g1/8..::1~-1/8 _ R /6)-+fl-2(g1/8..::1~-1/8 - R /6). 

Although the forms of the normalization and the Ha
miltonian were argued on invariance principles, the choice is 
ultimately dictated by the known solution of the problem on 
the quotient space R 3. It will be shown thatthis Hamiltonian 
gives the known answer to the Coulomb problem. The free 
particle Hamiltonian is Hermitian only with the normaliza
tion employed above. (The quantum momenta must then 
take the Hermitian formsPa = - ig-I/Saagl/s.) The above is 
the only choice which makes the quantum system covariant. 

With the free particle Hamiltonian as given the Green 
function for a particle in a "Coulomb" potential satisfies 

(E + ~q-2a~ + pq-2)G (q, q'; E) = 0 (q _ q')g'-I14, 
(3.1) 

where the form of the delta distribution on the right hand 
side of the equation is due to the normalization. For the 
classical system Kustaanheimo and Stiefel show that the so
lution of the "Coulomb" problem is essentially harmonic. 
The solution of (3.1) can be given in terms of the heat kernel 
for the four dimensional harmonic oscillator K (q, q'; s), 
where s is inverse temperature. The identity 

o = fO ds exp( ps)( - a/as + !a~ - !W2q2)K (q, q'; s), 

valid for p < 2uJ, can be rearranged to give 

[ - !w2 - ( - !q-2a~ - pq-2)] f'" ds ( - )exp( ps)K (q,q' ;s) 

= g-I/40(q _ q'), 

and with the identification E = - !w2 (the energy is taken to 
be negative) the integral expression is the Green function in 
(3.1): 

G (q,q';E) = - ("" ds "r w\ exp{ ps - ~ Jo 4 sh ws 2shws 

X [(q2 + q'2)chws _ 2qaq,a] }. 

(The positive energy solution can be obtained by analytic 
continuation. ) 

Integrating over the range of a, (0, 41T), the Green func
tion on the physical space R 3 then becomes (the scale of the a 
integral is), from (2.1), 

G(r,r';E) = __ 1_ ("" ds w: Io(~(rr')1/2co*~) 
16 Jo 1Tsh ws shws 
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X exp [ ps - wchws (r + ")], 
2shws 

where () is the angle between the vectors rand r'. 
Changing the variable of integration, ;- = chws/shws, 

the Green function is 

~:o i"" d;- ( ~ ~ ~ Ylo(2Po(;- 2 - I)I/2(rr')1/2cos!(}) 

X exp[ - ;- po(r + r')], (3.2) 

where r = p/2uJ and p~ = - E /2, valid for r < I. For val
ues of r outside this range the integral (3.2) can be replaced 
by a contour integral in the positive sense around the cut 
from I to 00 on the real axis: 

_ ("" d;--+ ex~~i1T r) ~ d;-. 
JI 2lSlO1Tr j 

Then (3.2) with this modification is the Green function for 
the hydrogen atom given by Hostler.7 This confirms that the 
choice of Hamiltonian and normalization are correct. 

4. THE SKELETAL PATH INTEGRAL 

The propagator on R 4 can be written formally as 

gl/Sexp[tr (!..::12 - V+)]g-I/SO(q _ q')g,-1/4, 

where the potential V+ is 

R /12 - p( - R /18)1/2. 

The path integral is given by a "folding" together of small 
time propagators. Replacing the delta distribution by its 
Fourier decomposition 

(21Tt4J d 4 P exp(i Pa..::1qa), 

where ..::1qa = qa - q,a, and performing the usual procedure 
of evaluating exp[iT (!..::12 - V +)] by its small time approxima
tion 1 + iT (!..::12 - V+) and then exponentiating, the small 
time propagator is given by 

J d 4 P (21T)-4g '-1/4exp [i Pa..::1qa 

- iT (!g" (3 Pa P f3 - p( - R /18)1/2)]. (4.1) 

The phase space path integral is then 

J ~4q gl14J ~4 P g_I/4exP[i J dt pi; - Gq-2 p2 - pq-2)]. 

which has the classical Hamiltonian in the exponential. This 
may be unexpected in view of the discussion of Dowker. 5 It 
is, however, the form used by Duru and Kleinert2 and (4.1) 
gives the skeletal decomposition. Performing the P integra
tion in (4.1) gives the skeletal components of the coordinate 
path integral 

(2mT )-2g l/2 

X exp [ 2: gaf3..::1qa..::1qf3 + iT p( - R /18)1;2 k-I14
• 
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The spectral analysis given by Wong for the resolvent of a non-self-adjoint operator with 
arbitrary multiplicity is utilized for the description of the time evolution of an unstable system. 
After studying the case for which the operator is independent of the resolvent variable z, the 
Wong analysis is extended to the physically interesting case for which the operator depends on z. 
The case of infinite multiplicity is treated, and it is found that the flow of probability through the 
generalized eigenstates is analogous to the approach to equilibrium in statistical mechanics. 

I. INTRODUCTION 

Reduced motion governs the time evolution of a finite 
dimensional subspace K. It is represented by Pe - iHtp, where 
P is the projection into the subspace K. This kind of operator 
is used in the description of decaying systems. 

Let H be the self-adjoint Hamiltonian of the physical 
system defined on the Hilbert space JY'. With essential spec
trum (71(H) and point spectrum (7 p(H) and let Pbe an ortho
gonal projection on a finite dimensional subspace K of JY'. 
The probability for a state '/IE!( created at t = 0 to decay is 
(the ({J i from an orthonormal basis in K ) 

Q(t)= f I(EIU(t)I¢>1 2dE 

=1- II(l,6mIU(t)I¢)12 

=1- II(l,6mIPU(t)PI¢)12, (1.1) 
m 

where EE(7[(H) and U (t) = e - iHt. 

The total time- evolution U (t ) = e - iHt and the resol
vent R (z) = (z - H) - I are related to each other by the in
verse Laplace transform 

1 f . U (t ) = -. R (z)e - ,zt dz , 
2m 

(1.2) 

where the integration path is around the spectrum of H. Ifwe 
project this into K, we can express the reduced motion 
U'(t) = PU(t)PbythereducedresolventR '(z) = PR (z)Pas 

U'(t) = _1_. ,c R '(z)e - izt dz . (1.3) 
2m J 

The operator R '(z) on K is meromorphic on the comple
ment of (7[(H) and invertible when Imz*O (Howland!). The 
formula 

[z - h (z)] - I=R '(z) (1.4) 

defines an operator h (z) on K which is meromorphic in z on 
the complement of (7[(H) and has only real singularities. 
Following Howland,! h (z) will be called the Livsic matrix of 
Hand K. Horwitz and Marchand2 made the following as
sumptions: (a) When dimP = n is finite, the reduced resol-

a)Work supported in part by the U.S.· Israel Binational Science Foundation. 

vent R '(z) can be continued from above through the spec
trum (71(H), and is regular analytic in the second sheet 
except for n distinct simple poles situated in the lower half 
plane near (71 (H). (b) The rank of analytic continuation of 
R (z) is n in the regularity domain. 

We shall relax the first assumption, and assume that in 
the second sheet R '(z) is analytic except for I distinct poles, 
where the sum of the multiplicities is less than or equal to n 
[bifurcation is not considered because it can cause singulari
ties in h (z»). 

Stodolskyl discussed degeneracy of this type in the two 
dimensional case for application to molecular spectroscopy. 
We wish to treat the general case here. Wong4 has given a 
complete mathematical discussion for the problem where 
the non-Hermitian matrix h (z) does not depend on Z. We 
shall, however, be able to adapt his approach to a study of the 
degenerate decay problem for which there is a nontrivial "z" 
dependence. 

In accordance with the assumption made by Wong,4 we 
shall assume that (c) R '(z) has a Laurent expansion about 
any of its isolated poles: 

R '(z) = f (z - Eb)"Bn , (1.5) 
n ~ - rl.b) 

where r(b) (finite) is the order of the pole at Eb , and 

Bn =~,c (z-EB)-n-1R'(z)dz, (1.6) 
2m Jr. 

where the contour rb encloses only the singularity Eb • 

When the integration path in Eq. (1.3) is deformed into the 
second sheet from above through (71 (H), we pick up the con
tribution from the poles in the second sheet plus some contri
bution from the branch points. For intermediate times, the 
contributions of the poles dominate the integral. 

In Sec. II, as a review of the technique of Wong and its 
application to the decay problem, we investigate the case 
whereh (z) = h (constant), its spectral representation, and its 
contribution to the "time evolution". To understand the 
mechanism of Wong's method for this case, we discuss and 
example of a matrix that can be diagonalized and study its 
limit to a nondiagonalizable form. In addition to analytic 
continuation of the resolvent through the fixed cut on the 
positive axis, we introduce the technique of Balslev and 
Combes' which effectively rotates the continuous spectrum. 
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This method has many calculational and conceptual advan
tages in applications to the problem of unstable systems 
(Horwitz and SigaI6

). 

In the next section an approximate form of h (z) (z de
pendent) is introduced. We show that locally h (z) has the 
Wong form and therefore his results can be used to study the 
general case. 

In the last section we investigate the limit of infinite 
degeneracy, and show that where can be a fixed point in K to 
which the motion may evolve in a way that appears analo
gous to an approach to equilibrium in statistical mechanics. 

II. LlVSIC MATRIX INDEPENDENT OF z 
Consider the simple case when h (z) = h (constant) in 

the second sheet: It has the following form: 

(2.1) 

where Pj are projections satisfying the conditions 

PjPj = oijPj (Ej==l=Ej for i==l=J) (2.2) 

and N j are nilpotents satisfying the conditions 

NjPj = oijNi> (NJI\/) = 0 [r(1) = dimPj ] • (2.2a) 

R '(z) has in this case a Laurent expansion about any of its 
poles Eb 

R '(z) = ! (z - EbtBn , (2.3) 
n = -I\b) 

where 

B_1 =B 2_ 1 =Pb, B_2 =Nb, 

B_ n =N~-I (n;;;.2) , 

B_mB_ n =B_ n_ m _ l , PbBO = BOPb =0, 

Bn = (- 1tB3+ I (2.4) 

and for two distinct isolated poles Eo and Eb the product of 
two operator coefficients Am and Bn vanishes for m and n 
less than zero. The proof of this form is due to Wong.4 In K, h 
is a matrix and we shall use its Jordan canonical form 
(Kato'). 

For the description of the degenerate Livsic matrix we 
shall need the following definition. 

Definition (2.1): A I is an eigenvalue of h associated with 
the eigenvector ¢l ~ if there is a vector ¢l f such that 

(h-AI I)¢lf=¢l~· 

¢l f is called a generalized eigenvector of the first type. If 
there is a vector ¢l f such that 

(h-AI/)¢lf=¢lL 

¢l f is called generalized eigenvector of the second type. 
¢l f + I is called a generalized eigenvector of (i + 1) type if 

(h-AI /)¢If+1 =¢If, 

where ¢l f is a generalized eigenvector of the (I) type. 
As evident from the definitions, (h - A I) is a stepping 

operator on the set of generalized eigenvectors. We shall 
prove at the end of this section that the set of eigenvectors 
and generalized eigenvectors are a complete set. It will be 
shown that the time evolution associated with an nth order 
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pole is as follows: 

V(t)= 2~if(AjI-h)-le-jAldA 

- jA.I {p ( ')N ( - it )2 N 2 = e j + - It j + 2! j + ... 

+ Nll\l) -1)( _ it )vm - I } 

[r(1) - 1)! 

and the time evolution of ¢l f is 

V(t)A. . = e - iA;1 { ( - it)j - I A. R 

'I' J (j _ I)! '1'1 

( - it )12 R R} 
+ ¢l2 +"'+¢l . (j _ 2)! J 

Russkanen8 has discussed the occurrence ofnonexpon
ential decays due to the coalescence of poles in a Lee model 
using generalized eigenvectors, but only considered the case 
of h (z) = const. Before giving the general proof of the state
ments, it will be useful to consider a three dimensional exam
ple in some detail. 

A. Three dimensional example 

A simple example of a matrix h that illustrates the main 
ideas is the three dimensional case 

(2.5) 

We shall use Schmidt's form of h which is given by 

(h-IA)=E(A)D(A)F(A), (2.6) 

where E (A ) and F (A) are matrix valued functions (which 
are products of elementary transformations) whose determi
nants are constant (do not depend on A) and do not vanish. 
D ( A ) is a diagonal matrix. 

In this example, it is given by 

D ( A ) = (00
1 

~ ~), (2.7) 
o (A - AI)3 

E(A)~«A ~A,) ! D(~ A ~A' D· (2.80) 

F(A)~~ ! -(A:-A,)')G ~ D 
x~ (A,t) DG ~ D (2.8b) 

MatricesE (A )andF( A ) are written in factored form for the 
purpose of calculating inverses. If A is the eigenvalue of h 
with eigenvector 

E. Katznelson 1394 



                                                                                                                                    

then 

D(A)F(A)G) =0 (2.9) 

because E (A ) has a constant nonzero determinant. 
The subspace in which D (A ) can vanish is character

ized by the vector 

The eigenvector corresponding to the subspace for which 
D ( A )F ( A ) vanishes is therefore given by 

IF(A )]-' G) (2.10) 

In terms of the definition 

G)=~~, G)=~~, and G)=~:, (2.11) 

one obtains 

G)= oIg - (A, - A l<I f + (A, - A"N:, (2,12) 

where </J ~ is an eigenvector, and </J f and </J f are the general
ized eigenvectors of the first and second type, respectively. 

In the same way [using Eq. (2.8b)] the left "eigenvec
tor" is 

(x,y,z) = (O,O,I)-(AI -A)(OlO)+(AI -A)2(100) 

= </J ~ - (A I - A )</J f - (A I - A )2</J f . (2.13) 

I t is easy to check that 

As indicated in the introduction, the inverse Laplace 
transform of the resolvent will be interpreted as the time 
evolution operator for the reduced motion. We shall consid
er in what follows only the contribution of the poles to the 
time evolution, and redefine 

U (t) = ~ j (AI - h) - Ie - at dA , 
21Tl Jpoles 

(2.14) 

(AI-h)-I 

AI -A (AI _A)2 (A _A I)3 

(2.15) 0 
1 1 

= 
Al -A (AI _A)2 

0 0 
1 

Al -A 
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where h is the matrix given in Eq. (2.5). The inverse operator 
(2.15) can be written in the form of Eq. (2.3), where P = I, 
and 

o 
o 

(2.16) 

Then U(t) is obtained from Eqs. (2.14) and (2.15) to be 

(

1 - it (- it)2/2) 
U (t) = e - ; All ~ 0 -t· (2.17) 

The time evolution of a vector "u" is U (t )u. Therefore, the 
time evolution of the eigenvector and the generalized eigen
vectors are 

U(t)<P~ = e-;AII</J~, 

U (t )<P f = e - ; A,l [( - it)<p g + </J f] , 

U (t)<p f = e - ; A,l [ (~~t )2 </J ~ + ( - it)<P f + </J f] . 
(2.18) 

B. Generalization of the result to arbitrary finite 
dimensions 

We now generalize the result of the three dimensional 
case to an arbitrary number of dimensions. Using Eqs. 
(2.1) -(2.2a), we see that it is enough to look at one term of 
the sum 

h = I (A;P; + N;) 
; 

because the terms act in independent subspaces. Let P; have 
r dimensions; then, A;P; + N; = h; , where 

A; 171 0 o 
0 A; 172 

h; = 

0 

0 
(2.19) 

Let us assume that none of the n; are zeros, since if one of 
them were zero the matrix would be decomposed into two 
blocks. 

We consider first the case n I = n2 = n r _ I = 1. The 
only eigenvector is f/!I , a column vector with a one in the first 
entry, and zeros elsewhere; the eigenvalue isA;. The general
ized eigenvectors are (f/!I ,f/!2 ,f/!3 ,oo·,f/!r -I)' where f/!j has one 
in thejth entry and zeros elsewhere. These vectors fulfill the 
definition (2.1): 

(h; -A;)f/!j_1 = f/!j . (2.20) 

There are only (r - 1) generalized eigenvectors satisfying 
Eq. (2.20) because 

(h; -AI)f/!r = (h; -A;)'f/!I 

and 
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Theorem (2.1) (Ref 9): The generalized eigenvectors 
are a complete set. (We call a generalized eigenvector of type 
zero an eigenvector.) 

Proof The eigenvector is determined by (A - AoI)gl 
= O. If A has only one dimension, then the proof is obvious. 
If not, we define g2 by the following: 

gi = (A - AOI)g2 

and so on until we cannot find a solution to 

gl = (A -AOI)gi+ I' 

(gl ,g2,oo·,gr) are independent because if not we can find a 
minimal set (gl , ... ,gr.) such that 

I aigi = 0, a ro =:#> , 
;= 1 

then 

0= (A -AoI) Iaigi = I aigi_ 1 = 0, 
;= 1 ;=2 

in contradiction to the minimal assumption on roo 
The computation of the time evolution (see the intro

duction) involves the computation of (A - hi) - I. Let 
(A - A;) = a; then (AI - h;) = aI (/ - B), where 

B=~N (2.21) 
a 

and using the equality for nilpotent B (I = Ph)' i.e., 

I = (I - B )(I + B + B 2 + B 3 + ... + B n ... ), (2.22) 

we find that 

(I - B) - I = ~ (I + B + B 2 + B 3 + ... ) (~.23) 
a 

and 

( AI-h.)-I = (I_l_)+N 1 
I A-Ai I (A-AY 

+ ... + (NY 1 + ... . (2.24) 
I (A-AY 

The sum (2.24) has a finite number of terms because (NY 
= 0, where r is the dimension of the matrix. 

Then, V (t ) is 

V(t) = 2~i f (AI- h;) - Ie - iAt dA 

-i'A.{p ( ')N (- it)2 N2 = e . . + - It . + . + ... 
I I 2! I 

(N)(r-l)( _ it)(r-I) } 
+ I 

(r - I)! 

and the time evolution of tPj is 

(2.25) 

V(t).I .. = e- iA ,,{ (- it)j-I .1. + 
'1', (j _ I)! '1'1 

(- it)j-2 
(j _ 2)! tP2 

+ ... + tPj}. (2.26) 

Remarks (2.1): (1) For the case where the equality 1JI 
= 1J2 = ... = 1Jr-1 = 1 does not hold but 1Ji #0, Vi, ifJi the 
(i -1)th generalized eigenvector is equal to (lIC)tPi (where 
tPi is as defined above), and 
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C = IT 1Ji . 
j= I 

The equations (2.21) and (2.22) hold in this case and Eq. 
(2.25) becomes [with the new V (t)] 

V(t).I •. = e-iA"{Cj (- it)j-I .1. 
'1', I (j _ I)! '1'1 

. ( _ it )j - 2 . } + C' .1'2 + ... + C,·I., 
I (j _ 2)! 'I' 1'1', ' 

(2.27) 

where (with 1Jo = 1) 

C1 = 1Jj 1Jj_loo·1Ji . 

Hence, we obtain 

-iA' j -It j 
( 

( . )j-I ) 
V(t \,/". = e . d· '/"1 + ... + d·'/"· , 

1'1', • (j _ I)! 'I' .'1', (2.28) 

where 

d1 = CYC. 

(2) Using Eqs. (2.20) and (2.24) we find that 

_1.1 (AI-hi)-ldA=Pi = 2:ltPi)(tPil. 
21Tl Jpolcs 

(3) If we use 

hi (1J) = AiPi + 1JNi (2.29) 

instead of hi = hi(l), the rhs ofEq. (2.24) becomes 

1 1 ()r- I 1 --I+1JN + ... + 1JN 
A -Ai I (A -A'? I (A -Ai)' 

(2.30) 

then, V(t) is 

e - iA,t {P. + ( _ i1Jt )N + (- i1Jt )2 N 2 
I I 2! I 

+ ... + (- i1Jt }Tf! (NiY + ... + (- i1Jt ),-1 N~-I} 
n (r - I)! 

(2.31) 

Note that in the limit 1J~ Eq. (2.30) becomes 1I( A - A,) 
and Eq. (2.31) becomes e - iAlPi as in usual Hamiltonian. In 
this limit (1J~), hi(1J) cannot make transitions between the 
tPi and there is no nonexponential term in V(t). 

C. Discussion 

The non-Hermitian operator h was different from a dia
gonalizable Hamiltonian in the following ways: 

(1) We have to find the eigenvectors and the generalized 
eigenvectors to get a full decomposition of h. For a diagonali
zable Hamiltonian the eigenvectors alone provide this de
scription, because in this case all the Pi in Eq. (2) are one 
dimensional. 

(2) In the nondiagonalizable degenerate case, in the 
block associated with Ai' the eigenvector and the generalized 
eigenvectors are vectors with "energy" equal to the eigenva
lue in the sense of the expectation value (in the nonortho
gonal basis), i.e., 

(tP:, h ntPJ = (Ait = (AYlitPili , 
where tPi is the (i - 1) generalized eigenvector and tP: is the 
dual to tPi in the nonorthogonal basis, i.e., the corresponding 
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left eigenvector, and generalized left eigenvector, as in Eqs. 
(2.12) and (2.13). Linear combinations of the "'j'S are not, 
however, vectors with energy Aj • For example, 

[("'I + "'2Y, h ("'I + "'2)] 

= [("'I + "'2Y, Aj«"'1 + "'2) + "'I)] 
= 11"'1 + "'211 Aj + 1 . 

(3) The time evolution operator on the eigenvector "'I 
and on the generalized eigenvector "'2 differs in two essential 
features; on "'2 it is not a multiplication operator and it has 
nonexponential behavior. 

To clarify the meaning of these results let us consider a 
three dimensional example which is diagonalized, and study 
its limit to nondiagonalizable form. The matrix h has only 
one eigenvector. If it is changed by adding small quantities to 
the diagonal terms 

o ) I , 

AI +v 
then the new matrix A has three eigenvalues and eigenvec
tors. The eigenvalues are 

A=AI' A=AI +E, and A=AI +v (2.32) 

and the corresponding eigenvectors are 

¢ ~o = (~) ¢~. = (;) and ¢ ~2 = (: ). (2.33) 
o 0 v(v - E) 

The three left eigenvectors [corresponding to the ordering 
(2.32)] are 

¢ ~o = (VE, - v,l), ¢ L = (0, - (v - E),I), ¢ ~2 = (1,0,0). 
(2.34) 

Note that where VI E-+O, then ¢ ~, and ¢ ~2 are equal to 
¢ ~o' which is equal to the eigenvector ofEq. (2.5), and ¢ ~o 
and ¢ ~2 are equal to ¢ ~2' which is equal to the left eigenvec
tor of Eq. (2.5). 

Stodolsky3 pointed out that when the eigenvectors de
pend on parameters, it can happen that the number of eigen
vectors becomes less than the dimension of the space for 
certain values of the parameters. He also states that the ei
genvectors are "orthogonal" in the following sense: If we 
define the adjoints by 

(¢~.>+ =¢~, (¢~)+ =¢~" (¢~2)+ =¢~2' 

then one obtains an orthogonality of the type 

(¢ ~: ¢ ~) = (¢ ~:. ¢ ~.> = (¢ t ¢ ~.> = 0, 

as can be checked using Eqs. (2.33) and (2.34). 
The eigenvectors can be taken as 
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(2.35) 

(2.36) 

, ¢~: = (0,0,1). 

After normalization, the eigenvectors fulfill a completeness 
relation. Let 

Q, ~~ .. ~:. ~G 
-liE 1/~) 

0 o , 
0 0 

Q, ~~R.H. ~G 
liE 1/«.- V») 
1 lI(E - v) , 

0 0 

Q, ~~R.H, ~G 
0 l/v(v- .») 
0 lI(v - €) , 

0 I 
then the completeness relation is 

3 

L Qj = 1. 
;=1 

Furthermore, QI , Q2' and Q3 are idempotents, i.e., 

Q t = QI , Q ~ = Q2' and Q ~ = Q3 , 

(2.37) 

(2.38) 

(2.39) 

as can be seen from Eq. (2.37). The nondegenerate matrix A 
can therefore be written in the form of the Q's: 

3 

A= L CjQI' 
;=1 

(2.40) 
CI =AI , C2 =AI +E, C3 =AI +v. 
We are now in a position to diagonalize A. The matrix S 

which diagonalizes A is 

(

1 liE - lI(E - V)V) 
S = 0 1 lI(v - E) 

o 0 1 
(2.41) 

and S - I is equal to 

(

1 -liE 
S-I= 0 1 

o 0 
(2.42) 

The diagonal matrix A I can be found using Eqs. (2.38), (2.40) 
and (2.41): 

A I = S - lAS = S - I( ~ C.'" I ", I + )s 
~ l'f' R,+IY' R i + 1 

j 

= L (CjS - I¢ ~,¢ t,S) 
j 

o ) o . 
AI +V 

(2.43) 

where EI v goes to zero, then S and S - I are singular matri
ces, soA cannot be diagonalized in this limit. The time evolu
tion operator associated with A I, the nondegenerate case in 
diagonal form, is 
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Using the form (2.43) for A " one obtains 

V(t) ~ ~ -".' ~ ~ <'. + .,. o ) o . 
e-I{A, + ")1 

(2.44) 

To understand the source of the nonexponential term in the 
time evolution of the generalized eigenvectors in the degen
erate case, consider, for example, the generalized eigenvec
tor,p 1 defined in Eq. (2.11) in the basis appropriate for A '. 
,p 1 in this basis is equal to 

s-'+. ~s-'m~G)- +G)-f1 (2.45) 

and its time evolution is 

In the original basis the time evolution has the form 

S I V(t)H1 ~ e ""+'{f} !e-""{~) (2.47) 

and when E-<1, Eq. (2.47) becomes 

(2.48) 

which is equal to Eq. (2.18). 
In the last paragraph we saw that the nonexponential 

behavior comes from two eigenvalues that become degen
rate, but this condition is not sufficient, as we can see from 
the following example: 

_ (AI 0 
h = 0 AI 

o 0 

(2.49) 

Ii has two eigenvectors with eigenvalue AI : 

~, ~G) and ~,~(!) (2.50) 

and one generalized eigenvector 

~, ~G)' (2.51) 

while 
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(2.52) 

corresponding to Eq. (2.49), is diagonalizable and has the 
eigenvectors tPl with eigenvalue A I' and tP2' tP3 with eigenva
lueA I +E. 

Taking E-<1 does not bring tP2 into tPl' and tP2 is not a 
generalized eigenvector as in Eq. (2.33). As we shall see, no 
nonexponential behavior is associated with tP2' This result 
can be verified by looking at the time evolution operator 
associated with Ii: 

o 
(2.53) 

o 
and 

(2.54) 

The conclusion is that two conditions must be satisfied for 
nonexponential behavior, namely that two eigenvalues be
come degenerate and the associated eigenvectors become 
equal. 

The second difference in time evolution of,p 1 , namely 
the term involving ,p ~, is the result of the Hamiltonian's 
ability to connect generalized eigenvectors, as can be seen by 
direct calculation from Eq. (2.14). In fact, 

h,p 1 =,p 1 + A I ,p ~ 

implies 

U (t),p 1 = ejhl,p 1 

= [1 _ ihl + (- iht )2 
2! 

(- ihtt ] I + ... + +"',pR 
n! 

_ A. I • (A. I 1 A. 0 ) ( - il)2 ('" 1 0 1 2 A. I ) 
-'I'R -II 'I'R +/I,I'I'R + ~l,pR +/I,I'I'R + ... 

2! 

A. I [1 . ·1 ( - it )2 1 2 ( - it t 1 n ] 
= 'I'R - It/l,; + 2! /l. I + ... + n! /l. I + ... 

+ ( - it),p ~ [ 1 + ( - it ),1.1 + (-2~t f Ai + ... 

(-itt An ] + , 1+'" 
n. 

_ -;}.,IA.I + ( '/) -jA,IA.O -e 'I'R -I e 'I'R' 

which is, of course, equal to Eqs. (2.17) and (2.48). This 
procedure, however, illustrates the transfer properties of the 
Hamiltonian. 

Intuitively, one has a picture of the time evolution of the 
generalized eigenvector as the generalized eigenvector partly 
"decaying" the term e - jA",p 1 and partly making a transi
tion to,p ~ [the term ( - it),p ~ ], at a rate proportional to t. 
,p ~ itself decays at a rate e - jA,1 so the time evolution of the 
part in this subspace is ite - jA". 

The last example, Eq. (2.49), where Ii cannot transfer 
tPl to tP2 and consequently there is no term like (it)e - jA",p'in 
the time evolution of tPl [Eq. (2.54)], is consistent with this 
picture. To understand this effect, we shall consider another 
limiting case. 
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In the general three dimensional case, suppose 

(

AI 

h= ~ 

Then, we obtain for the resolvent 

(A-h)-I 

o 

o o 

and for the time evolution 

V(t)=e- iA
., 

X [~ 
o 

"11 7h( - it)2] 
2! 

- ir12t 

1 

The time evolution of the eigenvectors is given by 

and 

V(,{~)~ e-""[G)+ (- iq,'{D 
( _ it )2 (1)11 

+"h "12 2! ~ ~. 

(2.56) 

(2.57) 

Taking 'rfl-o and 'rf2-1, Eq. (2.56) implies Eq. (2.49); then 

and 

as we have seen before. On the other hand, if 'rf I -1 and 'rf2 
-0, then 

and 

In the first case ('rf 1-0, 'rf2 _1), h cannot make a transi-
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tion between 

(D and (~) 
and there is no nonexponential term in 

In the second case ('rf1-1, 'rf2-o), h cannot make a transi
tion between 

G) and (D 
and 

has no nonexponential term. In both cases, h cannot make 
transitions between 

and there is no term which includes t 2. 

III. APPLICATION OF THE WONG DECOMPOSITION IN 
THE METHOD OF BALSLEV AND COMBES 

In this section we will review the Aguilar and Combes 
definition of dilation analytic potentials and the first and 
second Balslev-Combes theorems. The analysis of the decay 
using this technique does not require that the Livsic matrix 
be independent of z. Aguilar and Combes pointed out8 that 
the Wong decomposition can be applied in the framework of 
their method. This application is discussed in this section 
and the decay problem is studied. 

We first briefly review the paper of Aguilar and 
Combes,lo Balslev and Comess and Simon II establish the no
tation and remind the reader of the principal results. 

We will need the following definitions: 
(1) Sobolev spaces: Let To be the free Hamiltonian 

- V2 on H = L 2(R 3); then the Sobolev space H + m is H m 

= itfJED(T;)J with the norm 11¢llm = II(To + 1);'¢11, e.g., 
form = 2, the scalar product is (1,6,¢) = (Tol,6, To¢) + (1,61 ¢) 
+ 2(To1,61 ¢) 

(2) The dilatation group in L 2(R n) is defined as 

[U(8)¢](x)=e(tll2)e[¢(eOx»), 8ER, ¢EL2(Rn) (3.1) 

and in momentum space 

(3.2) 

and its generator is A = !(r·\l + \l'r) or ~(x.p + p·x). 
(3) An unbounded operator Von L 2(R 3) is said to be a 

dilatation analytic potential (said to be in Ca ) if and only if 
(a) the domain of V,D (V) = D (To)(the domain of To), and 
V are symmetric; (b) the induced operator V: H + 2 = DTo 
-H-L 2(R 3) is complete; (c) the operator V(8): H +2-H 
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given by 

V(O) = U(O)V[ U(O)] -I, OER (3.3) 

has analytic continuation ot the strip ! 0 I limO I < a J; (d) a 
dilatation analytic vector is a vector g for which U (O)g has 
analytic continuation to a strip limO I <a. 

The vector space Na of all the dilatation analytic vec-
tors is precisely the vector space of all vectors ¢ for which 

00 IIA¢ lin L-
n=O n! 

has a radius of convergence a or more. 12 

Balslev and Combes use the operator To + V where To 
is the free Hamiltonian of the nobody system with center of 
mass removed 

and 

To = - iV2
, on L 2(R 3n

-
3

) 

i= 1 

V = L Vy(rij)' rij = rj - rj , ro = O. 
O<j<j<n - I 

We assume that Vij as an operatoronL 2(R 3d 3rij) is in some 
fixed C a for every i and j. Then H = To + V is a self-adjoint 
operator on D (To). Let V (0) be in the group of dilatations on 
R 3n -3. Then 

V(O) = U(O)V [U(O)] - 1= L Vij(O), OER 
i<j 

has a continuation into the strip! 0 I limO I < a J and thus 
using Eq. (3.2), 

H(O) = U(O)H [U(O)] - 1= e- 2°T + V(O), OER 
(3.4) 

has continuation to the same strip, and H (0) is non-Hermi
tian for 0 complex. 

In order to study the spectrum of H, we have to study 
the thresholds of the cuts. LetD = [Dj ... D k ] be a decompo
sition of(0,1, ... ,n - 1) into k>2 clusters, Le., D j nDj = ¢ if 
i=Fj, LI!= ID = [0,1, ... ,n - 1]. 

Let H D
j 
be the Hamiltonian for the cluster D j L,e., H D

j 

= TOD, + VDj , where TOD, is the kinetic energy of the parti
cles in D j • A bound state energy of ~H D,' Le., a sum of ener
gies ED.' Evl, ••• E D • with ED" an eigenenergy of HDj called 
the k-body threshold. The family of all these thresholds is 
denoted~. Similarly, we define thresholds of H (0) and de
note them as ~ (0). 

A. The first Balslev-Combes theorem (Ref. 5) 

a 
x 

Under the assumption that all the two-body potentials 

a 
l\ 

b 
x 

FIG.!. The Spectrum of H (0): (a) discrete eigenvalues; (b) continuous 
embedded eigenvalues; (c) complex eigenvalues; (d) thresholds of continu
ous spectrum in H; (e) complex threshold. 
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(0) 

(b) 

(e) 

FIG. 2. Complex eigenvalue uncovered and recovered in ImO varies: ® -

covered eigenvalue; X -uncovered eigenvalue;:X,) -recovered 
eigenvalue. '-

VijECa , the spectrum ofH (0 )[0 < ImO < a] is explicitly given 
as (see Fig. 1) (a) [z + e - 20r I all zd (O),rER#]; (b) a set 
aj(O) of isolated points of the spectrum which are eigenva
lues of finite (geometric or algebraic) multiplicity. 
Moreover, 

(1) the real eigenvalues and thresholds of H (0) are pre
cisely those of H. 

(2) All nonreal eigenvalues and thresholds of H (0) lie in 
the sector 

[z I 0> arg(z - ~min) > 2 ImO, ~min = infIx I xdnR ]. 

Their presence depends only on Ima. All of the complex 
poles are in the second sheet of the resolvent (i.e., they are 
independent of ReO). 

(3) Complex thresholds and eigenvalues of H (0) which 
are isolated from other parts of the essential spectrum of 
H (0) are in a[H (0)] if ImO I is sufficiently near ImO. 

One has the following picture of what happens to the 
spectrum of Has ImO increases. For ImO = 0 there is an 
essential spectrum beginning at the lowest threshold of H, 
which is a union ofhalflines [A. 00) for each A.d, and a set of 
bound states, some below the continuum and some that may 
be embedded in the continuum as ImO "turned up" from 
below; the bound states stay fixed, but the continuous spec
trum swings out into the lower half plane. As it swings out, it 
can "uncover" some complex eigenvalues and thresholds 
which stay fixed, unless they happen to get covered again 
(see Fig. 2). 

.. r (a) 

o ia-O 

(b) 

FIG. 3. Behavior of (t{!,e - iHlt{!) [in (a), r does not enclose the complex 
pole]. 
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B. The second Balsley-Combes theorem 

Let f/lENa' Let H be an n-body system with the two
bodypotentialinCa . Then, [",,(H - z) -I",] =J(z) original
ly defined for ZEC /spec(H) has a (many sheeted) continu
ation onto the union of the complements of the spectrum of 
allH (0 ) with lImO I < a {which we can easily see by inserting 
U(O) ... [U(O)] - I in the scalar product j. 

We shall useH (0) (a non-Hermitian Hamiltonian hav
ing Wong's form) to calculate the decay of a state "', where '" 
and H (0) have the following properties: (1) f/IEN a + £; (2) 
H (ia) has eigenvalue atE = Eo - (ir /2) of multiplicity two 
associated with the eigenvector ifJo and generalized eigenvec
tor ifJI ; (3) tP<ia), the analytic continuation of U (0)'" to 
0= ia, is close to the subspace of ifJo and ifJI in the L2 norm. 

Augilar and CombeslO show that in their study of the 
two-particle case 

The probability that", (our state at time t = 0) remains 

'" at time t is 

R(O,z) = [H(O)-z]-I= [e-2liTo + V(O)_Z]-I 

L (z - EbYBn(E,O) 
n= -«b) 

P(t) = I (""e- iht",) 12 = la(t)12. 

Using 

(""eiht",) = -2
1 

. A: ("'I (H -,on -I",) e - iAt dA, 
m jc near the complex pole Eb , as in Wong's Hamiltonian. Van 

Winter13 achieved a similar result (in finite dimensional sub
spaces) by using complex canonical variables. 

where Cis a contour going aroundo(H)(Fig. 3). We can now 
rotate C and replace ("'I (H - A) - I",) with 

(U(O),,,,[H(O)-A] -I I U(O)",) tofind(forO=ia) 

a(t) = _1. A: (",(ia) I [H(ia) -A] -1",(ia»e-iAtdA = _1. A: {(",(ia)lifJo)(oifJ I [H(ia)-A] -llifJo)(oifJ I "'(ia» 
2m je, 2m je, 

+ ("'(ia) I ifJl )(lifJ I [H(ia) -A] -llifJl )(lifJ I ",(ia» + (",(ia)lifJo)(oifJ I [H(ia) -A] -llifJI) 
X (I ifJ I "'(ia» je - iAt dA + R (t) , 

where C I is aroundE andR (t) represents contributions from the other poles and cuts. (We use 1]1 = 1 as in Sec. II.C. We use 
the Laurent expansion about E of [H (0) - A] -I: 

[H({1)-Aj-l= E~A <iifJo)(oifJl+lifJl)(oifJl)+ (E~A)2IifJo)(lifJl+ ntoBn«(J,E)(E-AY 

and the fact that Bn lifJo) = Bn lifJI) = 0; then, 

a(t) = e - iEt [(tP<ia) I ifJo) (oifJ I ",(ia» + (",(ia) I ifJI )(1 ifJ I ",(ia» + (it ) (",(ia) I ifJO)(1 ifJ I ",(ia»] + R (t). (3.5) 

If the multiplicity of the pole is rand "'(ia) has the property (3), where (3) is changed to "'(ia) is close in norm to the 
subspace of ifJO,ifJl , ... ,ifJr' then 

a(t) = e-
iEt Lto (",(ia)lifJi)(iifJ I "'(ia» + (- it) ~~: (",(ia)lifJi)(+1 ifJ ltP<ia» + ... 

+ (-n~tY ~~: ("'(ia)lifJi)(+nifJ I"'(ia»+ ... } +R(t). (3.6) 

If the multiplicity of the pole is r with eigenvectors with J, generalized eigenvectors associated to theJ th eigenvector, then 

a(t) = e - iEt {jt ito :t~ (tP<ia) I ifJ{) «k + iifJ I "'(ia) ( ~ :t)i } . 
We can rewrite Eq. (3.6) in the form 

a(t)=e-iEtLto (tP<ia)lifJo)(ifJ 1"'(ia»(~:tY + ~~: (",(ia)lifJI)(+lifJ 1"'(ia»(~:tY 
r-2 (- itY 

+ I (tP<ia) I ifJ2 )(+2ifJ ltP<ia» -. ,- + ... 
I ~ 0 I. 

+ ito (",(ia)lifJr_1 )(+r-lifJ I"'ia) (~:tY + (",(ia)lifJr)(ifJr ltP<ia»} =R(t). 

If we use the more general form ofEq. (2.30), i.e., with 1]1 =1-1, we have 

a(t)=e-iEtLto;~~ (tP<ia)lifJi)(+jifJ ltP<ia» (-;t)j }+R(t). (3.7) 

This result makes explicit the contribution to the time evolution of the reduced motion amplitude from the pole at E. The 
function R (t) contains contributions from other poles and cuts, and a similar analysis could be applied to each of these other 
poles. 
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IV. Z DEPENDENT CASE 

Although the Balslev-Combes method permits direct 
application of a procedure utilizing the Wong decomposi
tion, we wish to show that analytic continuation through the 
real semiaxis cut of the Livsic matrix can be treated in a 
similar way. Since the Livsic matrix depends in general onz, 
this treatment involves an extension of the Wong decompo
sition to its use as an expansion in the neighborhood of each 
complex pole. This procedure may be useful in cases when 
the requirement of the Balslev-Combes theorems are not 
fulfilled. 

Our goal in this section is to find an approximate form 
of a degenerate Livsic h (z) (z dependent) with only one zero. 
We shall use the following approximation: the contribution( 
to U (t) near a pole Eb comes primarily from this pole. Ifwe 
neglect the contribution from the cut and other poles. Then 
Pb U (t )Pb [wherePb is a projection ot the subspace on which 
R '(z)], the resolvent of the Livsic matrix h (z), is singular 
when E---~-Eb is calculated by 

PbU(t)Pb ~ -. R '(z)e-1ztdz, 1 f . 
2m r. 

(4.1) 

where rb is a contour enclosing only the singularity Eb . Us
ing Eq. (4.1) and the relation 

limU(t)=1 
t--.{) 

in our approximation, we have 

limPb U(t)Pb = Pb ~ lim ~ j R '(z)e- izt dz. 
t--.{) t--.{) 21T1 Yr. 
Using Eqs. (2.3) and (4.2) 

Pb ~ lim {e-iE.t(B -("b»( - it)"bl-I + ... 
t--.{) 

+ B_2 ( - it) + B_ 1 ) j 

(4.2) 

(4.3) 

we conclude that B ~ I = B_1 in the sense that Pb ~B _ I . 

Using Eqs. (1.5) and (4.3), we get extra information on 
the structure of the resolvent, by considering 

B -I ~B _IB -I = ~ r dz' r dzR '(z')R '(z), (4.4) 
2m Jr. Jr. 

where r;, is completely inside r b ; to compute Eq. (4.4) we 
give a generalized resolvent identity. For clarity of notation 
in the following, let us denote h (z) by H (z). Using Eq. (1.4), 
we obtain 

z' - H(z) = [z - H(z)] - (z - z') 

so that 

or 

R '(z)[z' - H (z)] = 1- R '(z)(z - z'), 

R '(z)[z' - H (z')] + R '(z)[H (z') - H (z)] 

= 1- R '(z)(z - z'), 

R '(z) + R '(z)[H (z') - H (z)]R '(z') 

= R '(z') - R '(z)R '(z')(z - z'). 

Then, we have 
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(z - z') R '(z)R '(z') 

= R '(z') - R '(z) + R '(z)[H (z') - H (z)]R '(z'). (4.5) 

Using Eq. (4.5) in (4.3), one finds 

B 1= _1_ r dz r dz' 
- (2m)2 Jrb Jr. 

X [R '(z) - R '(z')](z' - z) -I + _1_ 
(2mY 

X r dz r dz,R(z)[H(z')-H(z)]R(z'). (4.6) 
Jrb Jr. (z' - z) 

The first term ofEq. (4.6) is equal to B -I (Wong'); 
therefore, the second term should be approximately zero. 
Our next step is to suggest a form for H (z), consistent with 
the validity of the approximations which we wish to use. Let 
us assume that H has a Taylor expansion about Eb: 

H(z) = H(Eb) + ! (z - Eb)iCi • (4.7) 
i~ I 

Then, the second term in Eq. (4.6) (using Sec. II.C) is 

_1 r dz r dZ'{ ! ! ! [Bm 
(2myJrb Jr. m~-r(b)n~lk~-r(b) 

X CnBR(z - Eb)m(Z - Z')-I(Z' - Ebl+n 

X - BmCnBR(z - Eb)m+n(z -Z')-I(Z' - Ebl]}. 

(4.8) 

Integration on r;, of the most singular term in Eq. (4.8) 
gives 

-1-1 dzB {(z-E )-"b)+[n-"b)] 
2 . - "b) b 

1T1 rb 

xO[n-r(b)] -(z'-Eby-2"b)jCnB_"b) ' (4.9) 

where 

Oem) = 0, m>O, Oem) = 1, m <0. 

For this contribution to vanish, either n - 2r(b) must be 
nonnegative or B _ "b) CnB _ "b) = O. 

We shall, in fact, demand that for 2r(b) > n (we will 
need this stronger condition in what follows) 

B_"b)Cn =CnB_"b) =0. (4.10) 

Consider now other less leading terms in Eq. (4.8), ob
tained by replacing one ofthe B _ "b l by B _ "b) + I; then, if 
n < 2r(b ), this contribution will vanish by Eq. (4.10), and for 
n>2r(b), Eq. (4.9) becomes (1)0) 

-1-1 dzB (z-E )-rl.b)+[n+I-rl.b)1 . -- rl.b) b 

2m r" 

xO [n - r(b) + I] - (z --- Eb)"-2rl.b)+J 

XO[r(b)+l]jC_nB_rl.b)+J' 

which vanishes because there is no pole. 
In the same way we see that if we demand the relation 

B_nCk =CkB_ n =0, for k>2n>0, (4.11) 

all of the terms of (4.8) vanish. Let us consider [to compare 
with Eq. (2.4)] 
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X [R '(z) - R '(z')] + R '(z)[H(z') - H(z)]R '(z')! (4.12) 

for 0 < n, m<r(b). 
The second term [similar in structure to Eq. (4.8)] vanishes by Eq. (4.11), and the remaining first term ofEq. (4.12) is 

equal to B _ m _ n (by Wong'). 
Equation (2.4) holds and R '(z) is given by 

R'(z)=Pb(z-Eb)-I+ 'f Ni(z-Eb)-(i+l) + ! Bn(Z-Ebt· (4.13) 
i= 1 n=O 

The difference between R '(z) and Wong's resolvent is that PbBO = 0 and Bn = ( - ItB ~ cannot be proved in this case 
(here, these residues are associated with the Laurent expansion around points where then Livsic matrix is essentially differ
ent). After the form R '(z) is found, we can calculate H (z) as 

Po [IpEb -H(Eb)] = _1_. r R '(z)[Eb1p -H(Eb)] dz 
2m Jrb 

= _1 . r {R '(z)[H(z) -z] - R '(z)(z - Eb) + R '(z)[H(z) - H(Eb)]! 
2m Jrb 

= 0 - Nb + ~ r R '(z)[H(z) - H(Eb)] dz. (4.14) 
2m Jrb 

The last term is equal to 

and 

_1. r! ! BmCn(z-Eb)m(z-Ebtdz=! ! Bm Cn8 (n+m). 
21T1 Jrb n = 1 m = - r(b) n = 1 m = - r(b) 

This term vanishes for n + m;;;.O by 8 and for m + n < 0, Bm Cn is zero [by Eq. (4.11)]. 
Then the form of PbHb is 

PdH(Eb)] =PbEb +Nb 

Using Eqs. (4.11) and (4.13), H (Eb)Pb can be calculated also, and we obtain the same results. 

(4.15) 

(4.16) 

(4.17) 

According to Eq. (4.11), C1 Pb = 0, but CnPb for n;;;.1 is so far unrestricted when Nb = O. In this case, the general 
expansion (4.7) yields 

H (Z)Pb = PbEb + ! CiPb (z - EbY- (4.18) 
i=2 

If Nb = ~~ \ - 1 I i) (i + 11, where I i) is the (i + 1 )th generalized eigenvector, then using Eq. (4.11) and Nb = B_2' B _ i 
= N~ 1 for 1,2,3, ... ,r(b), we find the following relations: for n <r(b), 

(4.19) 

and for 2n + 1 < 2r(b ), 
n - 1 n 

C2n + 1 Pb = L L gij U> (r(b ) - i I (4.20) 
i=O j=O 

and for n ;;;.r(b ), Cn Pb is so far unrestricted. However, the formal requirements provide restrictions Pb [z - H (z)]R (z)Pb = Pb 
= R (z)[z - H (z)], on the Bn and Cn operators. Explicitly, 

Pb [z - H(z)]R (z)Pb 

= [(z-Eb)Pb -Nb][Pb ~ + 1: Ni(Z-Eb)-(i+I)] + [(z-Eb)Pb -Nb ][ i BnPb(Z-Ebt] 
z Eb .=1 n=O 

hence, 
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n~o Pb[Bn(z-Eby+l-NbBnPb(Z-EbY] - n~2 Pb[ Cn(z-Eby- 1 + r(~.tl CnNi(Z-Eb)-i-l+n]Pb 

X L PbCnBnPb(Z-Eby+m=o. 
n=2 
M=O 

(4.21) 

PbR (Z) [Z - H (z) ]Pb = Pb gives the same equation, but the ordering of the Bn 's and Cn 's is changed. Collecting equal 
powers of (z - E), and using the conditions written previously, one easily finds solutions. 

A. Relation between Laurent coefficients from the expansion around two different poles 

In the following we will study two zeros or H (z) - z. In this case, we must consider two poles of the resolvent. Our goal is 
to prove that the residues are approximately orthogonal, assuming that the pole approximation is valid. We assume the form 

H(z) = jj + f [(z - EbYCn + (z - Ea)nFn] + f (z - Ea)i(z - Eb)j Dij , (4.22) 
n= 1 i,j= 1 

where jj is independent of (z) (it is a constant operator). Then the second term of Eq. (4.6), i.e., 

_1_ { dz' { dz(z' - z)-IR '(z)[H(z') - H(z)]R '(z'), 
(21TlY Jro Jrb 

(4.23) 

must be assumed to be approximately zero for the validity of the pole approximation. From this it will be shown that the 
residues are orthogonal. 

Putting H (z) of Eq. (4.22) into the last integral, we find 

_1_ { dz' { dz f f f [BmCnBk(Z'-Eb)k+n(z-Eb)m-BmCnBk(Z-Eb)m+n(z'-Eb)k] 
(21TlY Jro Jrb m = - r(b) n = 1 k = - r(b) 

X(z' _Z)-l + _1_ { dz' { dz L L LBmFnBk(Z - Eb)m(z' - Ea)k(Z -z')[(z -Ear - (z' -EaY] 
(21TlY Jr. Jr. m n k 

+ _1_ { dz ( dz'BmDijBk(z - Eb)m(Z - z') - I(Z' - Eb)k [(z' - Eb)j(z' - Ea)i - (z - Eb)j(Z - EaY1. (4.24) 
(21TlY Jrb Jr. 

The treatment of the first term is the same as in the last section; then, B _ n C k = C k B _ n = 0 for k < 2n; in the second 
term we look at the most singular part, and require that it will be zero. The result of this requirement is 

FnB-r(b) =B-r(b)Fn =0, n>O. (4.25) 

The same requirement (that every term will be zero) for any B _ n (m > 0) gives FnB _ m = B _ mFn = 0, m,n > O. The 
third term in Eq. (4.25) gives the same kind of term as the first term ofEq. (4.24) multiplied by (z - Ea) in some power. Using 
the result that we found in the first term, we get 

DijB_ n =B_nDij =0, j<2n. 

The proof that the above conditions imply 

B_mB_ n =B1 - m- n , 

for 0 < n, m.;;r(b), is the same as in Eq. (4.12). Then, Eqs. (4.13) and (4.14) hold near z = E b • 

Assuming that R '(z) near z = Ea has the expansion 

R'(z) = f An(z-EaY, 
n = - r(a) 

then, by the same argument, we demand, for the validity of the pole approximation near z = Eo, 

(4.26) 

A _nCk = CkA -n = 0 (k<2n), A _nFk =FkA -n = 0 (k<2n), DijA -n =A _nDij = 0 (k2n). (4.27) 

The relations corresponding to Eq. (4.14) are 

Pb[Eb-H(Eb)]= -Nb= -B_2' Pa[Ea-H(Ea)]= -Na= -A_ 2 • (4.28) 

The product of B _ n and A _ m for n,m>O is 

A _ nB _ m = _1_2 i dz i dz'(z - Eat -IR , (z)[H (z') - H(z)]R '(z')(z - z') -1(Z - Eb)m-l, 
(217'1) r" r" 

(4.29) 

where ra encloses Ea, and rb encloses E b, but they do not cross. By integration of the first term ofEq. (4.29) we get 
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+ I I FkB1(z - Eby+m-I(z, - Eat+k+ 1 + I I Dij [B1(z' - Eb)l+m-1 +j(z - EaY+ n-I]. 
b = 1 1 = - r(b) ij 1 = - r(b) 

[R (z) is analyticin rb'] The firstterm vanishes (for k>1 since 
there is no pole in this case, and for k < 1 since CkBI = 0, and 
the second term vanishes since 1 < ° implies FnBI = 0. The 
third term vanishes since DijBI = Oforj < - 2/. By the same 
method the second term ofEq. (4.29) vanishes in the integra
tion on r b • In particular, the following identities hold: 

A_IB_I =PbPa =PaPb =0, 

A_IB_2 =PaNb = NbPa =0, 

A _ 2B _ 1 = PbNa = NaPb = 0, 

(4.30) 

and we have again a resolvent formally of Wong type. Using 
Eqs. (4.28) and (4.30), we see that jjhas the Wong form. 
Using 

PaH(Ea) = EaPa +Na' 

PbH(Eb) = EbPb +Nb' 

we find that 

jj= I (PiEi +N;). 
i 

It should be emphasized that the Wong type structure fol
lows from assuming the validity of the pole approximation. 
To the extent that the pole approximation is not exact, the 
structure of the resolvent can differ from the precise Wong 
form. However, the Wong decomposition can be used to 
analyze the leading time dependence of the contribution to 
the amplitude from the neighborhood of each pole. 

To illustrate the effect of degeneracy in the S matrix, we 
discuss the example of the Lee-Friedrichs modeP, where 
H = Ho + V, and V connects the continuum only to a few 
discrete states I k ). Then the off shell scattering amplitude is 

(E IT(z)IE) = (E I VIK)(K I-I-IK')(k'l VIE). 
z-H 

(4.31) 

One may then approximate (K 11I(z - H) I K') by a 
Wong type resolvent in the neighborhood of each pole, 
which contains the effect of the pole, as an effective propaga
tor. Then, using Eq. (4.13), the contribution from all of the 
poles to the S matrix in the neighborhood E p ZEb is 

(P IS IP') = [P(P - P') - 21Ti f (Ep - Ep') 

X {r(bf 1 (P'I VIKb)«K + Ih I VIP') 

1=0 (Ep -Eb)/+1 

+ f (P I V IRb)(Rb IBn IR;') 
n=O 

(4.32) 

where Eb is the pole of the resolvent with multiplicity reb ), 
I kb) is the (Kb - l)th generalized eigenvector of the pole at 
E b , i.e., ¢J ~b = I k b ) and I k b ) = ¢J ~b as defined previously. 
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r----------------------------------------
Here we have used the following representation of 

(N~t: 

Nb = 'f I i) (i + 1 I, (Nbf = 'f I i) (i + 2 I , 
i= 1 i= 1 

r(bi-,- n 
(NbY = L I i) (i + n I . (4.33) 

i= 1 

The first term in Eq. (4.32) is a generalization ofthe 
Breit-Wigner form that would be obtained from a pole ap
proximation to the usual Lee model. The sum 
l:: = 0 (P' I VBn V IP )(Ep - EbY should be considered as 
backgroud, even though it contains contributions from other 
poles, because it is analytic in Ep and vanishes at Ep = Eb, 
while the first term becomes large. 

V. INFINITE DIMENSIONAL CASE 

One difference between eigenvectors and generalized 
eigenvectors is that only for eigenvectors does U (t ) become a 
multiplication operator. This raises the question of whether 
it is possible to find a linear combination of generalized ei
genvectors that will have the property that U (t ) can be a 
multiplication operator. 

Theorem: Let h be in the form ofEq. (2.31). Let 
h = A.iPi + TfNi. Denote by I tPi) the ith generalized eigen
vector(O<i<dimPi = n); then, forn finite, U(t )isamultipli
cation operator only on the ray atPo (tPo is an eigenvector), 
but for n infinite, U (t ) is a multiplication operator also on 

Proof U (t ) is a multiplication operator on 
¢J = l:t'=OaitPi (for i>dimPi; suppose thatai = 0) if 

U(t)¢J = C(t)¢J. (5.1) 

In this case, 

1· anU(t) A- _ I' a,C(t) A- - b A-
Im '1'- 1m--'I'- n'l" 

,-.I) at n ,-.I) at n 

where bn is a constant. 
Using the form of U(t) [Eq. (2.31)], we find 

U(t)¢J=e- iAi'[ f tPj f ak (-iTft)k-
j
] 

j=O k=j (k-J)! 
(5.2) 

and 

lim ~ [ U (t)1,6 ] 
,-.I) at 

= - (iA.i jto ajtPj + jto tPjai+ I) 
= - iJ..¢J + Tf f (aj+ 1 tPj) . 

j='O 

In order that condition (5.1) holds, it is required that 
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00 (hi + iA) I aj+ I th = . t/J , 
j ~ 0 11] 

which implies that aj = a for every j or that aj = ° for j > 0. 
For the finite case, only the second condition holds. 

TocomputeC(t)forthecaset/J = al:r~otPi>oneusesEq. 
(5.2): 

U(t) f atPi 
;=0 

= e - iAil [ f atPj f (- i1]t )k - j ] 
j~o k~j (k - J)! 

= e - j( Ai + '1)1 (5.3) 

If 1] = - i 1m Aj (see Appendix of Ref. 14), a value 
where the part of h (1]) that transfers one subspace to others is 
equal to the width, then t/J is a stable state [Aj = Eo 
- (iF /2)], i.e., a fixed point 

U (t) = e - jEolt/J. (5.4) 

Ifwe have at the beginning any other state t/J I = l:~ I ajtPi> 
then if a finite number of terms in t/J are not zero, 

lim U (t )t/J I = 0, 

but if an infinite number of terms in t/J are not zero, let us 
define a by setting 

(t/J ',t/J ') = a2(t/J,t/J ). 

Now, it is an identity that 

t/J' = at/J + (t/J' - at/J) 

and hence 

U(t)t/J = ae- jEol + U(t)[t/J'-at/Jl. 

if F is positive, then the second term decays, and one obtains 

lim U (t)t/J ' = e - jEoAlat/J. 

For example, let t/J ' = l:: ~ I tP2n - I : 

(t/J ',t/J) = Ht/J,t/J); 

then, 

U(t)t/J ' 

= e - jAil { f tP2n _ I [1 - I ( - i1]~ ?j ] 
n ~ I j (2J)' 

( _ i1]t ?j - I } 

+ n~o tP2n (2i - 1)! 

= e - iA;l ! [cosh( - i1]t )tPln + I + sinh( - i1]t )tP2n ] 
n=O 

=! I e-iAil-i'llt/Jj +!Ie- iA,'+i'lt(¢'2i+1 -tP2;) 
i= 1 

_ 1 - iEot A. + 1 - jEot - Ft " (./, + .f, ) 
- 1.e 'I' 1. e £.. 'l'2n + I 'f'2n 

= U(t) ~ - U(t)(t/J' - ~ ). 

The second term decays as e - Ft. Taking t/J ' = l:r~ 0 ¢'2j 
[(t/J 't/J ') = 1], then 
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For any t/J ' = l:r~ I aj¢'i' let us consider the entropy of 
the probability distribution given by laj 12

• This is 

s = - i laj 121n laj 12. 
i= 1 

Note that S is maximum when a l = a2 = ... = ar 

= 1/r1/2 in which case t/J = t/J ' and 

(5.5) 

1 
maxS = - In - = Inr. (5.6) 

r 
As for the finite degeneracy case, we shall compare this 

result to H (ia) of Balslev and Combes. Let H (ia) have only 
one pole of degeneracy r; then (we denote t/Jj the ith general
ized eigenvector), we have 

aCt) = e-
jEut

[ jto;t~ (¢'(ia) I t/Jj) 

X (It/Jj+j I ¢'(ia) I) (- i1]tY ] + R (t). (5.7) 
j1 

If (¢'(ia) I ¢>i) is constant for every i (recall the earlier discus
sion where ¢> was a state with an equal amount and phase of 
each of the ¢'i ¢> = l:i ¢,,; the interpretation here is the 
same), then 

a(t) = e - jEt i 'Ij 
(¢'(ia) I ¢>j) 

j j~ I 

x(..t/J I¢,(ia» (-i1]t)j +R(t), 
j1 

and when r-+oo, 

aCt) = e - jEt f 1 (¢'(ia) It/Jj) 1
2e - j'lt + R (t). 

j~O 

Using 

we obtain 

(5.8) 

(5.9) 

a(t) = e - j(E + '1)t (Pb ¢'(ia) IPb¢'(ia» + R (t). (5.10) 

if 1] = iF /2, then we may write 

a(t) = e - jEu
t (Pb ¢'(ia) IPb tP(ia» + R (t). (5.11) 

When Eb is a real number, (Pb ¢'(ia) IPb ¢'(ia» in close 
to the norm of ¢'(ia) by property (3) of Sec. III and R (t) is 
"small" for the same reason (i.e., the scalar product is small). 
We call R (t) the fluctuation. 

The generalization of the result to large but finite multi
plicity "r" includes two associated aspects. The definition of 
the fluctuation (i.e., a small correction or large correction 
lasting for a small time) and the times "to" and "tr" are so 
that for every time "t" such that tr > t> to, a(t) can be writ
ten asymptotically as a term of fixed magnitude (which may 
be zero) plus a term that can be included in our definition of 
the fluctuation. Using Eq. (5.8), 

a(t) = e - iEt i ! (¢'(ia) I ¢>j) (¢>i 1 ¢'(ia» ( - i1]1 )j 
j=Oj=O j1 

- I f (¢,(ia)lt/Jj)(t/Jjl¢'(ia» (-i1]t)j 
j ~ 0 j = 'I - i j1 
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+ t r II (tf(ia) I tPi) (tPi ! tf(ia» (- ~7Jt )J 
i=r\J=O J. 

+R(t), (5.12) 

where a good choice of'l is made, so that for every time t 
such that tr > t> to, the last three terms ofEq. (5.12) are 
included in our definition of the fluctuation and a(t) is well 
approximated by the first term. Equation (5.12) can be writ
ten in the form 

a(t) = e - iEot (Pr, t/J(ia) IPr, tf(ia) > + RI (t), (5.13) 

where 

Pr,= i !tPi)(tPi! 
i=l 

and RI (t) is the sum of the last three terms in Eq. (5.12). 
In this case, there is a metastable state, but, as in the 

statistical mechanics of systems with a finite number of de
grees of freedom, no true equilibrium. 
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Phase-integral calculation of physically important quantities for 
nonrelativistic bound s states of the linear central potential 
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Energy levels, normalization factors, quantal expectation values, and probability densities at the 
origin for nonrelativistic bound s states of the linear central potential are calculated by means of 
phase-integral formulas, given by N. Froman in two recent papers. The accuracy of the phase
integral method is exhibited by a numerical comparison with exact results. During the last few 
years the potential in question has been widely used as a model potential describing quark 
confinement in heavy mesons. 

1. INTRODUCTION 

N. Froman l
,2 has recently derived accurate phase-inte

gral formulas for normalization factors, quantal expectation 
values, and probability densities at the origin, not involving 
wavefunctions, for the case of a single well potential V (r) 
being either regular or Coulomb-like (case A), Coulomb-like 
and attractive (case B), or regular (case C) close to the origin. 

The linear central potential V (r) = ar, where a> 0, has 
been widely used as quark-antiquark interaction potential in 
nonrelativistic charmonium spectroscopy (see, e.g., Refs. 3-
7), The purpose of the present paper is to demonstrate that 
for s states of this potential, for which exact solutions of the 
Schrodinger equation are known in terms of the Airy func
tion Ai, various physically important quantities can be accu
rately calculated by means of the phase-integral formulae 
given in Refs. I and 2. If higher orders of the phase-integral 
approximations are used, the agreement with exact results is 
excellent, particularly for excited states. 

For I = 0, the time-independent, radial Schrodinger 
equation is, with obvious notations, 

d 2U 2ft --+ - (g' - ar)u = 0. dr fl2 
(1) 

Introducing the dimensionless quantities (cf. Eqs. (2) and (3) 
in Ref. 8) 

z = ( 2~2a )1/3r , 

_ (l:!!:..- )1/3 
A - 2 2 g', 

fla 

we transform (1) into 

d 2u/dz2 + Q2(z)u = 0, 

where 

Q 2(z) =A -z. 

(2) 

(3) 

(4) 

(5) 

Bound-state solutions are obtained when A assumes certain 
discrete values An' n = 0,1,2,. .. , where n is the number of 
radial nodes of the corresponding eigenfunction, which we 
denote by un(z) and assume to be normalized in such a way 
that 

100 

u~(z)dz=l, n=0,1,2, .. ·. (6) 

Since the particular physical potential under consider
ation is regular at the origin, and since the orbital angular 
momentum is equal to zero, one can use the phase-integral 
formulas pertaining to either case A or case C in Refs. 1 and 
2, depending on whether one wants to work with modified or 
unmodified phase-integral approximations. In the present 
paper we shall use both case A and case C formulas to calcu
late energy levels, normalization factors, expectation values 
of positive powers of the radial coordinate, and probability 
densities at the origin. 

2. ENERGY LEVELS 

The energy spectrum can be obtained ~rom the 
(2N + 1) th-order phase-integral quantization condition, 
which, according to (19), (20a), and (2Oc) in Ref. 1, can be 
written 

1 {a =! (case A) ! q(z) dz = (n + a)1T, n = 0,1,2,. .. , 2 , (7) 
r a = i (case C), 

where, according to (9) in Ref. 1, 
N 

q(z) = Qrnod (z) I YZm ' (8) 
m=O 

with the first few functions YZm given by (lla--c) in Ref. 1. In 
(7) r stands for either of the contours r A (case A) or r c 

(case C) shown in Figs. 1 and 2, respectively. In these figures 
the heavy lines indicate how the complex z plane is cut in 
order to make q(z) single-valued; the phase of Qrnod (z) is cho
sen so as to make Qrnod (z) real and positive on the upper lips 
of the cuts. Defining 

L (Zm + I) = 1: fr Yzm Qrnod dz, (9) 

we can also write the quantization condition (7) in the form 

~ L (2m + I) = (n + a)1T, _ 01 2 ... {a =! (case A), 
~ n-", (C) m~O a=i case . 

(10) 

Writing 

Q~od(Z) = Q 2(z) -/3/4Z2 =A - z - /3 /4Z2, (11) 

where the constant/iis chosen in case A equal to I (which for 
the first-order phase-integral approximation gives the 
Kramers-Kemble-Langer modification) and in case C 
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Q~(Z) 

__ ~~ __________________ ~~ _______ Z 

(b) 

Complex z-plane 

@ 
FIG. I. This figure refers tocaseA. (a) shows Q ~od given by(ll)with,B = I 
as a function of z when z is real. (b) shows the branch cut (heavy line), and 
the closed contour of integration r A encircling, in the negative sense, the 

generalized classical turning points, i.e., the two zeros x I and X 2 of Q ~od 
lying on the positive real axis; the third zero Xo is located on the negative real 
axis. 

equal to 0 (which gives unmodified phase-integral approxi
mations), and using Eqs. (12)-(14) in Ref. 1, we obtain for 
the functions €o(z) and €2(Z), which appear in the definitions 
of Y2 and Y4 , the following expressions: 

€o = I [4(4P + 5)Z6 - 32(3Ar 
[4(A - Z)Z2 - P F 
+ 16PA 2Z4 + 4P (2P - II)z3 

- 8P(p - 3)A~ +p 2(p -1)], (12a) 
2 

Z [3456( 4P + 5)ZIO - 45056PAz9 

[4(A _ Z)Z2 _ P ] 6 

+ 54784PA 2Z8 +256P(18P -116A 3 - 585)z7 

- 768P (13P - 8A 3 - 286)Az6 + 256P (29P - 528) 

XA 2r - 32(3 [9P (p - 154) + 64(p - 15)A 3]Z4 

+ 192P 2(3P - 196)Az3 - 128P 2(/3 - 69)A 2Z2 

- 144P 3(/3 + 8)z + 64p 3(/3 + 3)A ]. (12b) 

Case A: Whenp = 1 the integral in (9) can be evaluated 
in terms of the complete elliptic integrals K (k ), E (k ) and 
n (a 2,k) of the first, second, and third kind, respectively, by 
employing standard methods described in Ref. 9. The labor 
involved in this evaluation is greatly reduced if one separates 
off total derivatives in the integrand, yielding zero upon inte
gration around the closed contour r A • 

Letting Xo < 0 <x I <x2, where XO,x!,x2 are the real ze
ros of Q ~Od (z) (cf. Fig. I), and defining the modulus k by 
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(b) 

Complex z-plane 

O·iO rc @ • 
• 

O-iO 

FIG. 2. This figure refers to case C. (a) shows Q2 given by (5) as a function of 
z when z is real. (b) shows the branch cut (heavy line), and the nonclosed 
contour of integration rerunning from the point z = 0 + iO on the upper 

lip of the cut around the classical turning point x = A tothepointz = 0 - iO 
on the lower lip of the cut. 

k2 = X2 -Xl, (13) 
X2 -Xo 

we can write the first-, third-, and fifth-order contributions 
to the sum in the quantization condition (10) as follows 

L cl )= 2(X2- XO)!/2 [(xI-xo)K(k)+AE(k)] 
3 

_ 2xz<x! - xo) ll(x 1.. 2/X k) 
( )

1/2 <r I' , X2 -Xo 

L (3) = A (X2 - XO)I/2 [4(A _ xo)xo(X I - xo)K (k) 
27 -16A 3 

(14') 

+3E(k)], (14") 

L (5) = A (X2 -xo)lt2 12 [A 2(2727 -272A 3) 
15(27 - 16A 3)3 

- 3A (3568A 3 + 13257)xo 

+90(128A 3 + 351)x; l(x i - xo)K(k) 

+ (1088A 6 -28188A 3 -47385)E(k)J. (14"') 

In order to obtain the eigenvalues A" we have inserted (14')
(14"') into the quantization condition (10) with a = ! and 
solved the resulting equations numerically for n = 0,1,2,3,4. 
The results are given in Table I. 

Case C: When p = 0 the integral (9) defining L (2m + I) 

can be evaluated in an elementary way. The result is (cf. Eq. 
(18) in Ref. 8) 
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TABLE 1. For the quantum numbers n = 0,1,2,3,4, this table gives the 
exact eigenvalues A" ( = the absolute value of the (n + l)th zero ofthe Airy 

function Ai) taken from Table 1 in Ref. 16, and the corresponding approxi
mate eigenvalues in (from top to bottom) the first-, third-, and fifth-order 
phase-integral approximations. The phase-integral values are obtained in 
case A from the quantization condition (10) with (l4')-{14m), and in case C 
from (1 6'HI 6"'). 

n 

o 

2 

3 

4 

An =U~2rJ~n 
Exact Phase-integral approximations of 

orders 1,3,5 
Case A Case C 

2.35 2.32 
2.3381 2.336 2.339 

2.340 2.3376 
4.094 4.082 

4.087949 4.0873 4.0881 
4.0884 4.087941 
5.525 5.517 

5.5205598 5.5202 5.52058 
5.5208 5.5205589 
6.790 6.785 

6.7867081 6.7865 6.7867 16 
6.7869 6.7867079 
7.947 7.943 

7.9441 3359 7.9440 7.9441 37 
7.9442 7.9441 3354 

(_I)m +lb
2m L (2m + I) = ~ 3/2 --:-______ _ 

26m ~ 1(2m -1)A 3m 
(15) 

where the first few b2m are given in Eqs. (16a-f) in Ref. 8. 

Inserting (15) into the quantization condition (10) with 
a = 3 and solving for An' we obtain 

An = S~/3, first-order approximation, 

third-order approximation, 

fifth-order approximation, 
where 

f;- _ ( 3) 317' 
!:on - n+ 4 2' 
and 

TIn = H(5[ 6605 + 15912S~ 

(16') 

(16") 

(16m
) 

(17) 

+ [442(572832S! +475560S~ -911645)]1/2j)1/3 

+ (5[6605 + 15912S~ 

- [442(572832S~ +475560S~ -911645)]1/2j)1/3-5J. 
(18) 

Numerical values of Ao, AI> A2, A3, A4 are given in Table I. 

Since the first-order phase-integral approximation is 
identical to the first-order JWKB-approximation, we note 
by comparing with (16') and (17) that formula (3.5) in Ref. 
10 contains a misprint. Furthermore, the first-order JWKB 

TABLE II. For the quantum numbers n = 0,1,2,3,4, this table gives the exact values ofthe square of the normalization factor, IC" 12
, and the corresponding 

approximate values in (from top to bottom) the first-, third-, and fifth-order phase-integral approximations. The exact values are obtained from the formula 
IC" 12 = [2\1'17' Ai'( - An)]-2, the value of the derivative of the Airy function at its (n + l)th zero, Ai'( - A,,), being taken from Table I in Ref. 16. The phase

integral values are obtained in case A from (20) in the first-order approximation and by numerical evaluation of (19) in higher orders, and in case C by using 
(23), by a direct evaluation of (24), and by using the simplified formulas (25')-{25'''). In the first-order approximation the three different ways of calculating 
I C" 12 in case C yield exactly the same result. 

Exact 
n 

o 0.1618 

0.123378 

2 0.10630485 

3 0.09591703 

4 0.08867115 

Case A 

0.161 
0.1620 
0.1615 

0.1231 
0.12341 
0.12334 

0.1062 
0.10632 
0.10629 

0.09585 
0.095923 
0.095910 

0.08863 
0.088675 
0.088667 
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IC,,1 2 

Phase-integral approximations of orders 1,3,5 
Case C, Eq. (23) Case C, Eq. (24) Case C, Eqs. (25) 

0.164 0.164 0.164 
0.1615 0.1616 0.1616 
0.1621 0.1620 0.1620 

0.1237 0.1237 0.1237 
0.12336 0.12337 0.12337 
0.123380 0.123379 0.123380 

0.1064 0.1064 0.1064 
0.106303 0.106303 0.106303 
0.1063050 0.10630492 0.1063050 

0.09598 0.09598 0.09598 
0.0959 165 0.0959 166 0.0959 166 
0.09591705 0.09591704 0.09591704 

0.0887 I 0.0887 I 0.0887 I 
0.0886709 0.0886710 0.0886710 
0.08867115 0.08867115 0.08867115 
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values given in the column headed (m/a2)lt3En(WKB) in 
Table I in Ref. 5 are in disagreement with the first-order 
values in our Table I which we claim not to contain any 
numerical errors. 

3. NORMALIZATION FACTORS 

ease A: In case A we insert (25a) in Ref. 1 into (23) in 
Ref. 1 to obtain a phase-integral formula for the normaliza
tion factor. Expressed in terms of the dimensionless quanti
ties A and z, introduced in (2) and (3), this formula reads 

1 (dz 
Ie" 11 = Jr, q(z;A,,) . 

(19) 

As was the case with the integral in the quantization condi
tion (7) in case A, the integral in (19) can be expressed in 
terms of complete elliptic integrals. Using standard methods 
(see in particular formula (236.20) in Ref. 9), we easily ob
tain from (19) the first-order expression 

1 _ ( 4 )1/2 [xoK(k) + (Xl -xo)E(k)]. 
Ie" 12 - Xl - Xo (20) 

However, the analytic evaluation of len 12 in higher orders 
with the aid of complete elliptic integrals is rather complicat
ed, and therefore we have in the calculation of the third- and 
fifth-order values resorted to a numerical evaluation of the 
integral in (19). Numerical results are given in Table II. 

ease C: Let us now consider case C. Expressing Eq. (23) 
in Ref. 1 in terms of the dimensionless quantities A and z, 
which amounts to formally replacing 2"Jfi1 by unity, we 
obtain the following formula 

I ( a I ) --2 =2 - q(z;A)dz . 
le,,1 aA r, A=A .. 

(21) 

Owing to the simplicity of Q ~Od (z) = Q 2(Z) = A - z in the 
particular problem under consideration we find that 

(a/aA )q(z;A ) = - (a/az)q(z;A ). (22) 

Using this in (21), we immediately obtain the formula 

_1_2 = 4q(0 + iO;A,,). 
le,,1 

(23) 

If we insert the consistently truncated expression (25b) 
in Ref. 1 into (23) in Ref. 1, we obtain, as an alternative to 
(21), the following formula 

_1_2 = r ~+(1-8N.O) 
len I Jrcq(z;An) 

X [Nfl (-IY( ~ !!.-)2j +1 2~] . (24) 
j=O 2q(z;An) dz q (z;A") z=O+iO 

Note that in higher orders this formula will not yield exactly 
the same results as (21). 

By recasting, in a consistent way, the sum in the right
hand member ofEq. (25b) in Ref. 1 into a simplified form not 
containing derivatives of q(z) with respect to z, one obtains 
formulas (25b')-(25b"') in Ref. 1. Using these formulas in 
Eq. (23) in Ref. I and evaluating the integrals, we obtain 

1 -
--2 = 4VA" , first-order approximation, (25') 
le,,1 
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1 

Ie" 12 _ 

=4v;,:- + 2v';{2arctanVp/A" _ V3 
3 2 

A"+p+V3pA" VPAn) X In + arctan-..!-...:!.-
An +p- V3pAn An-P 

1 + 5 . ,third-order approximation, 
2q (0 + 10;A") 

1 

len 12 

= 4v;,:- + 64 { pi/2 (2 arctan V PI/A" 
3V 2235 

(25") 

V3 1 A" +PI + V 3p 1A" V PIA" ) - -- n + arctan-...!....:'--"-
2 An +PI - V 3p 1A" An -PI 

7/2(11 An + pz + 2V PzAn 
- P2 2 n--'----~==-

An +pz -2V PzAn 

1 
An + P2 + V PzAn +! n------,== 
An +P2 - V PzAn 

_ V3 arctan VM)} + 1 
An -P2 2q5(0 + iO;An) 

25 
fifth-order approximation, 

I 6q II (0 + iO;A,,)' 

where 

P = (5/32)iJ3, 

_ (vms +5 )1/3 
Pl- 64 

_ (vms _ 5 )1/3 
P2 - 64 

(25"') 

(26a) 

(26b) 

(26c) 

and where the principal value of arctan is to be used. Note 
that (25"}-(25 m

), which are simpler than the explicit third
and fifth-order expressions obtained from (24) directly, do 
not give exactly the same results as (24) in the third and fifth 
orders, respectively. 

In Table II we include numerical values of ICn 12 ob
tained in case C in the three alternative ways described 
above, i.e., by using (23), by using (24), and by using the 
simplified formulas (25'}-(25m

). As can be seen from Table 
II the differences between these numerical values are essen
tially insignificant. 

4. EXPECTATION VALUES 

According to the phase-integral formulas (26a) and 
(26b) in Ref. 1 for the quantal expectation value of a multi
plicative operator fez) with respect to a bound state with 
quantum number n, we have the (2N + 1) th-order formulas 
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TABLES IIIa-c. These tables give the expectation values (z)., (Z2)., and (z-'). for the quantum numbers n = 0,1,2,3,4. The exact values are obtained from 
(36a-c) with the use of the exact eigenvalues A •. The phase-integral values of (z''). in (from top to bottom) the first-, third-, and fifth-order approximations 
are obtained in case A from (29a-c) in the first-order approximation and by numerical evaluation of(27) in higher orders. In case C the results are obtained 
from (30a-c) in the first-order approximation and in higher orders in the two ways of either direct evaluation of (28) with (24) or of using the simplified form 
obtained by using (26b"-bm

) in Ref. I for the expression within curly brackets in (28) and formulas (25")-(25"') for le,,1 2
• 

TABLE lIla. 

Exact 
n Case A 

1.57 
o 1.5587 1.557 

1.5581 

2.730 
2.725300 2.7246 

2.7250 

3.683 
2 3.6803732 3.6800 

3.6802 

4.527 
3 4.5244 721 4.5242 

4.5244 

5.298 
4 5.2960 890 5.2959 

5.2960 I 

and 

TABLEIIIb. 

Exact 
n 

o 2.916 

8.9127 I 

2 16.2541 76 

3 24.565017 

4 33.658271 
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cllat' (z)" = fT (r)" 

Phase-integral approxirpations.of orders 1,3,5 
Case C, Eqs. (24) and (28) Case C, simplified form 

1.55 1.55 
1.560 1.560 
1.5582 1.5584 

2.721 2.721 
2.7254 2.7254 
2.72529 2.725293 

3.678 3.678 
3.6804 0 3.68039 
3.6803 72 3.6803726 

4.523 4.523 
4.5244 82 4.524478 
4.5244 718 4.5244719 

5.295 5.295 
5.2960 93 5.296091 
5.2960 890 5.2960890 

(27) x [Nfl (-1»)( ~ ~)2j+l !~z)] } 
j ~ 0 2q(z;A n) dz q (z;A n ) z ~ 0 + iO 

(case C), (28) 

where ICn 12 are the normalization factors obtained from 
Eqs. (19) and (24), respectively. 

Case A: Whenf(z) = zV, where v is an integer, the inte
gral in (27) can be expressed in terms of complete elliptic 

(Z2)" = C;at1
(r)" 

Case A 

2.86 
2.914 
2.915 

8.88 
8.912 
8.9124 

16.23 
16.253 
16.2539 

24.55 
24.5644 
24.5648 

33.64 
33.6578 
33.6580 

Phase-integral approximations of orders 1,3,5 
Case C, Eqs. (24) and (28) Case C, simplified form 

2.87 2.87 
2.922 2.920 
2.914 2.914 

8.89 8.89 

8.9135 8.9133 
8.91262 8.91266 

16.23 16.23 
16.2544 16.2544 
16.2541 6 16.2541 70 

24.55 24.55 
24.5651 24.5651 
24.5650 14 24.565015 

33.64 33.64 
33.6583 3 33.6583 1 
33.658270 33.6582 71 
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TABLEIIIc. 

-' 2p,a 
(z-)" = 7(r')" 

Exact 
n 

o 6.271 

31.6583 

2 77.34185 

3 143.32766 

4 229.61640 

Case A 

5.6 
6.265 
6.274 

31.0 
31.650 
31.660 

76.7 
77.334 
77.344 

142.7 
143.320 
143.329 

229.0 
229.608 
229.618 

integrals. Using a similar technique as in Sec. 3 (case A) for 
expressing the normalization factor in terms of complete el
liptic integrals, we obtain in the first-order approximation 

(29a) 

( 2) _~A2 1 K(k) (29b) 
z n - IS'" n - 10 xoK (k) + (X2 - xo)E (k) , 

(~) _~A3 1 .1.. A K(k) 
n - 3S'" n -7 - 3S"'n xoK(k) + (X2 -xo)E(k) 

(29c) 

(zV)n= 1 (4vA n(zV-I)n-(v-l)(zV-3)n), 
2(2v + 1) 

v;;;' 1. (29d) 

In higher orders the analytical evaluation ofthe expressions 
for the expectation values in terms of real complete elliptic 
integrals is rather cumbersome. Therefore, we have in the 
third and fifth orders computed the integrals in (27) numeri
cally. Numerical results for (z) n' (Z2) n' and (~) n are pre
sented in Tables IIIa-<;. 

Case C: Lettingf(z) = ZV in (28) we can calculate the 
expectation values (ZV) n' We emphasize that in case C it is 
essential that v;;;. 0 for the formulas to be valid; cf. the discus
sion after Eq. (26bnt

) in Ref. 1. 
In the first-order approximation formula (28) together 

with formula (24) immediately yields the following simple 
expressions: 

(z)n = iAn' 

( 2) _ ~A 2 
Z n - 1~.& n' 

(~)n = ¥sA!, 
2vA (ZV) = __ n_ (ZV - I ) v;;;' 1. 

n 2v + 1 n' 

(30a) 

(30b) 

(30e) 

(30d) 

If we calculate (ZV) n in the third- and fifth-order phase-inte
gral approximations by using (24) and (28) directly, we end 
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Phase-integral approximations of orders 1,3,5 
Case C, Eqs. (24) and (28) Case C, simplified form 

5.7 5.7 
6.28 6.279 
6.267 6.268 

31.1 31.1 
31.661 31.660 
31.6579 31.6581 

76.8 76.8 
77.343 77.343 
77.34178 77.3418 I 

142.8 142.8 
143.3282 143.3281 
143.32764 143.32764 

229.0 229.0 
229.6168 229.6167 
229.61639 229.61640 

up with rather unwieldy expressions, which we refrain from 
giving here. However, numerical values obtained from these 
latter expressions are included in Tables IIIa-<;. 

Let us now calculate (ZV) n by using the simplified 
phase-integral formulas obtained by replacing the expres
sion within the curly brackets in (28) (withf(z) = z1, by the 
simpler expressions (26b'), (26b"), and (26b"') in Ref. 1 (ex
pressed in terms of A and z), appropriate to the order of 
approximation under consideration, and by using for ICn 12 
in (28) the simplified formulas (25')-(25"'). In the first-order 
approximation we get, of course, the expressions (30a-d). In 
the third- and fifth-order approximations the integrals ap
pearing in both (28) and in the simplified formulas can be 
written 

[v13J (-I)AA [2(v-JA)+1 J/2 
+ (-I)V4 I n p3A 

A = 0 2( v - 3A ) + 1 

2p(2v + 1)/2 { --

+ 3 2 arctanV piAn 

. ( (2v + 1)1T ) I An + P + V 3pAn 
- sm nl--'------==== 

3 An + p - V 3pAn 

( 
(2v + 1)1T ) Y-;;ZPA} + 2 cos arctan n, 

3 An-P 
v;;;. 0, third-order approximation, (31') 

128 [v13J (-I)AA [2(v-3A)+1 J/2 

+ (-IV I n [pi(HI) v'2235 A = 0 2( v - 3A ) + 1 
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TABLE IV. For the quantum numbers n = 0, I ,2,3,4 this table gives the exact values of the quantity (21rli2 lila) I If" (OW obtained from the exact formula (37) 
as well as the corresponding approximate values in (from top to bottom) the first-, third-, and fifth-order phase-integral approximations. The phase-integral 
values are obtained in case A from (32) and in case C from (33) with Ie" [2 given by (23), (24), and (2S')-(2S m

), respectively. 

Exact Phase-integral approximations of orders 1,3,5 
n Case A Case C, Eqs. (33) and (23) Case C, Eqs. (33) and (24) Case C, Eqs. (33) and (25) 

o 

2 

3 

4 

+ ( _ I)Api(A + I) I + 64 {p\2V + 7)12 

3\/2235 

X [ 2 arctan Y PII An 

. ( (2v + 1)1T ) I An + PI + Y 3PIA n - sm n------=== 
3 An +PI - V 3PtAn 

( 
(2v + 1)1T ) Y-p A ] + 2 cos arctan I n 

3 An -PI 

(2"+7)/2 [(-1)"+-1 1 An +p2+2V~ 
+P2 n 

2 An +pz -2Y P~n 
. (2V+l)1T)1 An +Pz+ Y~ -sm n 

6 An + pz - V P~n 

+ 2 cos( (2v + 1)1T ) arctan Y~]} , v;;;. 0, 
6 A" P2 

fifth-order approximation, (31") 

where ov.o is the Kronecker symbol, [vI3] means the integer 
part of v13, andp, PI' andpz are given by (26a-c). Inserting 
these explicit expressions (31') and (31 ") into the simplified 
formulas for (z'') " , obtained as described above, we get nu
merical results in the third- and fifth-order approximations, 
which do not differ significantly from the corresponding re
sult obtained by using (24) and (28) directly (see Tables IlIa
c). 

Instead of evaluating the integrals occurring in the 
phase-integral formulas for ICn 12 and (zV)n in case C ana
lytically, one can evaluate these integrals by numerical 
means. This is a very simple and rapid process since the inte-

1414 J. Math. Phys., Vol. 21, No.6, June 1960 

I I 
1.001 1.0006 
0.9995 0.9996 

I I 
1.0000 4 1.0000 2 
0.99992 0.999997 

1 I 
1.0000 06 1.000003 
0.9999994 0.9999997 

I 1 
1.0000 02 1.000001 
0.99999991 0.99999998 

I I 
1.0000 007 1.0000004 
0.99999998 1.00000000 

grands are smooth and slowly varying on the finite contour 
of integration r Co which can be taken as the nonclosed circle 
from z = 0 + iO to z = 0 - iO centered on z = An and with 
radius An. 

5. PROBABILITY DENSITIES AT THE ORIGIN 

Case A: In case A the probability density at the origin 
can be calculated by applying phase-integral formula (10) in 
Ref. 2, which, sincedV Idr = a, immediately yields the result 

(32) 

valid for any n in any order of the phase-integral approxima
tions used. Comparing the exact formula (9) in Ref. 2 with 
the phase-integral formula (10) in Ref. 2 we realize that the 
latter formula yields the exact answer when dV Idr is a con
stant. Hence, (32) is exactly valid. 

Case C: In case C the phase-integral formula for the 
probability density at the origin to be used is formula (19) in 
Ref. 2. The quantities C;, and q(O) appearing in this formula 
are those that are associated with the radial Schrodinger 
equation (1), in which the independent variable is r. Using 
instead the quantities ICn 12 and q that are associated with the 
differential equation (4) with (5), and thus are expressed in 
terms of the dimensionless quantities A and z, we get the 
following formula 

(33) 

Depending on how we calculate I Cn IZ in (33), we get slightly 
different results for I tP" (0) IZ; see Sec. 3 (case C). In particular 
we note that by inserting (23) into (33) we recover formula 
(32). 

Numerical values of (21rii2/Ila)ltPn (OW obtained from 
(32) and from (33), with IC" 12 evaluated in the three differ-
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ent ways described in Sec. 3 (case C), are given in Table IV. 
Recently Muller-Kirsten, Hite, and Bose [Ref. 11, Sec. 

S] have used a semiclassical formula for l"'n(OW derived by 
Quigg and Rosner12 by the use of the first-order JWKB
approximation and the well-known simple qualitative argu
ment for averaging the square of a rapidly oscillation wave
function under an integral sign. Because of such rough ap
proximations one should at first sight expect the 
semiclassical formula for I'" n (0) 12 in question to be valid only 
when the quantum number n is very large. However, the 
formula obtained by Quigg and Rosner is a special case of the 
phase-integral formula earlier derived by N. Froman (Eq. 
(20) in Ref. 2), namely the special case that the first-order 
approximation is used and that V (0) = O. From N. Froman's 
derivation, based on a phase-integral method in which arbi
trary-order phase-integral approximations are used, it is 
seen that the resulting formula (20) in Ref. 2 for l"'n(OW, as 
well as the closely related formula (19) in Ref. 2 [and thus 
also (33) in the present paper], should be accurate also for 
small values of the quantum number n. The numerical re
sults in Table IV are seen to support this statement in a direct 
way as regards formula (33) and thereby in an indirect way 
as regards formula (20) in Ref. 2. 

6. EXACT EXPRESSIONS 

The exact expressions for the bound-state solutions of 
(4) with (S) are (cf. Eq. (10) in Ref. 8) 

(34) 

where Dn is a normalization factor and An' which is the 
eigenvalue, is equal to the absolute value of the (n + l)th 
zero of the Airy function Ai. 

In (4), with (S)inserted, we set u equal toun,A equal to 
An' and multiply the resulting equation by zVu~, v;;;'O, letting 
the prime denote differentiation with respect to z. Then we 
integrate from z = 0 to z = + 00. In this way we obtain, for 
v = 0, the formula (cf. Eq. (6) in Ref. 13 and Eq. (6.9) in Ref. 
14) 

lIlDn 12 = [Ai'( -An)f 

and, for v = 1,2,3,.··, the formulas 

(z)" = iAn, 

( 3) _ I~A 3 + 3 
Z II - F.A." 7' 

(z',) = V [4A n (zV-l)n-(v-l) 
2(2v + 1) 

X(v -2)(zv-3)n]' v;;;> 1. 

(3S) 

(36a) 

(36b) 

(36c) 

(36d) 

Inserting V (r) = ar into Eq. (9) in Ref. 2, we obtain the for
mula (cf. Eq. (3) in Ref. 3, Eq. (69) in Ref. S, Eq. (A3) in Ref. 
10, and Eq. (12) in Ref. IS) 

ItPn(OW = :;2 . (37) 
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In the numerical evaluation of the exact quantities 
IDn 12 with the use of formula (3S), and (ZV) n given byformu
las (36a-d), use has been made of the values of Ai' ( - An) 
and An given in Table 1 in Ref. 16. Note that due to the 
normalization used in this table the exact quantity that cor
responds to the square of the phase-integral normalization 
factor, len 12, is the quantity IDn 12/41T, the numerical values 
of which are displayed in the column headed "Exact" in 
Table II for n = 0,1,2,3,4. 

We remark that by using the differential equation (4) 
with (S) it is easy to obtain, in a well-known way, exact ex
pressions for expectation values of powers of the differential 
operator d /dz (i.e., of the momentum operator) in terms of 
the expectation values (36). 

After completing the work presented in this section, the 
present author became aware of a paper17 containing exact 
calculations of (in our notations) ID n 12, (ZV) n (V;;;> 1), and I'" n 

(OW, along similar lines asjust described. However, our for
mula (36d), which directly relates expectation values (zv) n 
for different v, seems to be more straightforward and simpler 
to use than formulas (17) and (20) in Ref. 17. We also remark 
that Eqs. (11) and (12) in Ref. 17 contain obvious misprints. 
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Prolongation structure for a nonlinear equation with explicit space dependence 
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A nonlinear Schroedinger equation with a term depending explicitly on a space variable, e.g., 
i\fit + \fixx + ( - 2ax + 2lE12) \fi = ° with \fi = Eeicj> has been treated in the language of 
differential forms and prolongation. The inverse scattering equations previously invented by Liu 
and Chen are obtained. A unique feature of the analysis is explicit space-time dependence ofthe 
pfaffian forms. 

From the very inception of the differential form ap
proach l to the nonlinear partial differential equations, it has 
been felt that the only logical way to deduce the inverse scat
tering transform (1ST) is through the technique of Lie and 
Cartan. But until now, the equations which have been con
sidered do not contain explicit (x,t) dependence.2 Thus, the 
structure of the Pfaffian forms also came out to be indepen
dent of(x,t). Here we report an application of the differential 
form approach to a nonlinear SchrOdinger equation with a 
term 2axr/J, considered by Chen and LiuJ in connection with 
their investigation about soliton formation in nonuniform 
medium. It is also worth mentioning that the 1ST formalism 
for the equation under consideration was also obtained by 
them with which they constructed the N-soliton solution. 
The only difference was that the eigenvalue changed linearly 
with time in contrast to the original 1ST of Zakharov and 
Shabat. 4 We thought it would be really interesting to observe 
how a time-dependent eigenvalue problem could be fitted 
into the framework of Wahlquist and Estabrook. l Above all 
the differential geometric approach helps to justify the usual 
heuristic derivation of the 1ST. While the hierarchy of equa
tions considered until now all sustain the solitary wave-type 
solutions due to a balance between the nonlinearity and dis
persion, the present nonlinear equation possesses such solu
tions due to a balance between nonlinearity, dispersion, and 
non uniformity of the medium. So quite a distinct physical 
phenomenon is governed by Eq. (1) below. 

1. FORMULATION 

The nonlinear Schrodinger equation under consider
ation describing the wave motion in a nonuniform medium 
reads 

(1) 

To cast this into a set of different forms, we define r/Jx = z, :;fix 
= z. It is then easy to observe that Eq. (1) and its complex 

conjugate is equivalent to 

a I = dr/J A dt - z dx A dt, 

a l = d:;fi Adt - z dx Adt, 
(2) 

a 2 = - i dr/JAdx + dz Adt + (- 2ax + 2:;fir/J)r/Jdx Adt, 

a2 = i d:;fiAdx + dz Adt + (- 2ax + 2r/J :;fi):;fi dx Adt, 

when proper sectioning is taken. 
One can immediately see that this system of differential 

form is closed under exterior differentiation. That is, da i 

= ~1] ij A a j , 1] ij are a set of I-forms. So we may now proceed 
for the determination of the nonexact differential forms or 
Pfaffian forms, 

u/ = dyk + Fk(r/J,:;fi,z,z,x,t) dx + G k(r/J,:;fi,z,z,x,t) dt, (3) 

by demanding that 

du/ = ~J:ai + ~giai + ~1]ij Aw j
, (4) 

so that dw k is in the extended ideal. Equation (4) yields 

Gx - FI = zG", + zG~ - iF", ( - 2ax + :;fi~) 
+ iF~( -2ax:;fi +2r/J~) + GiF;, - FiG;" (5) 

along with 

iF", = Gz ' 

(6) 
- iF~ = Gz. 

In order to proceed further with our calculation we 
need the information regarding the dependence of F and G 
upon the primitive variables. At this point it should be noted 
that the presence of explicit space dependence in the r.h.s. of 
Eq. (5) enforces an explicit (x,t ) dependence on F and G. For 
simplicity we assume Fx = 0, so that we immediately deduce 
the following 

G"x = G",z = Glfiz = 0, 

Gn = Gzz = 0, G",,,,,,, = 0, (7) 

Gttt = 0, F",,,, = ° = FIfi"" etc., 

which in turn implies 

F=txo +r/JXI +:;fixl , 

G=t 2x s +:;fir/Jx lO +XX II 

+ r/Jtxg + Xg:;fit + zX I + zX 1 • (8) 

In this context some comments should be kept in mind. From 
our above analysis it is quite clear that we could always keep 
terms of the form # in F, and r/J 2,:;fi 2 and many other higher 
order terms in G. But we have tried here to retain the mini
mal structure of the functions F and G. 

2. LIE ALGEBRA AND THE REPRESENTATION OF THE 
1ST 

Substituting these expressions of F and Gin (5) and 
equating the coefficients of differential 2-forms we obtain 

[xo,xd = - X g , [Xl,xl] = - x lO , [xo,xs] = 0, 
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[Xo,xl! ] = 0, 

[XI,xS] = 0, 

[XI,x1l ] = - 2iax l , 

[xl,XS ] = 0, 

[XI,xIO] = iXI' [XI,xIO] = - iXI' 

[xo,xs] + [xl,xs ] = 0, 

[Xo,xg) + [xl,xs] = 0, 

and 

[XO,xIO] + [xl,xs] + [xl,xs] =0, 

alongwithxo =XII , Xs =UX!O' 

(9) 

It is seen that the last relation in Eq. (9) is helpful for obtain
ing the closure of the algebra under the above commutation 
relations and Jacobi identities. The algebra depicted in Eq. 
(9) can be represented in the following way over two prolon
gation variables (Y! ,y2 )5: 

. (2a,,-1 . 0 X6 =IXI = - I) Xs =IY2-' 
OYI 

- .- (2a" - 1- . 0 X6 = IX I = I) Xs = IYI -, 
°Y2 

(10) 

Ifwe now substitute these representations in (3), we obtain 
the two Pfaffian forms given by 

Wi = d/ + (- itay! + Y2¢) dx 

+ (-2it 2a 2YI +iyJjJ¢-xiaYI 

+ 2¢tayz + Yzz) dt, 

w2 = dy2 + (itaY2 - YI ¢) dx 
(11) 

+ (2it ZaZyz - ¢¢iY2 + xiaY2 - 2 ¢taYI - ZYI ) dt, 
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which on proper sectioning yields the inverse scattering 
equations of Chen and Liu. The most interesting point to be 
noted is that the space derivative equations can be thrown 
into an isospectral form if and only if we identify at to be 
equal to some quantity ~, which serves as the eigenvalue of 
the system. Thus, the equations ofIST as obtain in Ref. 3 are 
obtained, with the condition d~ / dt = a or ~ = at, so that a 
time-varying eigenvalue takes care of the explicit space-de
pendent term in the original nonlinear equation. Lastly, it is 
interesting to note that the present equation can be connect
ed to the usual nonlinear Schrodinger equation via a trans
formation of both dependent and independent variable 
transformation, given by 

¢(x,t) = rp (x,t ) exp(iaxt + if3t 3), 

along with S = X + It z, (12) 

7 = t, 

for suitable choice of the constants a',{J,a,j 
The consequence of such a transformation on the struc

ture of F and G can be immediately ascertained if we note 
that these transformations induce a change of variable in the 
space of primitive variables also. Thus, it is not very difficult 
to visualize the forms of new F and G. Lastly, it can be men
tioned that Eq. (12) yields a consistency check on our calcu
lation of F and G. Other interesting features concerning the 
above equation will be communicated shortly. 

'F.B. Estabrook and H.D. Wahlquist, J. Math. Phys. 17, 1293 (1976). 
2"Biicklund Transformation", in Lecture Notes In Mathematics (Springer
Yerlag, Berlin, Yr.), Yol. SIS, pp. 136-61. 

'H.H. Chen and C.S. Liu, Phys. Rev. Lett. 37, 693 (1976). 
·Y.E. Zakharov and A.B. Shabat, JETP SOy. Phys. 34, 62 (1972). 
'H.W. Guggenheimer, Differential Geometry (McGraw-Hill, New York, 
1958), pp. 125-45. 
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A homogeneous Hilbert problem for the Kinnersley-Chitre transformations 
of electrovac spacetimes a) 
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The homogeneous Hilbert problem which we recently formulated for Kinnersley-Chitre 
transformations of vacuum spacetimes is here generalized to handle transformations of electrovac 
spacetimes. This provides in particular a simple derivation of our previously published integral 
equation. 

1. INTRODUCTION 

In a series of papers 1_3 we have been laying the ground
work for attempting to prove the validity of several conjec
tures which have been made concerning Kinnersley-Chitre 
(Ke) transformations of vacuum and electrovac space
times. 4 With this objective in mind we introduced in Ref. 3 a 
homogeneous Hilbert problem (HHP), each solution of 
which gives the result of applying an element of the KC 
representation of the Geroch group K. 5 The main objective 
of the present paper is the generalization of that HHP so that 
each solution will give the result of applying an element u of 
the KC representation of the Kinnersley groupK ',6 i.e., the 
electrovac generalization of K. In addition, we shall provide 
a simple derivation of the electrovac integral equation which 
we described in Ref. 2, where we promised that such a deri
vation would be forthcoming. 

We shall let V' denote the set of all electrovac space
times and associated Maxwell fields for which there exist 
coordinates x I , x 2

, x 3, X4 such that the line element has the 
form (signature = +2) 

gul5x'8xj + gab DxaDXb (i,j = 1,2),(a,b = 3,4), (1.1) 

where gij and gab depend at most on Xl, x 2
, and where the 

2 X 2 matrix h whose elements are 

(1.2) 

obeys the condition that d (deth) is not zero and is not a null 
I-form, while the Maxwe1l2-form Y has vanishing Lie de
rivatives with respect to the Killing vector fields X3 and X4 , 

and (X3X4)IY = 0, whereXa is the covector (I-form) of 

Xu·
7 

As we showed in Sec. 2 of Ref. 2, a given member of V' 
determines up to a gauge transformation a 3 X 3 matrix po
tential Fix,!), which depends not only upon x = (XI,X2) but 
also upon a complex parameter t. For proving some theo
rems we have found it to be convenient to restrict the gauge 
of the F-potential. Among other things we shall show that 
the gauge can be selected8 so that for fixed x, Fix,t ) is holo
morphic in a neighborhood of t = 0, and 

Fo(x,t ) (~ : ~) 
is holomorphic in a neighborhood of t = 00 (including (0). 

"'Supported in part by National Science Foundation grants PRY 75·08750 
and PRY 79·08627. 

To each smooth contour L symmetric with respect to 
the real axis and surrounding the origin in the complex plane 
there corresponds a representationK I L of the groupK '. K' L 

is the set of all 3 X 3 complex matrix analytic functions u(t) 
such that 

detu(t) = 1, u(t) r~(t )u(t) = ~(t), (1.3) 

(§;(t): = (~1 0 ~), u(t )t: = h.c. of u(t *), 

o 0 - it /2 

and such that u(t ) is holomorphic on Land 

o 
I 

o 
is holomorphic at t = 00. 

o 
1 

o 

(1.4) 

To effect the transformation of any given potential 
Fo(x,t) for any given u(t) in K' L , we restrict x to a compact 
region Uc of the real plane such that Fo(x,t ) is holomorphic 
on L + L. for every x in Uc ' Here L. denotes the open set 
inside L. The solution of the HHP which we shall formulate 
in this paper yields an output potential F(x,t) which auto
matically satisfies all of the relations that a bona fide F-po
tentialmustsatisfy. From thisF(x,t )anew member of V' can 
be constructed. 

2. THE F-POTENTIAL 

In Ref. 2 we introduced a 3 X 3 matrix generalization 
F' I 'ex) of the complex Ernst potentials g-' and <P associated 
with a member of V'. Knowledge of this field permits one to 
construct a certain i-form function r (x,t ) of the complex 
parameter t. The differential equation 

dF(t) = ret )flF(t), 

where 

o 
o 

was shown to be completely integrable, and it was also 
shown that the subsidiary conditions 

F(O)=fl, F(O)=F"), 

(2.1) 

(2.2) 

(2.3) 

F(t) t£'(t )F(t) = i~(t), (2.4) 

could be imposed, where 

£'(t): = i~(t) - it [~(O)F")fl +!.?F(I)t~(O)]. (2.5) 
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The I-form r (t ) was defined by 

r(t): = tA (t)-I dF"" 

where 

A(t):= 1-2t(z±p*), 

(2.6) 

(2.7) 

the symbol * denoting the duality operator introduced in 
Ref. 3. In this paper we shall simultaneously treat the cases 
sgn(deth) = -1 and sgn(deth) = +1. Whenever we use 
the notation ± or + the upper sign will be the one appro
priate for stationary axially symmetric fields. The field p will 
be defined as usual by 

p: = Ideth 1
1/2

, (2.8) 

and the field z will be defined by 

z: = ~Tr[P I)il]. (2.9) 

If, as in Ref. 2, one expresses F ( I ) in the form 

F(I)=(H ,p) (2.10) 
2iL 2iK' 

where 

with 

E: = (~1 ~) , (2.12) 

then the definition (2.9) is equivalent to the relation 

!(H - HT) = (K + iZ)E. (2.13) 

One should also note that the additive constants in H can 
and will be chosen so that 

ReH = - h - Re(,p,p t) + (ReK )E. (2.14) 

Furthermore, Eqs. (2.13) and (2.14) imply that 

!(H + Ht) = - h -,p,p t + iZE. (2.15) 

From Eqs. (2.8) and (2.13) and the "self-duality 
conditions" 

(2.16a) 

(2. 16b) 

it is readily established by the same technique that was used 
in Ref. 3 for the vacuum c"Je that here again 

*dz = - dp. (2.17) 

In the presen t paper we shall constrain the choice ofF (t ) 
a little more than we did in Ref. 2 by imposing the additional 
condition 

detF (t ) = - A. (t t I , 
where 

A. (t): = [(1 -2tz? ± (2tp)2]'/2. 

(2.18) 

(2.19) 

Showing that it is possible to do this necessitates showing 
that 

d [A. (t )detF(t)] = O. 

However, there is a theorem9 that says that if 

dF(t) = r(t)nF(t), 

then 
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(2.20) 

d [detF (t)] = Tr[r (t )il ]detF (t). 

In our case, Eqs. (2.6) and (2.9) give 

Tr[r(t)il] =tA(tt'Tr[dF")il] 

= 2tA (t t l dz = - A -I dA, 

the last step following from the definitions (2.7) and (2.19). 
Therefore, Eq. (2.20) follows immediately. 

The condition (2.18) completes the subsidiary condi
tions to which our F (x,t) will be subjected. In Sec. 3 we shall 
show that the solution can always be selected so that the only 
singularities are atthe zerosofA. (x,t ) and 0fA. (Xo,t), wherexo 
is a particular nonaxial point at which H is stipulated to be 
Hermitian and ,p, L, and K are stipulated to vanish. This 
choice of H (xo), ,p (xo), L (xo), and K (xo) involves no loss of 
generality, for it can always be achieved by means of a gauge 
transformation. 

3. GAUGE TRANSFORMATIONS 

The residual arbitrariness of the 3 X 3 complex poten
tial F( I '(x) may be described as follows: 

(1) We shall usually select Xl, x 2 so that 

gI2=0, gil = ±g22=exp(2r). (3.1) 

There remain the conformal coordinate transformations 
which preserve this form of metric. 

(2) There also remain the transformations 

p-(expb )p, z-(expb)z + c, (3.2) 

where b, c are any real constants. 
(3) Just as in the vacuum case treated in Ref. 3 we again 

have the transformation 

H_H + iB, (3.3) 

where B is any 2 X 2 real symmetric constant matrix. 

(4) Again X can be subjected to the SL(2,R ) 
transformations 

X_SX, detS= 1, dS= 0, 

which induce the mapping 

H_SHST. 

(3.4) 

(3.5) 

(5) A 2 X 1 complex constant matrix can be added to 
,p (x). 

(6) A 1 X 2 complex constant matrix can be added to 
L (x). 

(7) A complex constant can be added to K (x). 

It should be noted that in practice the imaginary part of the 
arbitrary constant in (7) is usually chosen so that 

K - K * =,p tE,p. (3.6) 

We shall now set about choosingF (x,t ) at one particular 
point Xo off the axis. The chosen F (xo,t) must satisfy the 
conditions (2.3), (2.4), and (2.18). The task is simplified by 
employing the gauge transformations (5)-(7) to make,p (xo), 
L (Xo), and K (xo) vanish, for then the problem reduces to that 
which we faced in the vacuum case treated in Ref. 3. Thus, 
we employ the gauge transformation (3) to make H (Xo) Her
mitian, and we note that 
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W( ) _ (icA (xo,t) 
, xo,t - 0 1~) , 

2 

(3.7) 

where 

A (t): = I -2t ( - h + izc)ic. (3.8) 

Proceeding as in Ref. 3 we find that F (xo,t ) can be chosen so 
that 

~) , (3.9) 

where 

A(t)-1/2= [1-4tz+A(t)]I+2t(-h+izc)ic , (3.10) 
A (t)[2(1 -2tz + A (t»)]1/2 

and 

w(t) 

= (2 1/2 [1-2tZ

O

+A(t)]-1/2 0 ) 
2- 1/2 [1-2tz+A(t)]1/2 . 

(3.11 ) 
Threfore, it can be seen that our choice of F (xo,t) has no 
singularities except for a branch point of index -1/2 at the 
zeros of A (xo,t) and that 

F(xo,t) (~ : ~) 
is holomorphic in a neighborhood of t = 00 and has an in
verse there. 

The solution of Eq. (2.1) may be expressed in the form 

F(x,t) = Y(x,xo,t )F(xo,t), (3.12) 

whereY(x,Xo,t) is that particular solution ofEq. (2.1) which 
satisfies 

(3.13) 

for all t. Proceeding as in Ref. 3 we again find that the only 
singularities of Y(x,xo,t) occur at the zeros of A (x,t) and 
A (xo,t). Furthermore, introducing null coordinates x A as in 
Ref. 3, we can establish that 

aF(l)T aF' I, 

-- ~(O) -- = 0, (3.14) 
aXA aXA 

which shows immediately that 

aF,I, 
det-- =0. 

aXA 

Th us, the prod uct ofthe eigen val ues of [aF' 1 , / ax A ]fl vanish
es. One can also show that the trace of [aF' 1 ';ax A ]fl and 
the trace of I [JF<l ';axA]fl J2 are both equal to unity. This 
shows that two of the eigenvalues must vanish, and one must 
be equal to unity. Consequently, here, as in the vacuum case, 
we conclude that since 

aF(t) = -!(rA-Ttl(aF'I'fl\V(t) 
aXA aXA }' 

(3.15) 

(using the same notation as in Ref. 3), the branch points at r A 

= T will be of index - ~ while those at rOA = T will be of 
index !. 

Having concluded these preliminaries, we are now 
ready to discuss the generalization of the HHP to electrovac 
fields. 
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4. THE HOMOGENEOUS HILBERT PROBLEM 

As in Ref. 3, we select an arbitrary compact region Uc 

in the domain of Fo' I'. Then there exists at least one smooth 
contour L about the origin in the complex t-plane such that 
Fo(t) is hoi om orphic on L + L •. Choose any L in this cate
gory, and let u(t) be any member of K' L' Then define 

G (t): = Fo(t )u(t )FO(t)-I. (4.1) 

The HHP consists of finding functionsX(t) andX.(t), holo
morphic in L + Land L + L., respectively, where L is the 
complement of L + L., such that for all s on L 

X(s) = X.(s)G (s), X.(O) = 1. (4.2) 

[We accept the same working hypotheses as in the vacuum 
case, e.g., that the component indices of the HHP for G (s) 
vanish.] 

Once one has effected the solution of the HHP for G (s), 
one defines 

F' I': = Fo' I) + %.(O)fl, (4.3a) 

,JY'(t): = i~(t) - it [~(O)F' I'fl + flF(I)t~(O)], (4.3b) 

r(t): = tA (t t l dF' I'. (4.3c) 

Proceeding exactly as in the vacuum case, we can show that 
in the electrovac case 

and 

detX(t) = 1, 

X (t) t dY'(t)X (t) = JYit), 

detdY'(t) = detJYit) = - ~tA (t )2, 

dX (t) = r (t )flX (t) - X (t )ro(t )fl, 

,7r(t) dX (t) + it [X (t )t]-I~(O) dFo<l' fl 

= it~(O)dF' 1 , flX (t ), 

where X (t ) is the sectionally holomorphic function 

{
X.(t) 

X(t): = X-(t) 
if t is in L + L., 

if t is in L + L. 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.4e) 

(4.5) 

Using Eqs. (4.4a)-(4.4e) one can then establish that the 
potential defined by 

F(t): = X.(t )Fo(t) 

satisfies 

and 

dF(t) = r(t)flF(t), 

$'(t )r (t) = it ~(O) dF' 1 " 

F(O) = fl, F(O) = F' I" 

detF (t) = - A (t t t, 

F(t) tJY(t )F(t) = i~(t). 

(4.6) 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

(4.7e) 

Thus, F (t ) satisfies all of the defining equations for the F
potential corresponding to a given Hand ¢>. 

If one expresses F' I, in the usual form 

F' I, = (2~ 2~K)' (4.8) 

then from Eq. (4. 7b) one concludes that Land K satisfy 

dL = ¢> tc dH, dK = ¢> tc dc/>, (4.9) 

and that Hand ¢> satisfy the self-duality conditions 
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h€ dB = ip*dB, h€dt/J = ip*dt/J, 

where 

(4.10) 

h:= -Re[B+t/Jt/Jt-K€]. (4.11) 

From Eq. (4.4a) it follows that 

TrX.(O) = 0, (4.12) 

and, therefore, that 

Tr(P< I 'fJ) = Tr(F~l)fJ) = 2z. (4.13) 

From Eqs. (4.11) and (4.13) we then conclude that 

h T =h. 

Finally, to establish that h€h = - p2€ or 

Ideth I =p, 

(4.14) 

(4.15) 

we appeal to Eq. (4.4c), using the. definition (4.3b) and writ
ing F' I, in the form (4.8). The 3 X 3 determinant is easily 
reduced to a 2 X 2 determinant 

detA (t) = A, (t?, 

where 

A (t): = (1 -2tz)I +2ith€. 

One then employs the equation 

A (t) T €A (t) = € detA (t), 

as in the vacuum case, to establish (4.15). 

(4.16) 

(4.17) 

(4.18) 

Eqs. (4.9), (4.10), (4.13), (4.14), and (4.15) show that 
F' I, fulfills the definition of an F' I >-potential for a spacetime 
in V'. 

5. DERIVATION OF THE ELECTROVAC INTEGRAL 
EQUATION 

One method of solving the HHP for G (s) involves solv
ing the integral equation which we described in Ref. 2. The 
derivation of that integral equation is trivial, for it is an im· 
mediate consequence of the HHP that we have formulated in 
this paper. 

Since X-(t ) is holomorphic in L + L (including t = 00 

according to our working hypothesis), we obviously have for 
t inside L 

_1_ f ds X(s) = O. 
21TiJL s(s - t) 

(5.1) 

However, by Eq. (4.2) this can be expressed in the form 

_1_ f ds X.(s)G (s) = O. (5.2) 
21TiJL s(s - t) 

Hence, writing 

X.(t) =1 + tf(t) (5.3) 

and 

G(t) = 1+ K(t), (5.4) 

wheref(t) is holomorphic in L + L., we have 

_1_ f ds [I+sf(s)][I+K(s)] =0. (5.5) 
21Ti JL s(s - t) 

This is easily seen to be equivalent to 

f(t) + _1_ f ds [f(s) + s-II]K (s) = 0, (5.6) 
21TiJL s - t 
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the integral equation which we described in Ref. 2. 

6. PERSPECTIVES 

In this section we should like to mention several areas 
where we feel that more work will be required in order to 
keep the development of the electrovac theory abreast of that 
of the vacuum theory. 

Recently we succeeded in showing lO that the vacuum
to-vacuum KC transformations corresponding to u(t) of the 
form 

or 

(
1 ta

1
(t») 

u<l '(t) = 0 

( 
1 

U(2) t -
( ) - - t-I(J(t) 

(6.1) 

~) , (6.2) 

where a(t) and (J (t) are real I I functions holomorphic on 
L, can be effected by solving a (regular) Fredholm integral 
equation of the second kind. For example, for u' 2 '(t) the inte
gral equation assumes the form 

F44(t) + _1_. f ds tF4is)(J (s)U (s,t) = F~ed(t). (6.3) 
2m JL S2(S - t) 

Here F4it ) is the lower right element of F (t ), and 

U(s,t): = [€pseed(s)"lpseed(t)]44' (6.4) 

The regularity of the integral equation follows from the fact 
that U (s,s) = 0 for all s. 

Once Eq. (6.3) is solved for F4it), the complex Ernst 
potential 

(6.5) 

may be evaluated immediately. The complete metric can be 
obtained from ~ by using well-known methods. Alternati
vely one can calculate h = - ReB, for there exist equations 
resembling Eq. (6.3) which may be used to determine the full 
matrix potential F (t), and from this it is trivial to obtain 
H=F(O). 

Since any vacuum-to-vacuum u(t ) can be factored into a 
small number of factors3 of the u' I , and ~'2' type, one can 
concentrate upon the analysis of these nonmatrix Fredholm 
equations, thus avoiding the need to analyze directly the 
more complicated matrix integral Eq. (5.6). The problem of 
finding an equally fruitful factorization of the electrovac-to
electrovac u(t) deserves attention. 

In the vacuum case we have also found 10 that if a given 
stationary axially symmetric solution can be obtained from 
some static Weyl metric using a single transformation of 
type u' I, or from some static Weyl metric using a single tran
formation of type u' 2" both the static W eyl metric and the 
matrix u(t) are completely determined by the value on the 
axis of the complex Ernst potential ~ of the given stationary 
axially symmetric field. For example, in the case of u' I , one 
has the relation 

~(z) = e2
tb(z) + ia(1!2z), (6.6) 

where t/J(z) is the t-independent Weyl potential evaluated on 
the axisp = 0, and a(1!2z) is the function a(t) in Eq. (6.1) 
evaluated at t = 1!2z. 
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One wonders whether or not in the case of a stationary 
axially symmetric eIectrovac solution, knowledge of the two 
complex Ernst potentials 'l/ and <P on the axis will determine 
a static Weyl metric and some transformation u(t) which 
may similarly be effected by solving a (regular) Fredholm 
integral equation ofthe second kind. In any event we consid
er this to be a worthwhile subject for study. 

Finally, among eIectrovac solutions the Plebanski-De
mianski Petrov type D solution 12 would be a particularly 
interesting solution to subject to KC transformations, both 
because of the intrinsic elegance of that solution and because 
it encompasses so many physically important solutions. At 
the present time several of our students are calculating the 
potential F(t) for the Plebanski-Demianski solution. With 
this potential in hand, we expect to be able to apply the pre
sent solution-generating theory to derive new and potential
ly interesting solutions of the Einstein-Maxwell field equa
tions. Study of the Plebanski-Demianski solution may also 
provide some hint concerning how to extend the theory to 
solutions with nonvanishing cosmological constant. 
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"This theorem can be found, for example. in S. Lefschetz. Differential 
Equations: Geometric Theory, 2nd ed. (Dover, New York, 1977), p. 60. 

'0 A manuscript concerning these developments in the vacuum theory is 
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"By "real" we mean that a(t)* = a(t *) and f3 (t)* = f3 (t *). 
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A space-time in which in an admissible coordinate system the metric tensor is continuous but has 
a finite jump in its first and second derivatives across a submanifold will have a curvature tensor 
containing a Dirac delta function. The support of this distribution may be of three, two, or one 
dimension or may even consist of a single event. Lichnerowicz's formalism for dealing with such 
tensors is modified so as to obtain a formalism in which the Bianchi identities are satisfied in the 
sense of distributions. The resulting formalism is then applied to the discussion of the Einstein 
field equations for problems in which the source of the gravitational field is given by a distribution 
valued stress-energy tensor. Gravitational shocks are also discussed and their theory is compared 
with that of high-frequency gravitational waves given by Y. Choquet-Bruhat. By considering a 
class ofline sources as obtainable from cylindrical shells by a limiting process, as was proposed by 
Israel, one may use the distribution formalism developed for hypersurfaces to treat line sources. 
The line source model proposed by Israel to represent the Kerr metric in the neighborhood of its 
singular disk is shown to lead to a gravitational mass and angular momentum inconsistent with 
those of the latter metric. It is proposed to remove this difficulty by changing the assumptions 
made by Israel concerning the nature of the space-time inside the cylindrical shell which is the 
support of the distribution in the curvature tensor. The details of the effect of this change are not 
given in this paper. 

1. INTRODUCTION 

Although many physical systems undergo very rapid 
transitions of their state of motion, their states are not likely 
to be discontinuous functions of events in space-time or to 
have discontinuities in their low order derivatives. Still there 
are many examples in which a mathematical description of 
the system which is based on distribution valued states of the 
system give an accurate picture of some important aspects of 
the physical problem and such a description is more amena
ble to treatment than is the treatment which contains a 
smooth description of the physical states. 

A very illuminating example occurs in classical hydro
dynamics. Ifheat conduction and viscosity are ignored, then 
that theory involves shock waves, i.e., one must deal with 
weak solutions of the equations describing the conservation 
of mass, momentum, and energy. Such solutions describe 
transitions in the state of the medium in which entropy is 
changed (increased). The mathematical description of the 
transition is made by introducing a discontinuity in the var
iables describing the motion of the fluid. When heat conduc
tion and viscosity are taken into account it is found that the 
entropy of the fluid changes by the amount given by the 
shock wave theory and that a rapid but continuous change in 
state takes place. Thus, gross features of the transition are 
given correctly by the simplified theory involving shock 
waves but some fine features are not treated at all; in particu
lar, the structure of the transition region is ignored in such a 
theory. 

One should expect that general relativistic hydrodyna
mics would be similar to classical hydrodynamics and the 
former's mathematical description by the use of distribution 

")This paper is based on lectures given at the College de France, Paris, 
France, during the period October 4-18,1977. 

valued quantities would contain an accurate description of 
some aspects of the behavior of self-gravitating fluids. Thus, 
one is led to consider sources of gravitational fields which are 
described by distribution valued stress-energy tensors. In 
view of the Einstein field equations, this means that we 
should deal with space-times whose Ricci tensors are distri
bution valued. Since the conformal tensor (the Weyl tensor) 
is related to the Ricci tensor by means of the Bianchi identi
ties one must expect that the entire Riemann-Christoffel 
curvature tensor should be distribution valued. 

Such a curvature tensor will arise if one deals with a 
space-time in which in an admissible coordinate system the 
metric tensor is continuous but has discontinuous first and 
second derivatives due to finite jumps which occur across 
submanifolds of three, two, or one dimension or even at a 
single event. The theory of a gravitational shock wave is one 
in which there is a hypersurface ~ across which finite discon
tinuities in the first and second derivatives of the metric ten
sor occur. These are described by two second order tensors 
bl'v and bl'v defined on~. These quantities may be shown to 
satisfy algebraic equations involving the vector II" the nor
mal to ~, and differential equations describing their propa
gation in the direction of the normal to~. Thus, one is able to 
characterize the "singular" hypersurface ~ and describe its 
development in time. In this case one considers space-time 
to include a region containing a submanifold on which the 
curvature tensor has a delta function behavior and studies 
the behavior of the region. One would expect to treat the 
other space-time with distribution valued curvature tensors 
in a similar manner and thus be able to discuss the behavior 
of shock waves, shells of matter, the history of line sources, 
singular world lines, and singular events. 

We shall mainly be concerned with space-times whose 
curvature tensors contain Dirac delta functions with sup-
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ports on submanifolds or even isolated events. When one 
recalls that the curvature tensor is linear in the second de
rivatives of the metric tensor and quadratic in the first de
rivatives, one sees that for a space-time in which the first and 
second derivatives of the metric tensor have a finite jump 
across a submanifold, then its curvature tensor will contain a 
Dirac delta function with support on the submanifold. The 
jump in the first derivative is describable by a Heaviside 
function which will enter the curvature tensor quadratically. 
Fortunately, the product of such distributions is quite 
tractable. 

Lichnerowicz1 has given a discussion of hydrodynamic 
and gravitational shock wave problems by using curvature 
tensors for space-times of the type described in the preced
ing paragraph. In the sequel we shall apply his formalism 
with a slight modification. The purpose of this modification 
is to have a formalism in which the Bianchi identities are 
satisfied in the sense of distributions by the curvature tensor. 
These identities and the Stokes' theorems will be the main 
tools we shall use in analyzing various problems. 

We shall also compare the derivation of the equations 
satisfied by bl'v and II' with the derivation of the similar 
equations that occur in the treatment of high-frequency 
gravitational waves given by Y. Choquet-Bruhat. 2 In the lat
ter theory the role of I is played by the hypersurface of 
constant phase and the role of bl'v by the slowly varying 
amplitUde of the gravitational wave. The computational ori
gin of the equations in both theories is very similar and sup
ports what one would expect on intuitive grounds, namely 
that gravitational shocks, especially weak ones, should be
have much the same as continuous solutions ofthe Einstein 
fields equations. 

In addition, the paper will contain an application of the 
distribution valued curvature formalism to the theory of 
shells and line sources in general relativity. 

We shall begin our discussion with Lichnerowicz's for
malism for the case in which there is a hypersurface I across 
which the metric tensor has a discontinuous derivative. Let 
I be described by the equation 

tp(x) = 0 (1-1) 

and have the normal vector 

II' = tp,1' = atp . (1-2) 
axl' 

We shall assume that the hypersurface I divides a region n 
of space-time into two parts n + and n -where tp > 0 and 
tp < 0, respectively. We denote by 

(f]=(j+)-(j-), (1-3) 

where / + (/ - ) is the limit of the function/in [1 + ([1 -) as 
the point in [1 + approaches I. The tensor gl'v will be assumed 
to be continuous across I. The finite discontinuities in the 
first and second derivatives of the metric tensor are then 
given by 

[gI'U.CT] = ICTbl'U , (1-4) 

[gI'V.CTT] = ICT.Tbl'v + ICTbI'V.T + Irbl'v.CT + ICTITbl'v . (1-5) 

The latter equations may be derived by noting that in 
the neighborhood of I we may write 
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2 
± 0 + ,± + tp ,,± + 

gl'V = gl'v tpgl'V 2 gl'v .... 

It follows from Eq. (1-4) that 

2 [r py ] = Ipb ~ + Iyb p - I abpy , (1-6) 

where rpy are the Christoffel symbols computed from the 
gl'v' Since the Riemann-Christoffel curvature tensor is given 
by 

2Rapl'v = gav,PI' + gPI'.av - gpv.al' - gal'.pv 

- 2gpCTr~l'rpV + 2gpCTr~vrpl' 
and since 

gpCT [r~l'rpv] = gpCT I F~I' [r pv ] + [r~1' ]Fpv J ' (1-7) 

where 

F~I' = Hr P-:;'I' + r P~I' J ' 
we may write 

(1-8) 

[R~l'v] = [r~vL - [r~I'L +II'A~v -lvA~I" (1-9) 

with 

2A ~I' = b~:1' + b~:1' - b:1' + Il'b~ 
+ ICTb~ -IPbCTI' + c';.ITbCTI' . (1-10) 

The colon denotes the covariant derivative with respect to 
the connection r. and 

gl'v:r = cl'vlr 

ag~v 
= 

axr 

g~v = gl'v I'P = a . 

It then follows that 

[RCTI'] = [R ~I'p] 
= [r~p L - [r~1' lp + II'A ~p -lpA ~I' 

and that 

[R] = (bll'),1' + Il'b:1' + rlr(b + 2bpl'cPl') 

- (b~),1' -ll'b ~v + bcavlalv 
-11'(b~ + 3c;b~), 

b=b~, b=b~. 

Therefore, 

(1-11) 

(1-12) 

(1-13) 

2[Gl'v] =(/Pb~y),p +IPb~v:p -(b;f'lp),y -(b',flp)1' 

- II' b ':p - (b;::p - II' Ipb ',f - Ivlpb;f' + I) rb ~v 

+ gl'vb ;CTI PI CT + gl'v«b::1 '1:p + rb ::"p) 

+ b ~vcpCTIPICT - 2/rrcl'pb ',f + gl'v l CTlpcP,.b ~T , 

where 

b-'P=bP -lb8P. b'P=b P -lb8P.. 
CT (T:2 u' u a 2 u 

2. DISTRIBUTION VALUED CURVATURE TENSORS 

Lichnerowicz defines in Ref. 1 ap-tensor distribution as 
follows: If T and U are two p tensors, one denotes by (T, U) 
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their scalar product at a point x of the space-time V4 • Let 
l:Z7 P(V4 ) be the spacep tensors with compact support and ofa 
given differentiability class. If U is in l:Z7 P( V4), one defines for 
all locally summable p tensors T 

(T, U) = r (T, U)Y -gd 4x. Jv. (2-1) 

A p-tensor distribution T is a linear functional on l:Z7P( V4) 

definedbyEq. (2-1). One usually writes (T,U) = T[U],indi
cating the bilinearity of T[U]. 

We shall depart slightly from the approach used by 
Lichnerowicz and introduce the function (J which has the 
value 1 on a +, 1/2 on~, and 0 on a -, i.e., (J = (J(q;) and 

{

I, q;>0, 
(J (q; ) = !, q; = 0, (2-2) 

0, q; <0. 
Further, we have 

a(J -
(J" = - = /,,8, (2-3) 

'r axfL r 

where 6 is the Dirac delta function distribution with support 
on~. Thus, for an arbitrary functionf of compact support 

r SfY - g d 4x = r fd3v = - r fd3v, (2-4) In Jan- Jaw 
where d3v is the invariant volume element induced on the 
hypersurface ~. 

If T is a vector field defined in a and is suitably smooth 
(say e 3) and if T and its derivatives have finite discontinui
ties across~, we may define distributions in terms of them as 
follows: 

(TfL)D = (JT +fL + (1 - (J)T -fL, 
(2-5) 

(T~)D = (J(T~Y + (1 - (J)(T~vt , 

where the superscripts ± on a tensor field restrict that ten
sor field to the regions a ±, respectively. Further, 

(P:.)± = (T':" + Tpr~v)± . (2-6) 

Thus, for such tensor fields T, T = T+ in a +, T = T- in a_, 
and T = t = !(T+ + T_) on ~. 

We observe that 

[TP] - [TP ] = t p/ 
.j.l ./.l v' (2-7) 

where to is a vector field on~. 
For distribution valued vector and tensor fields we de

fine covariant differentiation by formulas analogous to 
(TfLD);v = (TJ-LD).v + TpDr;v , (2-8) 

where 

r;v = (Jr p;,fL + (1 - (J)r p-;'fL. (2-9) 
Equation (2-8) may be written as 

(TfLD);v =S/,,[TfL] +(T~r-8(1-(J)((TPJ[r~v]J. 
(2-10) 

Applying the usual rules of covariant differentiation 
and using Eq. (2-7) we find that 

(TpD);fLV - (TPD);VfL = - T,yDQ~J-LV , 

where 
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i.e., 
- D Q~fLV = 8H~fLV + (R~J-LJ - (J(1 - (J)J~fLV' (2-11) 

with 

2H~fLV = h~/<T/fL - h~/,y/v - hcrv/P/fL + ho-fL / P/V , 

J~J-LV = [r:.,] [r~J-L] - [r;fL] [r~v] . 

Hence, 

Q"fL = Q~fLP = SH"fL + (RcrJ-L)D - (J(1 - (J)J"J-L ' 

with 

2HcrfL = [P[pho-J-L -lPh ~plfL -/Ph ;J-Ll" , 

J,yJ-L = [r;p ][r~J-L] - [r;J-L ][r~p] . 

In addition 

2H = 2g"J-LH"J-L = IP/ph -2 [P[crh ;" , 

J=g"J-LJ"J-L ' 

2(HcrfL -lj:"fLH ) = /Plph ~fL -/Ph ;"/fL 

-[Ph;fL1" +g"fLh:n./,,/r 

= 2H~fL . 

3. THE BIANCHI IDENTITIES 

(2-12) 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

If the metric is e 3
, these identities may be written as 

!8~!~Rp,yap;1' = RP"AfL;V + Rp"fLV;A + RPCTVA;fL = 0 , 

where 8~!~ is the generalized Kronnecker delta. A general
ization of these identities to distribution valued curvature 
tensors is 

!8~!~ Qp"aP;1' = (J (1 - (J).s;1 P"AfLV , (3-1) 

where .sf P"AfLV is a tensor defined on~. Thus, the right-hand 
side of this equation vanishes everywhere except on ~ and 

( T"AfLV 18ap1'QP ) - 0 P '2 AfLV craP;1' -
for arbitrary tensors T;AfLV in D S(V4). 

Since 

(Qc51' - ~1'Q);1' = !(gP'3g,yyr8~;Qp"fLJ;A 
and since Eqs. (2-12) imply that 

Hp"fL)A~p; = 0, 

(3-2) 

it may be shown that Eqs. (3-1) and (2-12) in tum imply that 

(QfLV _ ~vQ);v = (J(1 - (J)dfL, (3-3) 

where d fL is a vector defined on~. Thus, Eq. (3-2) imply that 

(3-4) 

for arbitrary vectors in D I(V4 ). 

It is a consequence ofEq. (2-11) and the rules for covar
iant differentiation of distributions that 

Q~fLV;A = S'fAH~fLV + S(H~fLd + fA [R ~fLV]) + (R ~fLV;A)D 
-(J(I-(J){J~fLv'A + [R;fLV](r~A] - [R~fL"] 
X [r:v] - [R ~rv ][r~A ] - [R ~fLr ][r:,d J. 

(3-5) 

It may be verified from Eqs. (2-12) and (1-9) and the fact that 
the Bianchi identities are in a + and n -that 

€"fLVAQ~fLv;A = - (J(1 - (J)€"fLVA IJ~fLV'A + [R :fLV] [r~A] 

- [R ~fLV ][r:A ] J . 
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It follows from this equation and Eqs. (2-13) and (1-9) that 

C'I'VAQ~I'V;A = -20(1 - 0) 'I'C'I''YA 

X (A:v [r~A] -A ~v [r:A]J . 

Thus, Eqs. (3-1) hold with 

dP(fAI'V = - 20~~~la 
X (A :,dr~y] - A ~y [r:r] JgpP . 

4. GRAVITATIONAL SHOCK WAVES 

We shall generalize the Einstein field equations by as
suming that they involve distribution valued curvature and 
stress-energy tensors. Thus, we assume that the field equa
tions are 

= 8(HpA - ~ gPA) + GgA 

- 0(1 - O)(JpA - ~ gPA) 

- K(8TpA + TgA - 0(1 - O),YP(f)' 
(4-1) 

where T p~ (T iA) is the stress-energy tensor in fl + (fl -), TpA 
and ,Y {3A describe stress-energy tensors associated with the 
hypersurface~. The above equations are equivalent to the 
equations 

and 

JpA - ~gPA = K'yPA = [rpp J[r~A] 
2 

- [r pA ][r~p] - ~ gPA 

(4-2) 

(4-3) 

X ( [r:p ][ r ~a ]g'-,a - ~ lcg"a [r:a ] J . 

(4-4) 

We shall first discuss the case of a vacuum, i.e., the case 
for which 

TpA = TPA = 0 . (4-5) 

Equations (4-2) imply that 

HpJ. = blplJ. -lpbslA -lpbilp + IPlpbpA = O. (4-6) 

These equations have as a consequence the statement that 
either 

(4-7) 

and 

(4-8) 

or 

(4-9) 

and 

(4-10) 

for an arbitrary vector field t(f' for if we assume that the 
inequality (4-9) holds, it follows from Eqs. (4-6) that 
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p(fTb(f)pIA + la1appp';.b(fT = 0, 

with 

P(fT =g(fT -1(flrll)P. 

Hence, we must have 

from which Eqs. (4-10) follow. 
The solutions to Eq. (4-8) are given by 

bm = lCf r,. + lTt(7 + jm(fmT + jlii"lii r , (4-11) 

where t(f is an arbitrary vector field, and m(f is a complex null 
vector which together with l(f and a real null vector n(f form 
a null tetrad such that 

gl''' = -ll'nv -lvnl' + ml'liiv + iiiI'm" . 

As was shown in Ref. 2, it is no restriction to assume 
that t" = 0 in Eqs. (4-10) and (4-11) for under the continu
ous transformation of coordinates 

bl'v--+b;v = bl'v -1,,(1' -ll'tv . 

Equations (4-3) and (4-5) imply that 

2[Rl'v] =0. 

As a consequence of Eqs. (4-7), (4-8), and (1-11) this equa
tion becomes 

2l Pbl"v,p + l~pbl'v - ((pI' -1,iqJv = - bl'v(rv" , (4-12) 

where 

qJl' = b;fp + lp(b~ - ~ ~). 
The colon again denotes the covariant derivative with re
spect to r. It should be noted that as a consequence of Eqs. 
(4-7) and (4-8), we have 

IP[r~p] = O. 

Hence, 

IPr(f =IPr +(f=IPr-(f 
Tp Tp Tp 

on ~ and the differentiation which occurs in Eq. (4-12) may 
be taken with respect to any of the connections r +, r -, or r. 

Equation (4-12) may be viewed as propagation equa
tion~ for bl'v in the direction of IP. They do however involve 
the bl'v which are determined by the jump in the second 
derivative of the metric tensor across~. However, if we mul
tiply these equations by b 'I'V and sum, we find that as a conse
quence of Eqs. (4-8) that 

(TI I'),I' = - Tepalpla , 

where 

- bl'vb' - bl''Y(b b ) - 21f-T - I'V - 1''' - 2 gl'v - . 

When Eq. (4.7) holds in a neighborhood of ~ so that 

((l1'/vgl'J,P J+ = Wl'lvgl'J,p J-, 
We have 
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cPVlft( = 0 

and Eq. (4-13) becomes 

(rlft),ft = O. 

It then follows from Eqs. (1-6) and (2-13) that 

4(Juft - ~ gaft ) = -4KYaft 

(4-13) 

( 
tal ) 

=r lulft + ---;f-gaft +2IPb;ftPb;u 

-2(/ala)b~pb~ -gaftIPb;Vb;)T. 
(4-15) 

When Eqs. (4-7) and (4-8) hold it follows from the above that 

r 
KYuft = - "4 lalft ' 

where r is given by Eq. (4-14). The equation 

Y~=O, 

which in view ofEq. (4-1) is equivalent to the contracted 
Bianchi identities is also equivalent to Eq. (4-13) since 

Ift,ala=lala'ft =0 

because I ala = 0 and la:ft = Ift:a. 
On substituting Eqs. (4-11) into the definition of Hpaftv 

one obtains 

2Hpaftv = - fPpaPfty -1 PpaPfty , 

where 

P _ I I - pu _ i pa{J pa - rnp a - rna p - pa - "21/paa{J , 

(4-16) 

(4-17) 

where for an arbitrary antisymmetric tensor!fty,f"'/,v denotes 
its dual defined as in the last of Eqs. (4-17) and H ;afty is 
defined as 

UH U - 1.... Ha{JYo .... pafty - - 4"lpaa{J 'Iftyyo . 

uR ~afty is defined similarly. Thus, 

2Hpafty = 2uH~afty 

and 

Hpafty/Y = 0, 

where 

(4-18) 

and the E'S are the Levi-Civita alternating tensor densities, 
i.e., H pafty is an algebraically special tensor with the symme
try properties of a Riemannian curvature tensor whose Ricci 
tensor vanishes and whose conformal (Weyl) tensor is of 
Petrov type N. 

It follows from Eqs. (1-9) and (2-11) that 

(4-19) 

Thus, for a vacuum solution, i.e., a gravitational shock, for 
which baT is given by Eqs. (4-11) we find that the necessary 
and sufficient condition that the jump in the conformal ten
sor is of type N is that 

(4-20) 

1427 J. Math. Phys., Vol. 21, No.6, June 1980 

where 

This result follows from Eqs. (4-16), (4-17), and (4-19) along 
with the properties of the null tetrad. It is a further conse
quence ofEq. (4-20) that the null vector la is shearfree. 
These results were obtained by Penrose in Ref. 3. 

5. HIGH FREQUENCY GRAVITATIONAL WAVES AND 
SHOCKS 

The discussion of gravitational shocks given in the pre
ceding section characterizes them in terms of the tensors bfty 
and 6fty defined on the shock hypersurface.I and which de
scribe the discontinuities in the first and second derivatives 
of the metric tensor gfty across.I. These quantities satisfy the 
algebraic equations (4-8) and (4-9) which involve the normal 
1ft to.I and the propagation equations (4-12). 

Very similar equations occur in the treatment of high 
frequency gravitational waves given by Y. Choquet-Bruhat. 2 

In that theory it is assumed that the metric tensor may be 
expressed as 

where 

Ul> 1 , S = UllP(X) . 

The role of.I is played by the hypersurfaces of constant 
phase, the hypersurfaces lP constant. The role of bfty is 
played by the slowly varying amplitude of the gravitational 
wave described by g~I!(X;S). The slowly varying amplitUde 
part of g~! enters into a propagation equation for g~l! in a 
manner similar to the way in which 6fty enters into Eq. (4-
12). 

The equation given by Choquet-Bruhat which describe 
the behavior of high frequency gravitational waves are very 
similar to those given above in the treatment of gravitational 
shocks. On intuitive grounds one would expect that gravita
tional shocks would behave much the same as high frequen
cy continuous solutions of the Einstein field equations and 
this is indeed the case as may be seen by comparing the re
sults of the preceding sections with those given in Ref. 2. 

An explanation of this fact is to be found in the fact that 
the two theories may be considered different versions of the 
theory that emerges from the single variational principle 
that determines the Einstein field equations, namely, the 
variational principle 

DJRY -gd 4x=0. 

If in this integral we replace R by 

Q = ~H + R D - (J (1 - (J)J 

(5-2) 

and vary the gfty, we obtain as field equations those equations 
characterizing gravitational shocks. 

If instead of proceeding in this fashion we approximate 
this integral by the method use by Mac Callum and Taub4 in 
applying the averaged Lagrangian technique, we find that 
we obtain the equations satisfied by the slowly varying am
plitude of a high frequency gravitational wave. Thus, both of 
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gravitational shock theory and the high-frequency wave the
ory have the same origin, namely, the variational principle 
(5-2), and it is therefore not surprising that the equations and 
results of the two theories are so similar. 

6. SHELLS OF MATTER 

The equations governing the behavior of shells of mat
ter given by Papapetrou and Hamoui5 and by Israel6 follow 
from Eqs. (4-1) under the assumptions that 

TI'''#O 

and 

(6-1) 

Both of these papers further require that (Tl'v)D = O. Equa
tion (6-1) follows from the requirement that the hypersur
face ~ is to be generated by the world lines of "particles" 
which constitute the shell. 

It is a consequence ofEqs. (4-2) that 

-2 KTl'v = /P/pb ~TP;P: + PlLv b ~)U/T 

or equivalently 

-2 KTI''' = /pIP(buTP;p: - PI'VP<JTbUT ) 

and hence 

(6-2) 

TI'JV=O. (6-3) 

The bUT may be interpreted in terms of the jump in the 
second fundamental form of~, i.e., KlLv ' When ~ is consid
ered a hypersurface in space-time, we have 

2[Kl'v] = 2[/o;T]P;P: = -2 [/pr~T]p;p:, 

i.e., 

2[Kl'v] = VPbUTP;p: 

and hence 

[Kl'v - Pl'vK ] = - KTl'v . 

Equations (4-3), namely, the equations 

GI'~ = -KTI'~' 

imply that 

[ G I'v] = - K [Tl'v] . 

Hence, 

[GI'V ]II'I V = - K[Tl'v ]llLlv = - Kr"vI,..v , 

as follows from Eq. (1-14). From the definition of II'. v , 
namely, 

(6-4) 

(6-5) 

(6-6) 

(6-7) 

II' v = II"v - Ipr~v = WI'," - lpr~vt + WI"" - Ipr~J- , 

and from Eq. (6-3) which implies that 

it follows that Eqs. (6-7) may be written as 

[G /I'P]= -Kr"V(K++K~) I'V 2 1-''' 1-'", (6-8) 

where 

K I-'~ = (/a,{3 -Ipr ;!PP)p~1?, . (6-9) 

It is a consequence ofthe contracted Bianchi identities 
[Eqs. (3-4)], that 
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and 

(6-10) 

(6-11) 

(6-12) 

Equations (6-10) and (6-11) arise from the propagation 
equations for bl'v' namely, Eqs. (1-14) and the field 
equations. 

7. LINE SOURCES 

Distribution valued curvature tensors with Dirac delta 
function behavior on two-dimensional manifolds in space~ 
time arise in the discussion of some of the line sources treated 
by Israel7 and in the treatment of conical singularities given 
by Sokolov and Starobinsky8. 

Israel assumes that one may introduce a coordinate sys
tem in space time in which the metric takes the form 

ds2 = dp2 + gab (p, xQ)dxUdxb (7 -1) 

and in which the line source is represented by the equation 

p=O. (7-2) 

This equation does not describe a hypersurface in space
time but rather the history of a line source in space. A class of 
these sources are taken to be derivable from cylindrical shells 
of matter by a limiting process, i.e., one treats p = € by the 
theory of shells described earlier and takes the limit as €--+O. 

The metrics describing the "Weyl struts" are shown by 
Israel to have a singularity in the metric similar to that of a 
two-dimensional cone. Sokolov and Starobinsky use the 
two-dimensional version of the Gauss-Bonnet formula to 
show these conical singularities may be described by a distri
bution valued curvature tensor, i.e., they essentially use 
Stokes' formula to evaluate the singular curvature tensor. 

The Weyl canonical form of the static cylindrically 
symmetric metric is 

ds2 = e2(v ~ Vl(dp2 + dz2) + p2e ~2V dq; 2 _ e2V dt 2. (7-3) 

The Einstein vacuum equations require that for p # 0 

1 
'il2 V = Vpp + - Vp + Vzz = 0 , 

p 

vp =p(V~ - V;), V Z = 2pVpVz' 

The axis 

p=O 

(7-4) 

is a two-dimensional manifold, describing the history of the 
line source where the curvature tensor is singular. One re
calls that in the case of a two space consisting of a conical 
surface with a metric tensor 

ds2 = dp2 + a2p2dq; 2, 

the Gauss-Bonnet formula tells us that the integral of the 
Gaussian curvature K over a region Q is 

fJ Kap dp dq; = 21T - lQ kgds , 

where kg is the geodesic curvature of the curve bounding Q. 
This formula enables us to evaluate K for curves surround
ing the point p = 0 and thus we may write 
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R g = R : = R ~ = 217"(1 - a) 02(P) , (7-5) 
a 

where R ~g (a, /3, y, tj = 1,2) is the curvature tensor of the 
two space and R p is its Ricci tensor. The function tjip) is 
defined by the requirement that 

L'" f1rtj2(P)P dp dtp = 1 . 

If one calculates the curvature tensor for the metric giv
en by Eq. (7-3), one again finds thatp = ° describes a singu
larity of this tensor. The singularity occurs in the compo
nents of the two form R (1)(2) when one uses the one forms 

U)0 = eVdt, U)I = eV
- vdp, 

U)2 =p e- vdtp, U)3 = eV
- vdz. 

Formulas similar to those occurring in Eqs. (7-5) express the 
singularity of the curvature tensor in terms of Dirac delta 
functions with support on the two surface p = 0, the history 
of the Weyl strut. The stress-energy tensor of this source of 
the gravitational field is given by 

-' 21T 7g = 7) = - (ev(o.Z) -1)<52(p)e- 2(v- V) , 
K 

7: =~ =0, 

where the indices 0, 1, 2, and 3 correspond to t, p, tp, and z, 
respectively. 

8. THE KERR SINGULARITY 

Israel's treatment of the Kerr solution in Ref. 7 involves 
the observation that under the transformation 

a + tp cos1/! = V r + a2sinO , 

p sin1/! = r cosO, 

the Kerr metric 

ds2 

= ~(: +d(2)+(r+a2+2mar~-ISin20)Sin20dtp2 
- 4mar~ -lsin20dtp dt - (1 - 2mr~ -I)dt 2, (8-1) 

with 

~ = r + a2cos20, .J = r -2mr + a2 , 

becomes for smallp (r~O, O~1T/2) 

ds2 = d p2 + p2d~ + a2dtp 2 _ dt 2 

+ ! V(p, 1/!)(adtp - dt)2 , 
where 

4m 
V(p, 1/!) = cos1/!/2, 

V2ap 

(8-2) 

(8-3) 

i.e., the singularity in the Kerr metric, the two-surface r = 0, 
0= 1T/2 is that of the line source given by the metric (8-2), 
where V is a particular solution of the equation 

1 1 
Vpp + -Vp+ 2'V"",,=O. 

P P 
Under the transformation 

z = ~ (atp - t), t' = ~(atp + t) , 

tp' = 1/!. 
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The line element given by Eqs. (8-2) becomes 
ds'l = d p2 + p2(dtp ')2 + V (p, tp ')dz2 + 2dz dt ' . (8-4) 

This is the line element that Israel uses to characterize a 
nonsimple line source. 

The space-time described by the metric (8-4) (with the 
primes removed) will be required to satisfy the vacuum field 
equations except on the two-surface p = Po. The metric will 
be assumed to be continuous across this manifold but will 
undergo a jump in its derivative. Thus, we must have for 

P=/=Po 

2 1 1 
V V = Vpp + - Vp + 2' V",,,, = 0, 

p p 
as follows from the requirement that G"v = 0, and across 

P=Po 

[ag"v ] = [V ]tj2 82 81 

axP p ""a' 

where we have used the notation 

Xl = p, x 2 = z, x 3 = tp, X4 = t, 
thus, 

I" = tj~ , 

g""I"1 v = g""I" Iv = 1 , 

and 

b"" = [Vp ]8;tj~ = [Vp ]u"U" , 

u" = 8; . 
Therefore, 

b = [Vp ]gl2 = 0, 

since 

~p~(~ ° ° 

V' 
V± ° ° p2 

° ~=p, 

~±.~~ (~ ° ° ! ) ° ° 0 l/p2 

1 ° - V± 

It then follows from Eq. (6-2) that 

-2K7J.1v = [Vp]u"u", 

where 

g"vu" U y = ° 
and 

u,)"=O. 

It is a consequence of Eq. (4-15) that 

Y"y =0. 

Israel constructs a thin shell source by taking 

{ 

p-n, P>Po, 

V = C cosntp (~r P<Po. 
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Then 

[Vp] = -2nC cosnqypo-<n+l) 

and we may write 

C 
Krl-'v = - cosnqyU!' Uv , 

Po 
with 

(8-6) 

(8-7) 

Israel states: "For all finite Po, and hence also in the limit 
Po-o the source is composed of dust-like material with a 2 n_ 

pole mass distribution streaming along the axis with the 
speed of light." 

The Kerr metric in the neighborhood of its singular 
disk, where r = 0 and () = 1'12, is taken by Israel to be a 
special case of the above with n = 1/2 and C = 4rnlV2a. 
Thus, his treatment of the Kerr metric assumes that in the 
neighborhood of this disk, the metric is the limit of the form 
given by Eq. (8-2) whose source is a cylindrical shell ofradi
us Po with vacuum regions inside and outside of the shell. 
The limiting process consists ofletting Po approach zero. 
This type of metric is that of a space-time with a distribution 
valued curvature tensor which depends on the size of the 
discontinuity in the normal derivative of the metric tensor on 
the subspacep = Po, namely, on [Vp ]' This quantity also en
ters into the formulas for the gravitational mass and angular 
momentum of metric which is to represent the Kerr metric, 
i.e., the metric given by Eq. (8-2) for pia « 1, with a discon
tinuous Vp atp = Po, and given by Eq. (8-1) for largep. 

We now turn to a discussion of the mass and angular 
momentum of Isriiel's representation of the Kerr metric. 

For a space-time with a metric tensor whose derivatives 
are discontinuous on a hypersurface one may define Killing 
vector fields to be those which satisfy the equations 

(t1-';v)D + (tv;I-')D = O. 

It is a consequence of these equations that 

«(tp;I-')D);p = - 5PQ~ (8-8) 
and that 

( (5PQ~);1-' Y - gd 4x = ~ 5PQ~nl-'d3v 
J~ t~ 

=0, (8-9) 

where nl-' is the normal to the hypersurface enclosing the 
region V4 of space-time. Equation (8-9) is a consequence of 
Eq. (8-8) and the fact that (t p;I-')D is antisymmetric. 

It follows from Eq. (8-8) that 

(8-10) 

Let a V3 be the boundary of a three dimensional region in a 
hypersurface with unit normal nl-" We shall deal with the 
hypersurface V3 defined by 

X4 = t = const 

and denote the interior of the cylindrical region p = Po by I 
and its exterior by E. We shall assume that E is a vacuum 
region. From Stokes' theorem we have 
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where 

(If: )D)* _ lY- 1f:1-';,)D 
'-='17;7 - 2: - gC(TT/-lV\'=' , 

ax" ax T 
. 

draT = -. -. c'Vdy1dy2, 
ay' ay' 

and the equations describing the two-surface aV3 bounding 
V3 are 

xl-' = Xl-'(yl, y2) . 

It then follows from Eqs. (8-11) and (2-11) and another 
application of Stokes' theorem that 

( 5PQ~nl-'d3v = (5PQ~nl-'d3V + ~ ( [(ta;T)*]d~T Jv, J 2 Jal 
= ~ r If: )*drC7T (8-11) 2 JJ: \!o a;T , 

where Ioo is the two surface given in the coordinate system 
in which Eq. (8-1) obtains by the conditions t = constant 
and r = 00. We shall evaluate Eq. (8-11) for two Killing vec
tor fields, namely, the vector fields having the components 

H = Of, (b = 0, 3) 

in this coordinate system. 
It may be readily verified that 

! L (tba;T)*d~T = 477m(8~ - 2ac5D, (8-12) 

i.e., that rn and rna are, respectively, the mass and angular 
momentum of the Kerr solution. 

We shall use the coordinate system in which Eq. (8-2) 
holds in the discussion of the left hand side ofEq. (8-11). We 
write 

XO = t, Xl = p, x 2 = t/J, x 3 = ¢J . 

The variables t/J and ¢J may be taken to be the parameters on 
the surface p = constant, t = constant. In this coordinate 
system 

b,", = H Vp ]ul-' Uv , 

where V is given by Eq. (8-3) and 

_ .<:0 .<:3 I-' _ 1 ( .<:u + .<:u) U,' - UI-' - aul-" u - - - aU'o U'3' 
a 

Further, 

I" = 8:" I" = 8.' . 
It may be verified from Eqs. (2-11) that 

"QI-' _ 1 (f:v f:V)QI-' - 0 u "nl-' - - - a~ 0 + ~ 3 "nl-' - , 
a 

when nl-' is the normal to the hypersurface t = constant. 
However, Eqs. (8-11) and (8-12) imply that for a metric ap
proaching the Kerr metric for large p we must have 

(8-13) 

Hence, the assumptions made by Isriiel in his discussion of 
the Kerr metric do not lead to correct values for both the 
mass and angular momentum of the Kerr metric. 
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The requirement that the metric in region I be of the 
form given by Eq. (8-2) is not imposed by the other assump
tions made by Israel. One could assume that the metric is of 
the form 

ds2 = d p2 + p2dif? + gAB dx4dxB (A, B) = (0, 3) , 

where the gAB are functions of p and", which reduce this line 
element to that given by Eq. (8-2) when p = Po, and which 
may have derivatives with respect to p whose values at 
p = Po disagree with those of the coefficients of the latter line 
element. Thus, by changing the assumption regarding the 
metric in the region I it may be possible to satisfy Eq. (8-13) 
and also obtain the correct value for the mass to be associat
ed with the metric. The details of this change will not be 
treated here. 

The technique of treating a space-time with a two-di
mensional subspace which is the support of a distribution 
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valued curvature tensor as the limit of one with cylindrical 
shells suggests that space-times with a world line as a sup
port of such a curvature tensor be treated as the limit of one 
with spherical shells. Such a treatment will be discussed 
elsewhere. 
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We describe a gauge theory of gravitation based on the Poincare group treated as an internal 
symmetry group acting on five-dimensional fiber spaces. One special feature of the theory is that 
the metric structure of the manifold which serves as the base space appears as a natural 
consequence of the formalism and is not imposed a priori. 

The theory encompasses general relativity and the Einstein-Cartan theory as particular cases, as 
well as other gravitational theories with torsion which have been recently proposed. 

I. INTRODUCTION 

Whenever one has a field theory which is globally invar
iant under a Lie group ~ of transformations one can intro
duce compensating (gauge) fields in order to extend this glo
bal invariance to a local one. The result is a theory of the 
interaction of the original and the gauge fields. The free the
ory of the gauge fields is usually called the gauge theory of 
the group~. 

Gauge theories playa fundamental role in the descrip
tion of the basic interactions of nature. I 

Electromagnetism and gravitation are the two basic 
long range interactions of nature which have been studied 
for a long time. Maxwell's and Einstein's classical theories 
seem to describe them reasonably well (within certain 
ranges). Maxwell's electromagnetism is well understood2 as 
a gauge theory of the invariance group U (1) [of charged 
(complex) field theories] and although general relativity has 
all the features of gauge theories (arbitrary functions appear
ing in the description of the fields and the existence of con
straints, i.e., nondynamical equations of motion) there is still 
some controversy about its proper treatment as the gauge 
theory of a group.3-1O It is interesting then, to study in detail 
the basic ideas that give rise to the gaugelike treatment of 
general relativity.3,4,6 

The work of Kibble6 has been the starting point of many 
of the current papers on the subject. In reviewing Ref. 6 
carefully, we find that some of the apparently well-estab
lished results cannot be properly justified following the Uti
maya-Kibble approach. In fact, several authors4

,6,7,9 agree in 
stating that general relativity is a special case (for vanishing 
torsion) of the gauge theory of the Poincare group. A closer 
look at the approach reveals that the "group" in question is 
not really the Poincare group and as a matter of fact, it may 
not even be a Lie group. 

In order to elucidate this point, we briefly summarize 
the essential features of gauge field theories. 

Let J( be a manifold, Y q be the tangent vector space at 
an arbitrary point qEvll, and Y'q be the dual space to Y q. 

"Supported in part by International Scientific Exchange Program Grants, 
National Science Foundation OIP75-09783AOI and Consejo Nacional 
de Ciencia y Technologia No. 955. 

General theory with global group: Let r be a vector 
space, r' the dual space to r, and ~ be a group of linear 
transformations on r. Besides being a vector space, r can 
have additional structure, e,g. an inner product, which is 
assumed to be invariant under the action of the group. 

Each derivation operator X on J( can act on any r
valued vector field v to give another r-valued vector field 
Xv defined uniquely by the equation 

c'o(Xv) = X(c'ov) 

for every c' (constant dual vector) in r'. Note that c'ov is a 
scalar field whose value at q is c'ov(q), where "0" denotes the 
action of the dual vector c' on the vector v(q) to give a scalar. 

Under suitable conditions, e.g. if J( has a metric struc
ture, we can set up a Lagrangian for a r-valued vector field 
which is invariant under the global group ~ . 

General theory with local groups. For each point qEvll 
let there be a separate vector space r q with a structure iso
morphic to that of r, and a group ~ q oflinear transforma
tions on r q isomorphic to ~. 

Let w be any r q -valued vector field on J(, i.e., its value 
w(q) at q is in r q • Assume that we have a covariant deriva
tive operator Dx corresponding to each derivation operator 
X. D x acts on each r q -valued vector field w to give another 
rq-valued vector field Dxw. 

Assume that Dx has certain properties relating it to the 
structure of the spaces r q and the groups ~ q' These in
clude the following: 

( 1) Given any two points q, pEvll and a curve joining 
them, the structure of the vector space r q goes into the 
corresponding structure of the vector space r p under paral
lel transport along the curve by means of the operator Dx. 

(2) Given any qEvll and a closed curve in J( starting 
and ending at q, parallel transport of vectors around this 
curve from q to q is a linear transformation on r q that be
longs to ~ q' 

(3) Given any two points q, pEvll and a curve joining 
them, parallel transport along that curve of linear transfor
mations on r q into linear transformations on r p generates 
an isomorphism of ~ q onto ~ p • 
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If f§ q coincides with the set of all linear transforma
tions on r q that preserves the structure of r q' then proper
ty (1) implies properties (2) and (3). 

Under suitable conditions, e.g. if vi( has a metric struc
ture, we can then set up a Lagrangian for a r q -valued vector 
field and corresponding gauge fields which is invariant un
der the local groups f§ q • 

Minimal coupling principle: The general prescription of 
gauge theory consists of replacing r -valued vector fields 
and derivation operators X respectively by r q -valued vec
tor fields and covariant derivative operators Dx in the La
grangian. To determine the equations of motion of the Dx , 
which occur in the theory as additional fields (the gauge 
fields), a free Langrangian term must be included. 

Details of this procedure for extending internal global 
symmetries to local ones, thus leading to an interacting 
gauge theory of fields can be found in the work ofUtimaya3 

and others. 10 

A direct application of the formalism to external sym
metry groups3.4.6--9 poses, however, some basic problems 
which may be best seen by recalling the essential steps fol
lowed in the above cited papers for the Poincare group. 

Global and local Poincare invariance: The local vari
ation of a field ifI (where A labels the components of the 
field) under infinitesimal Poincare transformations in Min
kowski space is given by4.6 

8. ifI = - Eiaiifl + !Eij[8~(xA - xA) + Sij~]tf!1 (1.1) 

and 

8X i = ~xj + Ei , (1.2) 
) 

where Ei and ~j = - Eji are ten infinitesimal constant pa
rameters characterizing the infinitesimal Poincare transfor
mation and S ij ~ = - Sji ~ are the generators of the Lorentz 
group appropriate to the generic field. 

As is well known, the generators ai and J ij 
= xA - xjai + Sij satisfy the Poincare algebra 

[ai,aj ] = 0, (1.3a) 

[Jij,ak ] = TlkA - TlkA ' (1.3b) 

[Jij,Jkl ] = 'TfjJil - 'Tfil-0k + 'TfjlJik + 'Tfik-01 . (1.3c) 

To label the group generators, we introduce an orthonormal 
coordinate basis such that 

eu ·e/3 = 'Tfa/3 = 'Tfa/3 = diag( -1,1,1,1), 

and define for any vector V 

Va=ea·V, 

(1.4) 

and similarly for tensors. Note that in fiat spacetime the 
coordinates of all such bases are related by xa = A ~Xi + b a, 

where A ~ and b a are constants. Hence, we write equation 
(1.1) as 

8. ifI = - €"aa ifI + !€,,/3 [(xaa/3 - x/3aa)8~ + Sa/3~ ]tf!1, 
(1.5) 

where 

€"=A ~Ei + EijA ~A fb/3 and €,,/3 ==J. ~A f~j . 

A special relativistic field theory is constructed by giv-
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ing a Lagrangian density!/ (ifl ,a; ifI) which behaves as a 
scalar under Poincare transformations. The density !/ is 
said to be invariant under a transformation defined by 8if1 
= 8. ifI- 8x "au ifI and 8x" = s "(x) if 

8!/ a!/ 8if1 + a!/ 8(a ifI) +!/a s" = 0, 
aifl a(a" ifI)" " 

which implies that the current 

J" = a!/ 8.ifI +!/s" 
a(a" ifI) 

is conserved. 

(1.6) 

(1.7) 

Special relativistic theories are invariant under the 
Poincare group transformation. Therefore, ten currents (the 
4-momentum vector and total angular momentum tensor) 
are conserved. Extending the global symmetry to a local one 
in accordance with Utimaya's scheme involves making the 

ten constant parameters €" and €,,/3 arbitrary functions of 
spacetime, i.e., writing 

8. ifI = - €"(x)aa ifI + !€,,/3(x)[(xaa/3 - x/3aa)8~ 

+ Sa/3 ~ ]tf!1. 
(1.8) 

Note, however, that because of the explicit appearance 
of spacetime coordinates in the orbital part of the angular 
momentum term in Eq. (1.8), the prescription is inadequate 
for arriving at a generally covariant theory. 

To obviate this problem, Kibble6 proposed rearranging 
Eq. (1.8) into the form 

8.ifI = - Sa(x)aaifl + !€,,/3(x)Sa/3~tf!1, (1.9) 

where 

(1.10) 

This approach, which might be justifiable from a math
ematical point of view, is conceptually problematic. In fact, 
if we rearrange terms in (1.5) first, we get 

8.ifI = - (€" + €,,/3x/3)aaifl + !€,,/3Sa/3~tf!1. (1.11) 

"Gauging" the parameters in (1.11) would then lead to 
(1.9). But, because of the explicit coordinate dependence in 
the parameter of the generator of translations, the transfor
mations being gauged are not a Lie group. Moreover, if we 
make the parameters in (1.9) coordinate-independent, we do 
not retrieve the original Eq. (1.5) nor the invariance group of 
the theory we started with, as also becomes apparent when 
we consider what infinitesimal global transformations are 
required in order that Utimaya's procedure will result in the 
Eq. (1.9). 

In order to avoid these problems and arrive at an unam
biguous Poincare gauge theory of gravitation, we develop in 
this paper a formalism based on treating a five-dimensional 
faithful representation of the Poincare group as an internal 
group and using fiber bundle techniques as a natural frame
work for a geometric and coordinate-free discussion of the 
theory. 

In Sec. II we present the essential features of the Poin
care group as a group of linear transformations on a five
dimensional space. In Sec. III we identify this space with a 
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typical fiber of a vector bundle, in which the base manifold 
has no assumed metric structure, and it is shown how the 
local Poincare group leads to a way of uniquely imposing a 
Minkowski metric structure on this space. Section IV con
tains a summary and discussion of our basic results. 

II. FIVE-DIMENSIONAL FAITHFUL REPRESENTATION 
OF THE POINCARE GROUP 

Let g' = (g' ,J'o' .) be a space with the following 
structure: 

(1) g' is a five-dimensional real vector space, 
(2) A priviledged element fo #O'Eg" is given, 
(3) A Minkowski inner product U'V with the signature 

(- + + +) is given on the subspace Y of g' where 
Jr'" = ! WIWEg', f 0 Ow = OJ. With this structure, g' is a faith
ful representation space of the Poincare group g;. 

The hyperplane % = ! WIWEg', fo Ow = 1 J, which is 
parallel to Y, can be interpreted as the fiat spacetime mani
fold of special relativity. Each point of spacetime is repre
sented by a vector in %, and we will define the action of the 
Poincare group on g' in such a way that % remains invar
iant. Any vector koE% can be chosen as an "origin vector" 
to represent a choice of an origin in spacetime. Those Poin
care transformations under which ko is invariant will be 
called Lorentz transformations with respect to ko ' 

The representation of the Poincare group in g' will con
sist of all linear transformations PE g' ® g" such that 

fooP=fo ' 

(pou)-(pov) = U·V , 

for all u, vE£'. 

(2.1) 

(2.2) 

Note that, as a consequence of (2.1), uE£' implies that 
pouE£'; thus Jr'" is invariant under P. This result is needed 
to make (2.2) consistent, since the dot product is defined 
only for elements of Jr"'. We also have that UE% implies 
POUE %, i.e., % is invariant under P. 

A Lorentz transformation with respect to ko as origin 
vector in %, is accomplished by any Poincare transforma
tion L satisfying the additional property 

Loko = ko . (2.3) 

To construct a translation on % by a vector tE£', we 
define a unit transformation EoEg' ® g" such that Eo au = U 
for all UEg', and let 

T = Eo + t®fo . 

For all hE£', we have 

Toh = h, 

and for all UE%, we have 

(2.4) 

(2.5) 

Tou = U + tE% . (2.6) 
Moreover, any vector UEg' may be uniquely decom

posed into the form 
U =ako +h, (2.7) 

where hE£'. Then, for any Lorentz transformation L, we 
have 

(2.8) 

But an arbitrary Poincare transformation can always be 
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expressed as P = TaL where T and L are given by Eqs. (2.4) 
and (2.8). Hence 

pou = ToLou = ToLo(ako + h) 

= To(ako + Loh) = a(ko + t) + Loh . (2.9) 

If a = 1, then UE%, and the above equation becomes 

pou = pO(ko + h) = ko + Loh + t. (2.10) 

III. GAUGE THEORY OF THE POINCARE GROUP 

Making use of the structures introduced in the previous 
section, with g' = (g' ,f 0") serving as a representation space 
in terms of which the Poincare group may be treated as an 
internal symmetry group, we can now formulate a gauge 
field theory of gravitation which is locally invariant under 
g; and which does not present the problems, discussed in the 
introduction, of other formalisms appearing in the 
literature. 

For this purpose, we construct the vector bundle lo
.
11 

(g'(J(),J(,g',1T,g; ,I/J), where g'(vtf) denotes the bundle 
space, the base space J( is a four-dimensional manifold, g' is 
the typical fiber (or standard fiber space) which we identify 
with the five-dimensional space with the structure given in 
the previous section, 11' is the surjective projection of g'(J() 
onto J( and g; is the structural group of the bundle. The 
bundle satisfies, in addition, the condition oflocal triviality, 
which implies that there exists a covering of J( by neighbor
hoods ! ~ J and a homeomorphism I/J u, of 11' -·1 (~) onto the 
topological product ~ X g' such that, for p = (q,Vq)Eg'(J() 
with qE~ and VqE1T I(q) = g'q' we havetPu(p) = (q,iu 
(Vq» with iu, denoting a homeomorphism of g' q onto g': 
Also, for each q, as a part of the structure of g' q' we have 
f(q)#O' and the Minkowski inner product on Jr"'q 
= ! Wq IWqEg' q' f(q)owq = OJ. A choice of an origin at each 

q is specificied by a vector field k whose value at q is a vector 
k(q)E%q = ! Wq IWqEg' q' f(q)owq = 1 J. Thus the action of 
the structure group in each fiber g' q is represented by the 
group of linear transformations g; q which preserve the 
structure of g' q . 

Let v be a morphism V:J( -+~ (J() such that 
1TV = Id ff , then v is a cross section of our vector bundle and 
it defines a vector field in ~(J(), i.e., it associates a vector 
v(q) in g' q with each point q in J(. 

Denote by r (J(, g' (J(» the space of all smooth cross 
sections of g'(J(), so vET (J(,~(J(». 

A connection D on g'(J() is a linear differential opera
tor from the space of sections of g'(J() to sections of the 
bundle y'(J() ® ~(J(), where y'(J() is the dual tangent 
bundle over J(, i.e., 

D:r(J(,~(~tf»-+r(J(,Y'(J() ® g'(J(». 

If we define 

xoD®v=Dxv, 

where 

then Dx satisfies the following axioms: 

DAv + w) = Dxv + Dxw, 
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Dx(gv) = (Xg)v + gDxv , 

Dx +yV =Dxv +Dyv, 

Dgxv =gDxv, 

where gEl' (1,JR) is a smooth scalar field. 

(3.3b) 

(3.3c) 

(3.3d) 

Since f(q) is part of the structure of each fiber'll q which 
is to be preserved under parallel transport, we require that 

Dxf = 0', 

which is equivalent to 

fO(Dxv) = X (f'ov) . 

(3.4) 

(3.5) 

Also, since the inner product in each:Jr' q is part of the struc
ture of 'll q and thus is required to be preserved under the 
action of f?J' q' the compatibility condition with the inner 
product 

x (h·l) = (Dxh)·l + h.(Dxl) (3.6) 

must be satisfied. Here h,I,El' (1, 'll (1» and have their val
ues h(q), l(q)5:W'q. 

At this point, the theory already differs from the typical 
internal gauge theory in one respect. The manifold 1 is not 
given any metric structure. In the typical gauge theory, the 
metric is essential in order to construct a Lagrangian. How
ever, with the theory we are now constructing, it will be 
possible to write down a Lagrangian without initially assum
ing a metric structure on 1. 

The presence of the origin vector field k is another way 
that the theory differs from the typical gauge theory. We 
may regard each k(q) as being the point at which each.JV q is 
tied to the manifold. In the following discussion, we use this 
field k to define a unique map from the tangent space Yq 
onto :Jr'q. This map leads to a unique way of imposing a 
metric structure and connection on the tangent bundle 
(Y(1),1,JR4 ,1T/,GL(4,lR», where 1T.T -I (q) = Yq is the 
fiber above q. 

Induced structure on Y(1)from 'll(1): Consider the 
"origin vector" field k, and define the tensor field J with 
value J(q) at q in Y' q ® 'll q by 

J=D®k. (3.7) 

(3.8) 

Proof From the definition of covariant differentation of 
dual vector fields, we have 

(3.9) 

for every X. Moreover, making use of(3.4) and the condition 
that fok = 1 for all q, we get 

(Dxk)of = xO(D ® k)of = 0, (3.10) 

Q.E.D. 

Note that in order to get a nontrivial theory, we do not 
want k to be preserved under parallel transport. This is con
sistent with the fact that the selection ofk(q) is not a part of 
the structure of 'll q that is used in defining the group f?J' q' 
We will show later on that a change in k leads to an equiv
alent theory. 

At each q, J(q) maps Yq into:Jr'q as follows: 

(3.11 ) 
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Ifwe assume J to be nonsingular for each q, then the 
map is a bijection and we can use it to impose the metric 
structure of:Jr'q onto the tangent space Y q, i.e., we can 
define Xq"Yq for xq, Yq in Yq by 

Xq"Yq = (xqoJq)-(yqoJq). (3.12) 

It follows from (3.12) that the unit tensors I,y (q) 
5:W'q ®:Jr'q and I/(q)EYq ® Y q, defined by the equations 
I,y(q),uq =uq andL/(q)oxq =Xq foruq5:W'q andxqEYq, 
are related by 

I,y = jOI/ oJ. (3.13) 

Thus, even though we started with no assumption of 
any metric structure on 1, the local Poincare gauge theory 
leads to a way of uniquely imposing a metric structure on 1. 

Once we know how to map vectors with J, the mapping 
oftensors is straightforward. For notational convenience in 
subsequent calculations, we define 

(oJ(q» 1,(OJ(q»z,(oJ(q»3' etc., as linear maps acting on 
a tensor to the left as illustrated in the following special case: 

(Xq ®Yq ®Zq)(oJ(q»1 

= Xq ® Yq ® (Zq oJ(q» = (Xq ® Yq ® Zq)oJ(q) , (3. 14a) 

(Xq ® Yq ® Zq)(oJ(q»z = Xq ® (Yq oJ(q» ® Zq , (3. 14b) 

(Xq ® Yq ® Zq)(oJ(q»3 = (xq oJ(q» ® Yq ® Zq , (3. 14c) 

where Xq,yq,ZqEYq. We also define (J(q)o)I' (J(q)o)2' 
(J(q)o )3' etc., as linear maps acting on a tensor to the right as 
illustrated in the example: 

(J(q)oMI'q ®m'q ®n'q) 
= (J(q)Ol'q) ® m'q ® n'q = J(q)o(l'q ® m'q ® n'q), 

(3.15a) 

(J(q)O)2(l'q ® m'q ® n'q) = l'q ® (J(q)om'q) ® n'q , 
(J(q)oMl'q ® m'q ® n'q) = l'q ® m'q ® (J(q)on'q) , 

where 

(3.15b) 
(3.15c) 

Mapping of connections with J: Given the nonsingular 
Y' q ®:Jr'q valued tensor field J, it follows that there exists a 
:Jr"q ® Yq valued tensor field F which is the inverse of J in 
the sense that zoJoF = Z for every Yq valued vector field Z 

and ho FoJ = h for every:Jr'q valued vector field h. Note that 
J maps each Yq valued vector field Z onto a:Jr'q valued 
vector field zoJ, and that F maps each:Jr'q valued vector 
field h onto a Yq valued vector field boF. We also have 

koF = O. 

Let D x be a connection on 'll q valued vector fields such 
that parallel transport under this connection preserves the 
structure of the spaces 'll q . 

Theorem 2: Ifh is an :Jr'q-valued vector field, then Dxh 
is also an :Jr'q -valued vector field. 

Proof From 

(3.16) 

and Eq. (3.4), as well as the fact that fob = 0 for all q (since 
b(q) is in :Jr'q), we have 

fo(Dxh) =0. (3.17) 
Q.E.D. 
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Hence Dxb is a dY'q-valued vector field. 
This theorem implies that a connection Dx on I&' q-val

ued vector fields is also a connection on dY'q -valued vector 
fields when we restrict it to act on dY'q valued vector fields. 

Each connection on I&' q -valued vector fields can be 
mapped onto a connection V x on the tangent bundle!T (1) 
by means of the equation 

V xZ = [DAzoJ) ]oF (3.18) 

for an arbitrary!Tq valued vector field z. This map Dx--+V x 
is one to one if we restrict the domain of Dx to dY'q-valued 
vector fields. Equation (3.18) can be written in the equiv
alent form 

(3.19) 

Theorem 3: A connection D x compatible with the inner 
product in dY'(1) induces a connection V x compatible with 
the inner product in !T (1). 

Proof Let y and z be arbitrary !Tq-valued vector fields. 
Making use of (3.12) and (3.19) we get 

X (y·z) = X [(yoJ)·(zoJ)] = [D AyoJ) ] ,(zoJ) 

+ (yOJ)-[Dx(zoJ)] 

= [(V xy)oJ].(zoJ) + (yoJ). [(V xz)oJ] 

= (V xy)·z + y·(V xZ) . (3.20) 
Q.E.D. 

Curvature tensor: We define the curvature tensor 
Rf,( ff) with values in !T' q ®!T' q ® I&' q ® 1&" q by 

xyg R,,( ff) °v = (DxDy - DyDx - D[x,y j)v. (3.21) 

Making use of (2.7) we can write 

xyg R( (. fl) °v = (DxDy - DyDx - D[x, y j)b 
+ a(DXDy - DyDx - D[x,y j)k, (3.22) 

where aEl'(1,R) is a smooth scalar field and b(q)EdY'q. It 
follows that R(ti')(q)E!T'q ®!T'q ®dY'q ® I&"q. Note now 
that because of (3.7) and (3.19), 

xy g RI, (. ff) ok 

= DAyoD ® k) - Dy(xoD ® k) - [x,y] oD ® k 

= DAyoJ) - Dy(xOJ) - [x,y]oJ 

= (VxY - Vyx - [x,y])oJ = xygT/(#)oJ, (3.23) 

i.e., 

RI, (. f/) ok = T./ (ff) oJ (3.24) 

where T/ (tt) is the torsion tensor on the tangent bundle with 
values T/ (. ff)(q)E7'q ® !T'q ®!Tq . 

In addition, from (3.11) and (3.19), we have 

xy g RI, ( ff) ob = xy g Rr;( tf) o(zoJ) 

i.e., 

= (DxDy - DyDX - D[x,y j)(zoJ) 

= [(VxV y ,- VyVx - V[X,y j)z]oJ 

= xyg (R/ (. ff) oz)oJ , (3.25) 

R f (/1) oj = R/( fO(oJ)2' (3.26) 

where R./ (#) is the curvature tensor on the tangent bundle 
with values in !T'q ® !T'q ® ,7q ® !T'q. Combining (3.24) 
and (3.26) we get 

(3.27) 
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which relates the curvature tensor on the fiber bundle to the 
curvature and torsion tensors on the tangent bundle. 

Alternatively, Eq. (3.27) can be viewed as a unique way 
of decomposing R( (. tf) into 

Rr; (ff) = R.", (. ff) + T", (. #) ® f , 
where 

T "'(ff)=RI,(ff)ok = T,/(.ti')oJ 

and 

(3.28) 

(3.29) 

Rk'(ff) RI,(tf) -RI,(ti')O(k®f)=Rnli')(oJ)i°F'») 
(3.30) 

with 

and 

T k'(t/)(q)E!T'q ®!T'q ®dY'q . 

Performing contractions on R.T gives the Ricci tensor 
R/ -C(13)R/ E!T'q ® !T'q at q, and the curvature invar
iant(R/)s ,,=C (13;24)(R/ 01/ )ERatq, whereC ( )denotes 
the contraction on the designated files in the parentheses. 
From R w we may also get a second order tensor R k' 

-C(13) (FoR", )E!T'q ®dY"q at q, and a scalar (R",), 
_C(13;24)[(FoMFo)2R", 01", ]Ea' at q. These quantities 
are related as follows: 

(R/ ), = (R", ), . 

(3.31) 

(3.32) 

Local Poincare transformations: Given a smooth cross 
section vEl' (1, 1&'(1»), the structural group of our vector 
bundle associates a local Poincare group 9 q at each point on 
the base manifold such that the action of the group on 
V(q)EI&' q is a linear transformation defined by Eqs. (2.1), 
(2.2), and (2.10) for each qE1. 

A connection in r (1, 1&'(1») transforms under the 
action of the group according to 

pO(Dxv) = Dx (P)(pov) , (3.33) 

or, equivalently, 

Dx (P)v = poDx(P- 1 ov) . 

Moreover, by (2.9) 

P - ) 0v = P ,·1 o(ak + b) = ak + L - 1 o(b - at) . 

Hence 

Dx< P)v = pODx [ak + L -) o(b - at)] 

= LoDx [ak + L') o(b - at)] + (Xa)t 

= LoDx [L -I o(ak + b - at)] + (Xa)t 

= LoDx(L -I ov) - aLoDAL lot). 

Making use of (3.33) and (3.36), we have 

poDxk = Dx(P)(pok) = Dx(P)(k + t) 

i.e., 

= LoDx [L -I o(k + t)] - LoDx(L -lot) 

= (Dxk)oL = (xoJ)OL , 

po(xoJ) = xOJoL . 
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The action r( 9) on the tangent space !7 q induced by a local 
Poincare transformation on '1J q is given by 

r( P)y=[po( yoJ)]oF = yoJoLoF (3.38) 

for YE!7q • As a consequence of this equation and equation 
(3.12), we have 

[r( P)x]·[r( P)y] = [(r( P)x)oJ]-[(r( P)y)oJ] 

= (xoJoL).(yoJoL) = [Lo(xoJ)]-[Lo(yoJ)] 

= (xoJ).(yoJ) = X'y , (3.39) 

i.e., the inner product in!7q is invariant under r( P). 
Free Lagrangians for the gauge fields: We can set up free 

Lagrangian densities !/ w(. 0') (RW(.d» for the gauge fields 
(i.e., the connection Dx) as scalar functionals of Rif(,d) 

which by construction will be locally Poincare-invariant. 
Note that by virtue ofEq. (3.27) these Lagrangian densities 
will determine the allowed functional form in terms of the 
quantities RJ (. 0') and T'T(, d) in the tangent bundle, so that a 
permissible Langrangian density !/T( d) in !7(vR) will be 
given by 

!/j-(. 0') (R/-(. 0') ,T/-( d» 

= !/ >1"(.0') (Ry(.d) (oJ)ioF) I + T'T( . .N') oJ ® r). (3.40) 

Volume element: The antisymmetric tensor element of 
volume on vR, denoted byd O(q)E!7q /\!7q /\!7q /\!7q, is 
related to appropriately oriented coordinates xo, Xl ,X2,x3 on 
vRby 

dO = Ito /\ a l /\ a2 /\ a3dxodxldx2dx3 , (3.41) 

where a!" (q)=a lax!" is a natural basis for !7q. 
Using the inner product in !7q , define the antisymme

tric tensor field A with A(q)E!7q /\!7q /\!7q /\!7q such 
that 

A::A= -4!. (3.42) 

This defines A up to a sign. A scalar element of volume on vR 
can be defined as 

dV=df}::A. (3.43) 

Now using the inner product in ~q, define the anti
symmetric tensor field M with M(q)~q /\ ~q 
/\ ~q /\ ~q such that 

M::M = -4!. (3.44) 

This defines M up to a sign. Another scalar element of vol
ume on vR can then be defined as 

(3.45) 

However M and A transform into each other according to 

(3.46) 

and if the signs of M and A are appropriately chosen, it 
follows that 

dr=dV. (3.47) 

Hence, the action for the gravitational field will be of the 
general form 

L o = f !/ ~(. 0') (Rw(. 0') )dr 
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(3.48) 

where !/ W(..d) and !/ Y(..d) are related by Eq. (3.40). 
It is not the purpose of this paper to discuss in more 

detail possible explicit forms for the gravitational Lagran
gian. Instead, we now turn to the remark made earlier in this 
section regarding the independence of our theory on the 
choice of the "origin" vector k. To prove this statement, 
consider a different k, obtained by the action of a translation 
on k. From (2.5) and (2.6) we have 

Tok = k + t, 
Tob = h, for b(q)~q . 

The consequent change in Dx follows from (3.36) and is 
given by 

and 

D~{lk = DAk - t), 

or, making use of (2.6), 

D r)(Tok) = DAk) . 

(3.49) 

(3.50) 

(3.51) 

Thus we see from (2.5) and (3.49) that a change in k leaves 
vectors and connections on ~q invariant, while from (3.51) 
we have 

(3.52) 

i.e., a change in k can be compensated for by a corresponding 
change in Dx such that the tensor J, used for mapping vec
tors, tensors and connections into the tangent bundle, is un
affected. We are therefore led to a completely equivalent 
theory. 

Variational Principles: Given a matter Langrangian in 
which the gauge fields are minimally coupled to the particle 
fields t/r4 by means of the covariant derivative operator Dx , 
and given a "free" Lagrangian constructed from these gauge 
fields according to the procedure outlined above, we can ob
tain field equations and conservation laws by means of a 
variational principle applied to the matter and gauge fields. 
We will now discuss the general features of this variational 
procedure for the Lagrangian in the context of the formalism 
so far developed. 

The fundamental (gauge) quantity to be varied is Dx. 
Since any two linear connections may differ only by a linear 
transformation, we can write 

(3.53a) 

or 

(8Dx)v = (8 Bx )ov (3.53b) 

for each '1J q valued vector field v, where 8 Bx(q)E'1J q ® '1J' q 
is linear in X. It also follows, in particular, that 

or 

8J = (8B)ok, 

where 

8B(q)E!7'q ® '1Jq ® '1J'q 
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is defined by 

8 Bx = xo8 B . (3.56) 

Note that virtue ofEqs. (3.5) and (3.6) it follows that 
8 B(q)EY' q ®,3Yq ® 'C' q and that 8 BoIJr(1) is antisymme
tric in the second and third files. Consequently 8 B can be 
written in general as 

8B=8N®(+8W. 

Here 8 N(q)EY'q ®,3Yq is completely arbitrary and 
8 W(q)EY'q ®,3Yq ®,3Y'q is arbitrary except that 

(3.57) 

8 WoI;¥(.b') is antisymmetric in the second and third files. It 
readily follows from Eq. (3.57) that 

8 J = 8 N . (3.58) 

Making use of these results, we can now evaluate the corre
sponding variations in the tangent bundle induced by 8 N 
and8 W. By varying Eq. (3. 12) we get, after some straightfor
ward calculations, 

(3.59) 

which is symmetric but otherwise completely arbitrary. The 
variation ofT7-(b') is obtained by making use ofEqs. (3.21) 
and (3.24), and can be expressed in general as 

8 Ts;-(. b') = 8) T.~v(#') + 82T 7 (b') , 

where 8)T;,-(. #') is dependent only on 8 N, and 

82T;'-T#') = ![1-(12)](23)[8WoJ]joF. 

(3.60) 

(3.61) 

[The symbol (kl) denotes the permutation of the k th and I th 
files.] Both 8)T7 (.b') and 8 2T.'Y(.4') are antisymmetric in the 
first two files. Furthermore, by letting 

8W = !(JoMlw>(b')o)2{ [(23) - (13) -1 ]8Q), (3.62) 

where 8 Q(q)~' q ®,3Y' q ®,3Y' q is completely arbitrary ex
cept for antisymmetry in the first two files, it can be shown 
that 82 T.'T(b') is also arbitrary except for the previously men
tioned anti symmetry property. Hence our theory leads to 
variations 817 (.4') and 8 T.7 (4') which are independent of 
each other and arbitrary except for the conditions that 
817 (.4') is symmetric and 8 Tn. b') is antisymmetric in the 
first two files. 

Finally note that in addition to the variations induced in 
1n #') and Tn. b')' the inner product and connection V x on 
Y(v«') will have to vary in such a way that the inner product 
will continue to have I y (.4') as a unit tensor and V x will 
remain compatible with the inner product. All these entities, 
on the other hand, are the ones varied in the conventional 
approaches to gravitational theories. 

IV. SUMMARY AND CONCLUSIONS 

The central idea in this paper is the formulation of a 
theory of gravitation in which the Poincare group is treated 
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as an internal gauge group. However, the theory differs from 
internal group gauge theories in two significant aspects. 

The first difference is that no metric structure or con
nection on the tangent bundle is assumed. In typical gauge 
theories the metric structure of the tangent bundle is given a 
priori together with a connection compatible with the 
metric. 

The second way in which the procedure differs from the 
typical internal gauge theory is the inclusion of an "origin" 
vector field, which is interpreted as the points at which the 
fibers are tied to the manifold. The covariant gradient of this 
field gives a tensor field J = D ® k, which can be utilized as a 
map by means of which structure can be mapped in a natural 
way onto the tangent bundle inducing in it a metric and 
connection. We have shown that the selection of the origin 
vector field k imposes no special restriction on the theory 
since a change in the choice of this field can be compensated 
by a corresponding change in the connection Dx such that a 
completely equivalent theory is obtained. 

We have obtained the possible functional form of the 
Lagrangian permitted by the theory and by means of maps 
made possible by the tensor field J, we have shown that the 
theory of gravitation obtained by treating the Poincare 
group as an internal gauge group encompasses General Rel
ativity and the Einstein-Cartan Theory as particular cases, 
as well as other gravitational theories with torsion which 
have been recently proposed. 

ACKNOWLEDGMENT 

We wish to thank S. Hojman and M.P. Ryan for fruitful 
discussions on the subject. 

IS. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Elementary 
Particle Theory: Relativistic Groups and Analyticity (Nobel Simposium 
No.8), edited by N. Svartholm (Almqvist and Wiksell, Stokholm, 1968), 
p. 367; J. Wess, B. Zumino, Nucl. Phys. B 70,39 (1974); R. Amowitt, P. 
Nath, B. Zumino, Phys. Lett. B 56,81 (1975); P. Nath, R. Amowitt, Phys. 
Lett. B 56,177 (1975); D.Z. Freedman, P. Van Nieuwenhuizen, S. Ferra
ra, Phys. Rev. D. 13, 3214 (1976); S. Deser, B. Zumino, Phys. Lett. B 62, 
335 (1976). 

2C.N. Yang, R.L Mills, Phys. Rev. 96,191 (1954). 
'R. Utimaya, Phys. Rev. 101, 1597 (1956). 
4F.W. Hehl, P. Van Der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod. 
Phys. 48, 393 (1976). 

'J.G. Taylor, Phys. Rev. D 18, 3544 (1978). 
"T.W.B. Kibble, J. Math. Phys. 2, 212 (1961). 
7K. Hayashi, A. Bregman, Ann. Phys. 75, 562 (1973). 
sH.P. Durr, Nuovo Cimento A 4,187 (1971). 
9R. Utimaya, T. Fukuyama, Prog. Theor. Phys. 45, 612 (1971). 

lOW. Drechsler, M.E. Mayer, Fiber Bundle Techniques in Gauge Theories 
(Lecture Notes in Physics Vol. 67, Springer, Berlin, 1977). 

Ily Choquet-Bruhat, C. De Witt, M. Dillard, Analysis, Manifolds and 
Physics (North-Holland Publishing Co., Amsterdam, 1977). 

C.P. Luehr and M. Rosenbaum P. 1438 



                                                                                                                                    

Gauss-Bonnet and Bianchi identities in Riemann-Cartan type gravitational 
theories 

H. T. Nieh 
Institute/or Theoretical Physics, State Universityo/New York at Stony Brook, Stony Brook, New York 11794 

(Received 20 September 1979; accepted for publication 15 February 1980) 

We present elementary derivations of the Gauss-Bonnet type and Bianchi type identities for 
Riemann-Cartan geometry. The identities are derived directly in terms of the vierbein field ea

" 

and the spin-connection field rab", in the spirit of gauge theory, and are suitable for discussing 
Riemann-Cartan type gravitational theories. 

1. INTRODUCTION 

In the formulation of gravitational theories for half-in
teger spin fields, it is natural to introduce the vierbein field 1 

e a", or its generalization. There is a whole class of gravita
tional theories in which the vierbein field ea

" and the "Lo
rentz-spin connection" field rab" are taken to be indepen
dent field variables. 2 The underlying geometry for such 
theories is the Riemann-Cartan geometry, in the sense that 
it has a metric tensor and torsion. We shall call this class of 
gravitational theories by the generic name of Riemann-Car
tan gravitational theory. 

The Bianchi identities for Riemann-Cartan geometry 
can be readily found in the literature. 3 However, the Gauss
Bonnet type identities in Riemann-Cartan geometry are not 
widely known; a simple and elementary derivation suitable 
for most physicists is simply lacking. 

We shall present simple proofs of both the Gauss-Bon
net type and Bianchi identities for Riemann-Cartan geome
try. These identities are derived directly in terms of the vier
bein field ea" and the spin-connection field r ab" , in the spirit 
of a gauge theory, and are especially suitable for discussing 
the Riemann-Cartan type gravitational theories. The deri
vations are elementary and simple, and should be of peda
gogic value. 

In Sec. II, we first present the relationship between the 
field variables e'" and r·b

" , on the one hand, and the geo
metrical quantities on the other. In Sec. III, we derive the 
Gauss-Bonnet type identities. The derivation is based on 
employing the Dirac matrices, and is very simple. In Sec. IV, 
the Binachi type identities are derived. The derivation is 
based on employing the de Sitter algebra. 

II. RELATIONSHIP OF 8"" AND r ab
" TO GEOMETRIC 

QUANTITIES4 

The basic field variables in Riemann-Cartan type 
gravitational theories are the vierbein field ea

" and the Lo
rentz-spin connection field rab" = - r ba", where the 
Latin a, b are the anholonomic Lorentz indices and the 
Greek Il the holonomic coordinate index. The spin connec
tion r ab" plays the role of the gauge potential for local Lo
rentz symmetry. With respect to the anholonomic Lorentz 
indices, covariant derivatives can be defined such as 

(1) 

for the anholonomic Lorentz vectors X a and X a' where 

a aXa 

X." = ax" 
The anholonomic Lorentz indices are raised and lowered by 

",ab = "'ab = (1, -1, - 1, - 1), (2) 

while the holonomic coordinate indices are raised and low
ered by 

(3) 

and its inverse g"v. 
A connection for the holonomic coordinate indices has 

to be defined. The product 

X" = ea"Xa 
transforms as an anholonomic scalar, and a holonomic vec
tor. The product 

ea"Xalv = ea,,(Xa.v - rbavXb) 

X".v - rA"vXA (4) 

should transform as an anholonomic scalar, and a holono
mic tensor. The connection r A "V is thus identified to be 

rA"v = ea Aea"lv, (5) 

where ea A is the inverse of ea 
A' and 

a a + 'Y/,a b e "Iv = e !L.v F bve ,,' 

Using r ab" and r A "V, we can define covariant deriva
tives with respect to both anholonomic and holonomic indi
ces, such as 

a _ a + ra b rA a 
X V;" X v." b.uX v - v"X A 

= XU vl.u - r A v"XuA' 
In can be easily verified that 

ea,,;v = 0, eu";v = 0, 

and consequently, 

g"v;A = 0, g"v;A = O. 

(6) 

(7) 

(8) 
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The connection rA!'v as defined by (S) is in general not 
symmetric, 

rA!'v =l=r\!" 

giving rise to torsion, which we denote by 

C A -rA r A 
Jl-V= p-v - VP" (9) 

In the presence of torsion, the relations (S) imply a relation 
that is a generalization of the usual expression for the Chris
toffel connection. Using 

gA!';V + gVA;!' + g!'V,A = 0, 

one can obtain 

rA!'v =~(rA!,v +r\!,) + !(rA!'v _rAy!,) 

= ~P(gp!,.v + gvp,!, - g!'v,p) 

+ ~(C!,v A + Cv!, A + CA!'v)' (10) 

In the absence of torsion, this relation reduces to the usual 
Christoffel expression, with the geometry being 
Riemannian. 

It is clear that the geometry is a Riemann-Cartan ge
ometry, when torsion is not zero. 

III. GAUSS-BONNET TYPE IDENTITIES 

In Riemannian geometry, there are the following 
identities: 

V - g€af3ylJe'vAPg7(af3!'vg7(ylJAP = total derivative, 

V - ge'vApg7(af3!,vRaf3Ap = total derivative, 

where €af3ylJ is the totally antisymmetric tensor, with 

€0123 = -~. 

(11) 

(12) 

(13) 

For Riemann-Cartan geometry, discussions of these identi
ties are not readily accessible. A simple and elementary dis
cussion suitable for most physicists is lacking in the litera
ture. We present here an elementary derivation, showing 
that the identities (11) and (12) also hold in Riemann-Car
tan geometry. 

Define 

r!, =!uab rab!" 

where5 

U ab = (i/2)[Ya'Yb]' 

! Ya'Yb J = 21Jab' 

We further define R ab!'v and R!'v 

resulting in 

(14) 

(IS) 

(16) 

R ab = rab _ rab _ 'TI (rac r db _ rac r db ) 
J..LV j.l,V V,Il 'Ied Jl v v It· 

It can be verified straightforwardly that 

RAp =e Ae PRab 
J.LV -- a b pv 

(17) 

= rAp _ rAp _ g (r Aa r f3p _ r Aa rfJp ) 
J.J-.V V,J.L afJ J.l v v J.l' 

(IS) 
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where rA!'v is given by (S). This relation shows that the 
combination ea AebPR ab!'v is indeed the correct identification 
for the Riemann tensor (in Riemann-Cartan geometry). 

Let us denote by 1Jabcd the totally antisymmetric Min
kowski tensor, with 

1J0123 = -1. (19) 

There is the relationship 
abc d 

1Jabcde !,e ve Ae P = €!'VAP' (20) 

on account of 

(detea!')2 = - detg!'v = - g. (21) 

Using (IS) and (20), we can express the Gauss-Bonnet prod
uct in the form 

~e'vAP€af3YlJR af3!'vR ylJAp 

_ 4 ~ -"VAp R ab R cd 
- V - gc' 1Jabcd !'v Ap 

= 4i~e'VAPTr[Y5R!'vRAP]' (22) 

where R!'v is defined in (16), and use has been made of 

Tr[Y5uab ucd] = - 4i1Jabcd' 

Substituting (16) into (22), we obtain 

V - ge'VAP€af3ylJR af3!,vR ylJAp 

= 161V'=-;e'vAPTr! Y5[(a!' rV)(aA rp) 

+ (a!,rV)rArp + r!,rV(aArp)]J, 

which, on account of 

[Y5,r!,] =0, 

becomes 

16iV-=-;e'vAPTr! Y5 [(a!, r v)(aA rp) 

+ (2/3)a!,(rVr A rp)] J. 
Since (v - g)€!'VAP is a constant, we thus have6 

V - ge'VAP€af3ylJR af3I-'VR ylJAp 

= al-'! 16iV-=-;e'vAPTr[Y5(rvaA rp 

+ (2I3)rVr Ar p)]J. 

(23) 

(24) 

One key point in the derivation is that Y5 commutes with 
r I-' = !uab r

ab!'. There is another 4 X 4 matrix having this 
property. It is the unit matrix. This leads to the derivation of 
the other identity 

V - ge'vAPR af3I-'V R af3Ap = 2~e'VAPTr[Rl-'vRAP] 

=al-'!S~e'VAPTr[rVaArp + (2I3)rVr Ar p ]J. 
(2S) 

Relations (24) and (2S) are the Gauss-Bonnet identities 
which, as we have seen, hold in Riemann-Cartan geometry 
as well as in Riemann geometry. 

IV. BIANCHI TYPE IDENTITIES 

The Bianchi identity for Riemann-Cartan geometry is 
known in the literature. It is a generalization of the usual 
Bianchi identity for the Riemann-Christoffel tensor, to take 
into account of torsion. We shall present a derivation of this 
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identity directly in terms of the field variables e a 
f.l and rab f.l ' 

in the spirit of a gauge theory. We shall also derive a corre
sponding identity for the torsion tensor, which reduces to the 
cyclicity identity for the Riemann-Christoffel tensor when 
torsion is set equal to zero. The results contain nothing new. 
However, the derivations, which are based on using Lorentz 
and de Sitter algebras as artifice, may be of interest. 

As is clear from (1), rab f.l is the gauge potential for 
local Lorentz transformations, with the corresponding 
Yang-Mills field strength R ab f.lV given by (17). It can be veri
fied straightforwardly that 

R abf.lvl A + R abvA If.l + R abAf.ll v = 0, (26) 

where the gauge-covariant derivative is defined in (1). The 
identity is the Bianchi identity corresponding to a Lorentz 
algebra. In terms of the more general covariant derivatives 
defined in (6), it becomes 

R abf.lV;A + R ab",,;f.l + R abAf.l;V 

- C P R ab + CP R ab + CP R ab (27) 
- f.l" pA vA Pf.l Af.l pv' 

where C P f.l" is the torsion tensor defined by (9). On account 
of (7), the identity (27) can also be written in the form 

R af3f.lV:A + R a
f3

VA ;ll + R af3Af.l;v 

- CPR af3 + CPR af3 + CPR af3 (28) 
- f.lV pA vA Pf.l Af.l pv' 

whereR af3f.lv is defined by (18). The identity in the form (28) 
is the generalized Bianchi identity for Riemann-Cartan 
geometry. 

The field variables rab f.l and e a 
f.l can be grouped togeth

er to form rABf.l = - rBAf.l (with A =0,1,2,3,5): 

{ 

rab 
'}/AB : f.l' 

Il r a5 = ea . 
Il Il 

(29) 

We can artificially consider the de Sitter algebra 

i[XAB,XcD ] = 1JACX BD -1JAD X BC + 1JBD X AC -1JBCX AD' 

(30) 

where 

1JAB = (1, -1, -1, -1, ± 1). (31) 

Define 

Y -IX r AB 
/ 1 =4 AB J-l' (32) 

!XABR A Bill' Y ,l•V - YV,1l + i[Yf.l'Yv ], (33) 

which yield 

R- AB - r AB _ r AB + 'YI 
I'l' - Il," V,I' '1 CD 

X (rAC 
r

BD 
_ r

BC 
r

AD 
) J-l v J-1 v • (34) 

It can be straightforwardly verified that 

R- ab R ab + (a b b a) 
I'l' = f.lV 1Jss e "e v -e"e v ' 

(35) 
R

- as a a ca 
Il" = e Illl' - e vlll = f.lV' 

where 

callV = eaA CAf.ll" 

Defining the covariant derivatives corresponding to the 
de Sitter algebra, such as 

R- AB -R- AB ('Y/AC R- DB 'Y/BC R- DA ) 
IlvIIA= IlV,A + 1JCD /" A f.lV - /" A Ill' , 

(36) 
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we can write down the Bianchi identity corresponding to the 
de Sitter algebra: 

R- AB R- AB R- AB 0 (37) 
f.lviIA + vA 1If.l + Af.lllv = . 

There are two sets of identities, one corresponding to 
setting A = a and B = b, and the other A = a and B = 5 in 
(37). It can be easily checked that 

R ab + R ab + R ab - 0 
"vilA VA 11f.l Af.lliv -

is equivalent to (26), again yielding (27). The other set 

R a5"vlIA + R as VA 1If.l + R as Af.lli v = 0, 

on account of the definitions of the two kinds of covariant 
derivatives, 

R
- as R- as + R- a b 

f.lviIA = IlvlA b"v e A 

can be written in the form 

R- as + R- as + R- as + R- a b 
f.lviA vA III ,1,,1 v b"v e A 

- b - b + R a bVA e f.l + R a bAf.l e v = O. (38) 

In terms of the general covariant derivative defined in (6) 
this identity can be expressed as 

ca"v;A + caVA;1l + caAIl;v + R abf.lvebA + R abvAebll 

+ R \A"e\ = CP"vcaPA + C P
vA Capf.l + CPAf.l C

a
pv ' 

(39) 

where use has been made of(35). Because of(7), we can write 
(39) in the form 

ca"v;A + CavA;1l + CaAIl;v + Rail"" + R a vA" + R a Allv 

= CPllvcapA + CPvA capil + CPAf.l capv ' (40) 

We note that this identity reduces to the cyclicity relation for 
the Riemann-Christoffel tensor, when the torsion tensor 
C A • 

f.ll' IS zero. 
We have thus seen that the two identities (27) and (40) 

are the Bianchi identities corresponding to the de Sitter 
algebra. 
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The Taub plane symmetric static and homogeneous vacuum solutions are matched on a natural 
hypersurface. The space-times obtained in this way have distribution valued curvature tensors 
along the joining hypersurfaces. Our treatment of this problem follows Taub's presentation of 
space-times with distribution valued curvature tensors. We find that the surfaces of the join may 
be interpreted as thin null pressureless fluid shocks. The nature of these surfaces are further 
investigated by examining the behavior of geodesics crossing the surfaces. 

I. INTRODUCTION 

In Sec. II we give Taub's I definition of plane-symmetric 
space-times, and the plane-symmetric static and homogen
eous vacuum solutions. In Sec. III we show how space-times 
may be produced by matching the static and homogeneous 
vacuum solutions along a hypersurface. The space-times 
produced in this way have distribution-valued energy-mo
mentum tensors along the joining hypersurfaces. Taub2 has 
presented a formalism for dealing with such hypersurfaces. 
The energy-momentum tensors along the joining hypersur
faces discussed in Sec. III are calculated in Sec. IV. Geode
sics are the subject of Sec. V. It is shown how to continue 
geodesics across distribution-valued hypersurfaces. The first 
integrals are given for the static and homogeneous vacuum 
solutions. We specialize to the case where the motion is re
stricted to a z axis. Finally, we display some typical geodesics 
crossing the joining hypersurfaces. 

In the discussion and conclusion we interpret the join
ing hypersurface as due to a null pressureless fluid. We also 
show how space-times such as those discussed in Sec. III 
may arise in a more natural way. The field equations may 
have characteristic surfaces upon which the equation cannot 
be integrated. If the metric is extended onto such a hypersur
face it may be interpretable in a distributed sense. 

II. BACKGROUND 
A. Definition of plane-symmetric space-times 

Consider a space-time (M,g). Let 
(x, y,z,t) _ (xl,x2,x3,x4) be local coordinates in a neigh
borhood of a point P E M The mapping 

x=xcos(8)+ ysin(8)+a, 

y=xsin(8)+ ycos(8)+b, 

0< 8 < 21T, - 00 < a, b < 00 , 

z=z, t = t, 

(1) 

is used to define plane symmetry. (M,g) is said to be plane 
symmetric if local coordinates (x, y, z,t ) exist such that: 

(i) Equation (1) is a local coordinate representation of a 
Lie-transformation group on M; 

"'Current address: Department of Physics, University of Cincinnati, Cin
cinnati, Ohio 45221, 

(ii) the infinitesimal generators ofEq. (1) (k(ajlk(b) ' and 
kun ) are spacelike (cf. Taub l

). 

If (M,g) is plane symmetric, then Killings's equations 
for 

(2) 

k(fn = k3(Y..!.... - x ~), ax ay 
where kl' k2' and k3 are constant nonzero scalars, imply that 
we may choose local coordinates (x, y, z,t ) such that 

ds2 = A (dx2 + dy2) + D dz2 + 2C dz dt + D dt 2, (3) 

where A ,D, C, and D are functions of z and t only. Conditions 
(i) and (ii) imply 

(4) 

In order that Eq. (3) define a Lorentz metric, D, C, and 
D must satisfy the Lorentz signature requirements 

D + D + [(D - D )2 +4C 2 ] 112 > 0 , 
(5) 

D + D - [(D - D )2 +4C 2 ] 112 < 0 . 

The inequalities (4) and (5) may in general put restric
tions on the range of the coordinates z and t. 

If A, D, C, and D are analytic functions of z and t, there 
exists a coordinate transformation of the form 

Xl =x, yl =y, 

Zl = F(z,t), 

t l = G(z,t), 

such that (3) takes the Taub l canonical form 

ds2 = A (dx2 + dy2) + D (dz2 _ dt 2) . 

(6) 

(7) 

Carlson and Safk03 have discussed canonical forms for C k 

plane-symmetric metrics. 

B. Taub static and homogeneous vacuum solutions 

The Einstein equations R/tv = 0 for (7) admit two non
flat solutions 

g(s) :ds~s) = n ~ [Izl (dx2 + dy2) + Izl -1/2(dzZ - dt 2)] , 
(8a) 
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QfJ~ 

FIG. I. The space-time (MlQ+ )~,) I). gl,) is Lipschitz continuous on 
z = t. The space-time cannot be extended out of the first quadrant of the 
(z,t ) plane. 

g(h):dsZh) =n~[lt I (dx2 +dy2) + It 1-1/2(dr-dt 2)]. 
(8b) 

Taub l derived the static solution (subscript s) and Davis and 
Ray4 pointed out that the homogeneous solution (subscript 
h), which is a special case of the Kasner metric, also follows 
from solving Rp.v = 0 for (7). 

If in Eq. (8) the coordinates z and t are allowed to take 
on all values - 00 < z, t < 00, then g(s) is singular on z = 0 
and g(h) is singular on t = O. So what we really have are four 
space-times 

(M~sJ,~ ,g~.J,~ ) , 
where 

ds~l )' = n ~ [( ± Z)(dX2 + dy2) 

+ ( ± z) -1/2(dz2 _ dt 2)] , (9) 

M (±) {( 4 z>O(+)} 
(s) = x,y,z,t)ER Iz<O(_) , 

dS~h~)' = n ~ [( ± t )(dx2 + dy2) 

+ ( ± t ) - 1/2(dz2 _ dt 2)] , (to) 

M(±) {( 4 t >O(+)} 
(h) = x,y,z,t)ER It <O( _) , 

with an obvious use of notation. 
Note that 

(M~s:i,~ ,g~s:i,~ )~(M~s:h~ ,g~s:h~). 
These space-times are locally analytic, nondegenerate, non
singular, and inextendable By inextendable we mean that the 
space-times cannot be extended at their singularities which 
show up as singularities in R a py6 Ra py6 • 

III. MATCHING THE STATIC AND HOMOGENEOUS 
VACUUM SOLUTIONS 

In this section we show that larger spaces may be pro-
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T 

P£OOl 

f 

FIG. 2. The space-time (Mlu'i )~u'i I). glu'i) is Lipschitz continuous on 

z = t. The space-time cannot be extended into the third quadrant of the 
(z,t ) plane. 

duced by matching the ~sJ, ~ along a hypersurface. We re
quire that the first fundamental form of the metric be con
tinuous across the hypersurface. We use the same 
coordinates on each side so that continuity of the first funda
mental form reduces to the metric being continuous across 
the hypersurface. 

The space 

M~,i) = M~h)nM~sj) 

T 

FIG. 3. The space-time (M ,g). g is Lipschitz continuous on z = ± t. The 
space-time cannot be extended onto the two-dimensional surface z = 0 = t. 
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Q 

FIG. 4. A region fl of space-time is divided into two partsfl T by -I. Infl', 
¢> > 0 and in fl~, ¢> < O. The curve x"(,i ) from PEfJ 'to qEfJ ~ crosses I at the 
point O. R is a neighborhood o£o and is contained in fl. -I divides R into two 
parts R ! . 

has a global C 1-, nondegenerate, and nonsingular metricgL) ) 
given by 

(+) _ e~s~), t >z, 
g(O - (+) 

(h)' t <;z. 
(11) 

The space-time (Mi,) ),gi,)) is inextendable and may be 
depicted schematically as shown in Fig. 1. 

The space 

Miut)=MiNuMis~) 

has a global C 1-, nondegenerate, and nonsingular metricgiu~ ) 
given by 

(+) _ eihi )' t >z, 
g(u) - (+) 

(s)' t <;z. 
(12) 

The space-time (M is ) ,giu~ ») is in extendable and may be 
depicted schematically as shown in Fig. 2. 

A more interesting space-time with - 00 <z, t < 00 

(z#O#t) is (M,g) shown schematically in Fig. 3. gis global
ly C 1- non degenerate and nonsingular on M. (M,g) is also 
inextendable. (M,g) may be considered as an extension of 
(Miu~ ),giu~») in the sense that we cut out the region of 
(M iu\ ),giu~ ») below the line z = - t and fill it in as shown. 
But this does not extend (Miu~ l,giu~») at its singularities. 

IV. THE NATURE OF THE HYPERSURFACE AT THE 
MATCH 

The surfaces z = t in (Mii~?,gii~n and the surfaces 
z = ± t in (M,g) are null hypersurfaces across which the 
metric tensor is continuous but has finite jumps in its first 
and second derivatives. Hence the curvature tensor may be 
distribution valued. In the following discussion we analyze 
the nature of the surfaces using Taub's2 presentation of 
space-times with distribution-valued curvature tensors. 

Taub shows that the new part of the Ricci tensor on the 
surface is given by two quantities HI'Jj(if;) and JI'JJ (if;) 
X[1 - o (if;)] , where if; = Oisthehypersurface,8istheDirac 
delta function, and 0 is the step function. With H = H ~ and 
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J = J~, we call H~v = Hl'v - J/Jl'vH the energy-momen
tum tensor of the surface and J ~,. = JI'V - J/J'LJ the non
contributing energy-momentum tensor of the surface. The 
Bianchi identities need not be satisfied on the surface, al
though they will be satisfied on either side and for any inte
gral across the surface. 

We begin our discussion with the space-time 
(Mi,) l,gi,) »). Consider the null coordinates 

rp=z-t, llJ=z+t, 

in which the metric takes the form (with n 6 = 1) 

(13) 

ds2 = [!(llJ + rp)[ (dx2 + dy2) +2 [2(llJ + rp )]- 1/2dllJ drp, 

rp<;O, 
(14) 

ds2 = [ !(llJ - rp)[ (dx2 + dy2) + 2 [2(llJ - rp)] - 112dllJ drp, 

rp>O. 

Labeling the coordinates according to 
(x, y,llJ,rp) +---+ (xl,x2,x3

,X
4

) and following the algorithm 
outlined in the Appendix, we conclude that 

H'Ll' = (-2/llJ)841/34 l" Jl'v(2/llJf8411 84 l" (15) 

We also find that 

B PUILl';l' = - 0(1 - 0) !(llJt38a3(811'82p + 821'8 IP) , 
(16) 

so the Bianchi identities are not satisfied on rp = 0; however, 
the contracted Bianchi identities are satisfied on rp = O. 

Now consider (Miu~ l,giu~ l). The only difference here 
will be a change in sign of jump quantities. We now find that 

H'Ll' = (2/llJ)8411 84 l" Jill' = (2/llJf841' 84 ,. , (17) 

and an equation similar to (16). 
It is also a simple matter to find Hill' and Jl'l' for (M,g). 

The first quadrant of the (z,t ) plane is equivalent to that part 
of (ML~ l,glu~ »). The second quadrant is equivalent to the 
first quadrant via z ---> - Z (llJ ---> rp,rp ---> - llJ). The third 
quadrant is equivalent to the first quadrant via z ---> - z, 
t ---> - t (llJ ---> - llJ, rp -+ - rp) and the fourth quadrant is 
equivalent to the first quadrant via t -+ - t (llJ -+ rp, rp -+ llJ). 
So we have 

rp = 0 (z, t > 0), 

rp = 0 (z < 0, t > 0), 

llJ = 0 (z, t <0), 

llJ = 0 (z>O, t <0), 

rp = 0 (z, t > 0), 

llJ = 0 (z < 0, t > 0), 

rp = 0 (z, t < 0), 

llJ = 0 (z> 0, t < 0) 

and equations similar to (16). 

(18) 

(19) 

Note that H ~v and J ~v have the algebraic properties of 
null pressureless fluids, i.e., H ;,V = PIIl'lv and J ~v 
= pil'/'" where II' = 841' is a null-geodesic vector field. 
Also, (Mi,) l,gi,)) has negative energy density, whereas 
(Ml,) l,gi,)) has positive energy density as far as H~v is 
concerned. J ~v does not contribute to any integrated energy. 
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TIIF-L1KE GfllrtSIC 

FIG. 5. Through the point P in the space-time (M~,j) ./c,j» we have 
sketched the light cone and a typical timelike geodesic in the case a = 0 = b. 
The complete timelike geodesic bounces off of the hypersurface z = (l/c).' 

v. GEODESICS 
A. Geodesics In space-times with distribution-valued 
curvature tensors 

In Fig. 4weshow acurvexl'(A. )fromPeJJ -toqEi1 + and 
crossing~ at the point O. A particle (allowing tachyons) will 
travel from P to q in such a way that 

8I = o[ (,«q)( dxl' dx
v 

)dA. ] = 0 (20) L. (p) gltv dA. dA. ' 

where the variation 0 is taken in the usual way. The equa
tions of motion are then found to be 

( 
d 2Xlt dxv dXP ) ± dxlt 
--+r lt -- =0 -=0 

dv2 v P dv dv 'dv' 
(21) 

where v is an affine parameter. Hence we have the geodesic 
equations in n ± and the condition that the vector tanget to 
xlt(v) be continuous across~. 

Sincegltv is C
3

, r~p will be C 2
• One can apply the exis

tence and uniqueness theorem for the geodesic equations to 
prove the following: If r~p has a C 2 extension into R ±, 

every geodesic starting somewhere in R ± and reaching 0 on 
~ with tangent vector (dxlt / dv) I v(0) has a unique extension 
into R =t= satisfying (21), relative to the C 2 extension of r !/ 
intoR =t=. 

B. Geodesics of the vacuum solutions 

Horsky5 and others (see references in Horsky) have in
vestigated some of the properties ofthe geodesics ofthe static 
solution. These also fall within the class of Bianchi I spaces. 
The static metric given by Eq. (9) has first integrals 

dx = a/z, d y = b /z, ddvt = C(Z)I12 , 
dv dv 
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(22) 

with v an affine parameter and a, b, c, and d constants of 
integration. Now v may be chosen as proper length in space
like geodesics and as proper time for timelike geodesics since 
(dsf/(dv)2 = - d. Ifwe consider geodesics for which 
a = b = 0, then null geodesics are given by 
z = ± t + const., while timelike geodesics are given by 
dz/dt = ± (1 - C-2Z-

1(2
)112. 

These timelike geodesics are complete across z = c-4 if 
we change from the ( + ) root to the ( - ) root. Fig. 5 shows a 
typical timelike and null geodesic through an arbitrary point 
P. 

The homogeneous geodesics are found by replacing Zl/2 

by - t 112 in all first-integral equations. Timelike and null 
geodesics are shown in Fig. 6. 

C. Geodesics of the distribution-valued solutions 

Once again we consider the case of geodesic motion 
constrained to thez axis. We know what these geodesics look 
like for the static and homogeneous vacuum solutions. All 
we have to do to display typical geodesics of the distribution
valued solutions is to continue that tangent vector continu
ously across z = ± t. In Figs. 7, 8, and 9 we show the light 
cone through an arbitrary point P and the typical timelike 
geodesic through P for the space-times (M~,t) ,g~,t),), 
(M ~nj ) ~nj », and (M ,g). 

VI. DISCUSSION AND CONCLUSION 

By patching together the two vacuum solutions with 
plane symmetry we have constructed plane-symmetric 
space-times that contain null hypersurfaces across which 
the metric tensor is Lipschitz continuous and has finite 
jumps in its second derivatives. The energy-momentum ten
sor on the null hypersurfaces may then be calculated as pre-

TIif-UKF rfmfSIC 

FIG. 6. Through the point P in the space-time (M~h'i) ./ch») we have 
sketched the light cone and a typical timelike geodesic in the case a = 0 = b. 
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n:f-UI<E GEODESIC 

FIG. 7. Through the point Pin the space-time (M~,; l,~,; 1) we have 
sketched the light cone and a typical timelike geodesic in the case a = 0 = b. 
The timelike geodesic experiences ajump in its acceleration as it crosses the 
null hypersurface z = t, which is a thin null pressureless fluid. 

scribed by Taub.2 In general, the curvature tensor will be of 
the formA + B8 (tP) + C(} (tP) [1 - (} (tP)]. The term propor
tional to (} (tP) [I - (} (tP)] , where tP = Ois the surface, will not 
contribute to any integrated energy and momentum, howev
er, the term proportional to 8 (tP) will contribute to integrat
ed energy and momentum and is therefore of physical sig
nificance. We found that the energy-momentum tensor 
associated with 8 (tP) has the algebraic properties of a null 
pressureless fluid. For a null pressureless fluid T = pi I , 

JlV Il v 

------~----7~--~~~----+----------------z 

nf1:-UI<E GEOfFSIC 

FIG. 8. Through the point Pin the space time (M~u1l,g~u1 1) we have 
sketched the light cone and a typical timelike geodesic in the case a = 0 = b. 
The timelike geodesic experiences ajump in its acceleration as it crosses the 
null hypersurface z = t, which is a thin null pressureless fluid. 
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FIG. 9. Through the point P in the space-time (M,g) we have sketched the 
light cone and a typical timelike geodesic in the case a = 0 = b. The timelike 
geodesic experienced a jump in its acceleration in the past as it crossed the 
null hypersurface z = - t, and will experience a jump in its acceleration as 
it crosses the null hypersurface z = t. 

where lJl. is a null-geodesic vector field. We look for lJl. = 84Jl. 
and p = A «(r) )8(¢ ) = - (2/ (r) )8(¢ ). The field equation is 
P;Jl.1Jl. + plJl.;Jl. = O. 

This equation implies thatp'3 + p/(r) = 0 so that 
dA /d(r) = - A /(r), or p = (C /(r)8(¢). We satisfy our 
hypothesis with C = -2. 

Geodesic particles crossing the shock experience a 
jump in their acceleration and follow a different path than 
they would have taken had the shock not been there. 

From a mathematical point of view the arbitrary patch
ing together of space-times is a well posed problem; however, 
it seems to us to be rather unnatural from a physical point of 
view. 

In order to see that the space-times discussed above 
may actually arise in a more natural way, start with the 
plane-symmetric metric.6 

ds2 = etA + B)/2(dx2 + d y2) + e2C (dz2 _ e(B - A )dt 2), 

A = A (z), B = B (t), C = C (z,t ), (23) 

and solve RJl.v = O. One finds that the resulting equations 
cannot be integrated on degenerate hypersurfaces across 
which the metric tensor is Lipschitz continuous. One such 
solution is 

ds2 = e(z +, )/2(dx2 + d y2) 

+ le'_e'le-(z+,)/4(eZ dz2-e' dt 2). (24) 

Equation (23) arose naturally from integrating RJl.v = 0 sub
ject to z # t. In fact, Eq. (24) does not satisfy Rl'v = 0 on 
z = t. 

If in Eq. (24) we allow z and t to take on all values 
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FIG. 10. A region of space-time is divided by I into two parts fl ±. In fl-, 

(,bO and in flo, t/J <0. 

- 00 < z, t < 00, we can show that the resulting space-time 
is equivalent to (M ~,;- ) ,g~,;- ». The C <xo coordinate transfor
mation (z,t ) -+ (i,i) composed from 

a = 2e"i2, f3 = 2el
/

2 
, 

u = a + /3, v = a - /3, 

2 V- = { v
2
/2, U = U /2, 2 

- v /2, 

v;;;. 0, 

U + v = i, U - v = t, 
transforms Eq. (24) to 

ds2 = (i/8)(dx2 + d y2) + [ fii /8) -112] (dr - d(2), t;;;.z, 

ds2 = (i /8)(dx 2 + d y2) + [ Mi/8) -1/2] (dr - d(2
), t<,i, 

(25) 

which is clearly equivalent to g~,;- ) (with an appropriate 
choice of n 6) and also sends the R 4 manifold (x, y,z,t ) to 
Mi,;-)· 

The null hypersurface z = t showed up explicitly in the 
equations RI-'v = 0 for (23) as a hypersurface on which the 
equations could not be integrated. This seems to us to be 
more natural from a physical point of view than the arbitrary 
patching together of two solutions as described in the pre
ceeding sections. 

Finally, we would like to point out that one can add the 
physical requirement that the energy density be positive defi
nite. Since (Mi,;-l,g~,;-» has negative energy density, it may 
be regarded as unphysical although one might interpret this 
to mean that the shock approaches the origin from infinity 
and converts the homogeneous portion of the space-time 
into the static portion. (M ~,;- ) ,giu\ » has positive energy den
sity. The singularity on t = 0 for allz <0 and the singularity 
on z = 0 for all t < 0 seem to give rise to the shock on z = t. In 
this case we say that the shock is emitted from the origin and 
changes the static portion of the space-time into the homo
geneous portion. (M,g) has positive energy density. The sin
gularity on the two-dimensional surface z = 0 = t seems to 
arise from two shocks traveling in opposite directions and 
crossing on the two-dimensional surface z = 0 = t; i.e., the 
shocks traveling toward the origin from the infinite past in
tersect at z = 0 = t, create a singularity there, and reemit 
shocks that escape to the infinite future. 
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APPENDIX: SPACE-TIMES WITH DISTRIBUTION
VALUED CURVATURE TENSORS (Taub2) 

The surfaces considered here are orientable hypersur
faces in the space-time across which the metric tensor is con
tinuous but has finite jumps in its first and second 
derivatives. 

Let .I be such a hypersurface and let.I be described 
locally by the equation 

¢(x) = 0 

and have normal vector 

II-' = atf; = tf;,1-' . 
axP 

In Fig. 10 we show a region n of the space-time divided 
by.I into two parts n '(n -) where tf; > 0 ( < 0). Assume that 
the metric tensor is at least C 3 in n ± so that the Bianchi 
identities are satisfied in n ±. Consider also functions/that 
are continuous in n ± but that may have a discontinuity 
across .I denoted by 

[fJ = /. - f-, 

where/. (f-) is the limit of the function/in n' (n -) as a point 
in n . (n -) approaches.I. The discontinuities in the first and 
second derivatives of the metric tensor are then given by 

[gl-'v,u] = lubl-'v , 

[(gl-'v,ur)] = lu,Tbl-'V + lubl-'v.r + lrbl-'v,u + tlTbl-'v . 
(26) 

If we restrict our attention at coordinate transformations 
that are C 3 or better, the jumps on the left-hand sides of (26) 
will transform like tensors since the jumps in the non tensor
ial parts will be zero. Hence bl-'Y and bl-'v are tensors. 

One can now calculate the following equations: 

b = gl-'Vbl-' V = b~, 

b ~v = bl-'v - !KI-'yb , 

2[rpy] =Ipb~ +Iybfi -IUbpy , 

r':zl-' = Hrp+al-' + r p_ UI-' ) , 

2A~1-' =b':r.l-' +b~;u -bul/+ll-'b~ +lub~ -IPbuf.i' 

where the semicolon denotes covariant differentiation with 
respect to r py . 

The distribution-valued curvature tensor may now be 
calculated by making use of the function 

{

I, 

O(tf;)= t, 
0, 

whose derivative is 

o = atf; ao = I D(.I,) 
'I-' axl-' atf; I-' 'f/' 

where 8 (tf;) is the Dirac delta function defined in the usual 
way, 

r F8tf;d 4x= r FdV= r Fd3 V, 
In J.sn· J.sn· 

where dVis the invariant volume element induced on.I. 
Distributions are defined by equations such as 
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fD = or + (1 - O)F, 

where a ( ± ) restrictsfto n ±. For vector and tensor distri
butions, covariant differentiation is defined by equations 
analogous to 

(p,)D;v = (pl)D.v + (r~p)D(T p)D. 

One then finds that 

(TP)D;/LV 1 + - (TP)D;/LV 1_ = - (T,DQP U/LV , 

where 

QP U/LV = 8(t/J)HP U/LV + (R P U/Lv)D - 0 (1 - O)JP U/LV , 

2HPu/Lv =b~lul/L -b~lulv -b<7V IPI/L -bu/LIPlv ' 

JPU/LV = [rTuv ][rPT/L] - [rTU/L ][rPTV ] . 

Consider 

BPU/LV =!( _ g) -1/2 gUTQP ya{3E/Lva{3. 

One then finds that 

Bpu/LV;v = - (_g)-1/2~TO(I_ O)e"a{3vla {A YT{3 [r p yv] 

-APY{3 [rYuv]}. (27) 

Hence the Bianchi identities are satisfied on.I if and only if 

e"a{3vla {A Yu{3 [r p
yv ] -A Py{3 [r Yuv ]} = O. (28) 
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Of course it would be pleasing if the Bianchi identities were 
satisfied on.I, but because ofEq. (27) we need not require 
Eq. (28) since from the point of view of integration 

L B PU/Lv;v d 4X = 0; 

i.e., the Bianchi identities are satisfied under the integral 
sign. 
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The field equations of the Einstein-Cartan theory are written down using the spin coefficient 
formalism developed by Newman and Penrose for the Einstein theory. The irreducible spinor 
decomposition of the Riemann tensor in a U4 space is obtained. 

I. INTRODUCTION 

The Newman-Penrose formalism! has been very fruit
ful, not only in the study of gravitational radiation but in 
finding exact solutions for the Einstein, Einstein-Maxwell, 
and Einstein-Weyl field equations. 

Our purpose in this note is to present the field equations 
of the Einstein-CartanV theory following closely the pro
gram outlined by Newman and Penrose for the canonical 
Einstein theory. 

The motivation to undertake such a work is twofold: 
(a) The peculiar structure of the equations allows us to 

deeper understand the role of the torsion as a dynamical 
variable as well as a geometric quantity. 

(b) We hoped that solutions for the Einstein-Cartan
MaxwelV or Einstein-Cartan-Weyl field equations would 
be easier to find in the context of the present formalism. 

In the second part of the paper we give a decomposition 
for the Riemann tensor in its irreducible parts, which we 
believe is a new result, for the case of nonsymmetric affine 
connection. 

In the third part the equations are obtained by a proce
dure already used by Papapetrou5 for the symmetric connec
tion case. 

Finally, in Appendix B, we give explicitly all the field 
equations. 

II. RIEMANN TENSOR DECOMPOSITION 

As is well known, a U4 space is a fourth-dimensional 
differential manifold with a nonsymmetric, metric, connec
tion. That is, 

'ill' gva = ai' gva - r~y gpo - r!a gy/3 = 0, (2.1) 

r~y = gf3"'.1 ;~Gay g8p - gP£S~8)' (2.2) 
where 

S ~8 = ~(r;8 - r ~y) is the torsion tensor and .:1 ~% is 
the permutation tensor defined by 

Ll ~~~ = o;o~~ + o~o~~ - o~O~OF:. (2.3) 
Also, for the Riemann curvature tensor one has the follow
ing identities6

; 

R(VJ1.)AX = RVJ-l(A)() = 0, 

RfvJ-lA J = 2VivS~A I -4SfvJ1.SIJp , 

(2.4a) 

(2.4b) 

-'This research was supported in part by the Consejo Nacional de Investiga
ciones Cientlficas y Tecnol&gicas de Venezuela. 

RAXVII - RVJ1.AX = - HR ixAVjJ1. + R iXJ-lvjA 

+ R (J1.Avlx + RlAXJ-llv J (2Ac) 

It will be convenient to introduce the spinor associated 
with the Riemann tensor: 

(2.5) 

where the capital letters denote the spinor indices and the as 
are the usual connecting quantities. 1 

Taking (2.4) into account, one can write: 

RAWBXCYDZ = BABCDEWXcyZ + BWXyzCABCCD 

+ CABYZCCDEwx + CWXC[)CABEyZ' (2.6) 

where bars denote complex conjugate, 

and 
[CAB] = ( ~ 1 ~] , 
B - IR P Q-B ABCD - 4 APB CQD - (ARI(CD) , 

C AByZ = !RAPBPGyGZ = C(AB)(YZ» 

C AByZ = lRGyGZAPBP = t;AB)(YZ)· 

(2.7a) 

(2.7b) 

(2.7c) 

Let us now introduce the following decomposition of 
the 4-spinors Band C: 

BABCD = SA BCD +AABCD' 

C AByZ = TAByz + D AByZ ' 
(2.8) 

with 
SABCD = H B ABCD + BCDAB J = SCDAB' (2.9a) 

AABCD = HBABcD -BCDAB ] = -ACDAB' (2.9b) 

TAByZ = HCAByZ + CAByZ ] = rABYZ' (2.9c) 

DAByZ = HCAByZ - CABYZ ) = - DAByZ . (2.9d) 

The 4-spinors S and A can be further reduced. In fact S 
may be written in terms of its totally symmetric part: 

SABCD = S(ABCD) + !(CBCCAD + CBDEAdS, 

with 
S=sg;;, 

and A can be expressed as 

AABCD = !(CBCAAD + CADA cB ), 

where 

AAB =AAGGR =ABA • 

From all the expressions above, one obtains 

RAWBXCYDZ = S(ABCD)CWXCY:i + S(WXYZ)CABCCD 

+ t;(CBCCAD + CBDCAdEwxcyZS 

(2.10) 

(2.11) 
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+ i(EXyEWi + EXiEwy)EABECDS 

+ TABYiECDEWX + TCDWXEABEYi 

+ DABYiECDEWX - DCDWXEABEyZ 

+ !(EBCA AD + EADAcB)€Wx€Yi 

+ !(ExyAwi + EWiAyx)EABECD' (2.12) 

It can be easily seen that the total number of real com
ponents for RAWBXcYDi is 36, as should be. In fact one has 5 
complex (10 real) components for S(ABCD) , 1 complex (2 
real) for S, 3 complex plus 3 real (9 real) for T ABVi , 3 com
plex plus 3 pure imaginary (9 real) for D, and 3 complex (6 
real) for A AB' 

Let us now see which are the tensor equivalents to each 
irreducible spin or component. 

We start with 

CAWBXCYDi = S(ABCD) EwxEYi + S(WXYi)EABEcD ' 

As is well known,l its tensor equivalent CI'V"X has the sym
metries of the Weyl tensor; thus 

CI'VAX = - C vwlX = - CI'vX" = CAXI'V' 

C ~x;. = C[I'VA Ix = O. 

As far as we know, the role of this tensor in the projec
tive and conformal structure of space-time has not been 
studied when torsion is present. 

Next, for the spinor T ACWV one has 

(R(,.v) - ! gl'v R )~ w(}~y = 2TACWY' 

where 

R = - 2(S + S) = - 4 ReS, 

and for the spin or AAC 

R[I'vl~W(}~Y = EywAAC + ECAAWY' 

Finally the remaining spinor components are related 
with the pseudotensor 

D - 1€,:f3YR - 3€,:f3YR I'P - 2: Ii af3yp - I' [af3rl p' 

The second identity (2.4b) allows us to write D I'P only in 
terms of the torsion tensor and therefore DI'P vanish identi
cally when the connection is symmetric. 

The trace of DI'v is given by 

D = D ~ = 2i(S - S) 
and the tracefree symmetric part verifies 

(D(,.p) - !gl'pD)df;;wbi = -2iDDEVi ' 

Finally the antisymmetric part of D 1''' is related with the 
Ricci tensor by 

R[I'pl = -i51'P = -~:Daf3' 
Thus, one is led to the following expression for the Rie

mann tensor: 

R;.xvl' = C;'X"I' - !(g;.vR<xl') - gAI'R<xv) 

1450 

+ gXI'R(AV) - gXVR(AI'» - iR (g"I'gxv 

- g;'vgxI') + #AxvI'D - ![EAVX aD",I' 

+ EvxI' aDaA + ExI''' aDav + EI'AVaDax]. 
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III. FIELD EQUATIONS 

As in the usual Einstein theory, the spin coefficient for
malism consist of three sets of equations for the three dyna
mical variables: (a) The components of the Riemann tensor 
decomposed in its irreducible parts, (b) The spin coefficients, 
(c) The field of tetrads from which the metric tensor is built. 

Furthermore, we must consider the Einstein-Cartan 
Field Equations 

GI'v=R I'V _ !g""R = k~I''', 

(3.1) 
TI'vp =gPa gVf3S af3

P + 2gP[I's vli = k-f"'P, 

where ~ 1'" is the asymmetric canonical energy momentum 
tensor and T'-'VP the spin angular momentum tensor. 

Recently, a formalism which allows the interaction of 
electromagnetism with torsion was proposed4

; in such a case 
the Einstein-Cartan field equations do not hold, but the spin 
coefficient formalism is still valid if Eqs. (3.1) are substituted 
by Eqs. 40-45 of Ref. 4. 

In general the formalism we present here can be applied 
in any theory including torsion, using the corrresponding 
field equations. 

The first group of equations (metric equations) are ob
tained from the relation 

F ,- la'".PJU abed - 2: a cd I'bp 

(italic lower-case indices are diadics indices and take the val
ue 0,1). 

This equation leads, without difficulty, to 

Zabedl'=Jab<Y:d - Jedcl;b - a'(,dr~ab 

- <y:jJ'dba + a'(,b F ~ed + c1;x F /' de 

+ S~bed = 0, (3.2) 
where 

Equations (3.2) are a first-order differential system for 
the u's. The second group of equations will be obtained from 
the integrability conditions of this sytem. With this purpose 
we need to calculate 

Jji,Fabcd - JcdFabje' 

One obtains 

Yjeabed -JJeFabcd - JcdFabje 

- Frbcdr~je + rrbjeF~ed - FabreFrJed 

+ Fabrdrrcje - Fabc:f<FxdeJ + FabfXFxedc 

- !Rjixd/bp + SjixdPrabp = O. (3.3) 

Finally, to obtain the last group (the Bianchi identities) 
one must consider the integrability conditions of(3.3). To do 
that we have to calculate the expression 

cl!;jedbrxJ Y , 
It. rx feacdb' 

where 

EISJedbrx = i(E'defr€,xEeb _ €'refdE'b€"x). 

The last group of equations as well as the other two 
groups are given explicitly in Appendix B. For the Bianchi 
identities an algebraic computation system (REDUCE) has 
been used. 7 
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APPENDIX A 

The following notation for the independent compo
nents of the Riemman tensor has been used. The quantities 
tPo, tPl' etc., (/>00' etc, and A, respectively, related to the com
ponents of the Weyl tensor, Symmetric Ricci tensor, and 
scalar curvature are defined as usual. I 

We have introduced new quantities related with the 
pseudo tensor D I'P as follows: 

¢Ol = Doo6i = !iD(13) = - ¢IO' 

APPENDIX B 

¢IO = Doloo = FD(l4) = - ¢o!> 

¢12 = DOlii = FD(32) = - ¢w 

<P21 = D lloi = !iD(42) = - ¢12' 

<P02 = Dooi i = ~iD33 = - ¢20' 

¢20 = D lloo = FD44 = - ¢02' 

¢oo = Doo!:iJ = ~JDII = - ¢oo, 

¢II = DolOi = !i(D(12) + D(34» = - <Pw 

<P22 = Dllii = FD22 = - ¢22' 

~ = (S - S)/12i = - D /24, 

Ao = Aoo = iD[13 J' 

AI =Aol = -!i(D[12J -D[34J)' 

A2 = All = iD[24J' 

We shall use the same notation as in Ref. 1 for the coordinates (Xl = u, x 2 = r, x i:i = 3,4), the differential operators 
(..:::1 ,D,o,o), the spin coefficients, and the metric functions (the tetrad). Of course the spin coefficients are now defined in terms 
of nonsymmetric connections. 
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The first group contains the following equations: 
Zo6oi (I)-Dsi - ESi + KX i + fiE - afi - Sp + S(')o6oi = 0, 

Zo6oi (2)=Dw - WE + UK + fj + WE - wa - wp + /3 + a + S(2)o6oi = 0, 

Z06li(') DXi-s'1J+XiE-fifj+XiE-fir-fir+S(I)06li =0, 

Z06li (2)=DU - wll + UE - wfj + UE + Y - wr + y - wr + S(2)06li' 

Zoilo (I)-of i - 8s i + (/3 - ?i)fi - (iJ - a)si + Xi(p -p) + S(OoiIO = 0, 

Zoi 10 (2)-ow - 8w - f-l + ji, + (/3 -?i)w - (iJ - a)w + U (p - p) + S(2)oiI0 = 0, 

ZOili(l)=OX i _..:::1S i +S i(y-Y-f-l)- As i+ X i(/3+a-r)+S(I)Oili =0, 

Zoi Ii (2)=OU -..:::1w + w(y - r - f-l) - Xw + v + U(/3 + a - r) + S(2)oili = 0, 

Zo6oi (I)=K + S(I)o6oi = 0, 

Z06li (I)-(E + €) + S(1)06li = 0, 

Zoilo (I)=(p - p) + S(I)oilO = 0, 

ZOili(l) (/3+a-r)+S(I)oili =0. 

For the second group of equations one has 

YoiollO=oa - 8/3 - (f-lp - .10) - aa - /3iJ +2a/3 - y(p - iJ) - E(f-l - ji) + tJi2 - A-(/>1I + ¢II - i~ 
+ 2Soilopr ooP = 0, 

Yoi 1110 =0.1 - 8f-l + (p - iJ)v - (f-l - ji)ll - f-l(a + iJ) - A (a - 3/3) + tJi3 - (/>21 + <P21 - A2/2 + 2SoilOprilp = 0, 

Ylil1 10=..:::1.1 - 8v + (f-l + ji)A + (3y - Y)A - (3a + iJ + II -f)v + tJi4 + 2SlilOprllp = 0, 
2 - -Yoi III i =ov -..:::1f-l - (f-l + .1.1 ) - (y + Y) f-l + vll - (r - 3/3 - ?i)v - (/>22 + <P22 + 2Soi liP rllp = 0, 

Yoiolli -oy -..:::1/3 - (r - a - /3)y - f-lr + av + EV + /3(y - r - f-l) - aX - (/>12 + ¢12 + 2S0iliprOlp = 0, 
- 2 - - -

Y o6oolo=Dp - OK - P - aa - p(E + €) + Kr + K(3a + /3 - ll) - (/>00 + ¢oo + 2S06lo
pr OOp = 0, 

Yoo6ooi =Da - OK - a(p + iJ) - a(3E - €)a + (r - fj + a + 3/3)K - tJio + 2S060iPr OOp = 0, 

Yo6ooli -Dr -..:::1K - p(r + fj) - (r + ll)a - (E - €)r + (3y + Y)K - tJil - (/>01 + 2S06li
pr OOp + <POI + 00 = 0, 

Y 060110 =Da - 8E - (p + E - 2E)a - /3ii + iJE + KA + iCy - (E + p)ll - (/>10 + 2S0610prOIP + ¢IO = 0, 

Y o6oloi =D/3 - DE - (a + ll)a - (p - €)/3 + (f-l + Y)K + (a - fj)E - tJil + 2S060iProlp - A 012 = 0, 

Yo6olli =Dy -..:::1E - (r + fj)a - (r + ll)/3 + (E + €)y+ (y + Y)E - rll 

+ vk - tJi2 + A + i~ - (/>11 + ¢II + 2S06liprolp = 0, 
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Y oolloi =DJi - oil - (pJi + 0",1) - ilil + (E + l)Ji + il(Ci - fJ) + VK - I/Iz - 2A + 2SoooiPrilp - 2i1: - Al = 0, 

Y ooilli Dv - Ail - (il + 1)Ji - (il + 7),1 - (y - nil + (3E + l)v - 1/13 - <PZI + <PZI - A z/2 + 2S00liprllp = 0, 

YoiooJ(i op - 80" - p(Ci + fJ) + u(3a - iJ) - (p - P)7 + (Ji - ji)K + 1/11 - <POI + 2Soilc/r OOp + <POI - A 012 = 0, 

Yoiooli =07 - AO" - (JiO" + ip) - (7 + fJ - Ci)7 + (3y - Y)O" + KV - <POZ + <POZ + 2Soil i pr OOp = 0, 

YliooJ(i=Ap - 87 + (pji + 0",1) - (jJ - a - 1)7 - (y + y) P - VK + I/Iz - A 1+ 2i1: + 2A + 2SIilopr OOp = 0, 

Yliollo -Aa - 8y - (p + E)V + (7 + fJ)A, - (y - Ji)a - (iJ - 1)y + 1/13 - A z/2 + 2S1 iloprolP = 0. 

Finally the Bianchi Identities are 

- 2DCfi3 - 2D<PJ2 + 2D<pJ2 + DAz - 2AI/II - 2A<P01 - 2J.<POI - AAo + 201/12 + 20Cfi2 + 4<5<Pll - 4<5A + 21/10v 

-41/11 S i3 -41/1J/1 +41/1Iy+41/1ISI/ -4 CfiIX -4 Cfilsi3 -41/12S~3 +4l/1zSiz -4I/1ZS:3 -61/127 

- 4 Cfizs ~3 + 6 Cfi2il - 4 Cfi2si2 - 4 Cfi2s:3 + 41/130" - 41/13 Si3 - 4 Cfi3s ~2 - 4 Cfi3E - 4 Cfi3s ~3 

+ 4 Cfij5 - 2 Cfi4K + 2<Poov - 4<P01 S i3 -4<P0J/1 + 4<P01 Y + 4<P01 S:2 - 4<PIOX - 4<P IOSi3 + 2<Pozil 

- 2<P027 - S<PllS~3 + 4<Pll il - S<Pll S:3 - 4<P1l7 -4<PJ2Siz - 4<PJ2E- 4<PJ2S ~3 + 4<PJ2p 

+ 4<Pz1 0" -4<P21 Si3 - 2<PzzK + 2tPoo v - 4¢OIS i3 + 4¢OIY + 4tPOISI/ + 4¢1O Si3 - 2<p01il 

- 2<poz 7 - 4¢ ll il + 8<pll S i2 - 4tP1l7 + 4¢J2 S iz + 4¢ J2 E + 4<p12 S ~3 - 4<P21 S i3 

+2<P22K - 2AoS i3 + 2Aoy+2AoS:2 -2Ao8i3 -2A I7-2A1il+2A 2Si3 +2A2Si2 

+2A2E+2A2S~3 +SAS~3 +SAS:3 -81:iSi2 =0, 

- 2D<Poz + 2D<poz - 2Al/l0 + 201/11 + 20<P01 - 28<p01 - oAo - 41/108 i3 - 21/1rJl + 81/10Y + 41/10 S:2 - 41/11fJ 

-41/1IS~3 +41/11Si2 -41/1IS:3 - SI/I17 +61/1p -41/1z Si3 -2<PooX -4<PooSi3 

- 4<P01 fJ - 4<P01 S~3 + 4<P01 il -4<P0I Siz - 4<P01 S:3 - 4<POZS~2 + 4<P02E - 4<Poz E 

- 4<P02S ~3 + 2<P02P + 4<P llO" - 4<P12K + 2<p00 X +4¢ooSi3 + 4¢OlfJ + 4¢01 S~3 

-4¢olil + 4¢01Si2 + 4¢0IS:3 + 4¢OZS~2 - 4¢02E + 4¢ozE + 4¢ozS i3 - 2<pozp 

-4¢ 11 0" +4<pJ2K +2AJj+ 2A o S~3 -2AoSi2 +2AoS:3 -2A 10"+4A ISi3 

- SASi3 - S1:iSi3 = 0, 

-2DCfiz +2DA1 -4DA +4D1:i -2A<Poo -2AtPoo +20CfiI + 28<P1O + 28<p1O - OAo -2CfioX 

-4 Cfio8i3 -4i[i'IS~3 +4Cfilil -4i[i'J; -4 Cfilsi2 -4Cfils:3 -4i[i'zsi2 -4i[i'ZS~3 +6Cfizi5 -4Cfii( 

- 4<PooS i3 - 2<PorJl + 4<PooY + 4<Poo r + 4<POOS:2 -4<P017 - 4<PIOS~3 - 4<PlOa + 4<P IO Si2 - 4<P IOS: 3 - 4<P107 

+ 2<P200" -4<Pzo Si3 + 4<P llP - 4¢ooSi3 - 2tPorJl + 4¢ooY + 4¢00 r + 4¢ooS:z 

- 4<p0I 7 - 4<p lOS ~3 - 4¢ lOa + 4¢ lOS i 2 - 4¢ lOS : 3 - 4¢ 107 + 2tPzoO" 

-4¢20Si3 +4<pIIP +2Ao8~3 -2Aofi +2Aoil +2Ao8iz +2Ao8:3 

+4AISiz + 4AISi3 - 2A Ji5 + 2AzK - 8ASi2 - SASi3 + 81:Sizi + 81:Si3i = 0, 

2Di[i'4 + 2A <P02 + 2..::1<P02 - 28 i[i'3 - 20<Plz - 20<P12 - 0 A z + 6 i[i'zI" + 4 CfizSi3 + 4 i[i'3S ~3 - 8 i[i'3il - 4 i[i'3a 

+4~Siz +4i[i'3S:3 +4i[i'4Si2 +Si[i'4E+ 4 i[i'4S iz -2Cfi4P -4<P01 v+4<P02si3 

+ 2<Polfl - 4<PozY + 4<P02 r -4<P02S:2 + 4<P ll X + 4<P12S~3 - 4<PJ2a - 4<P 12Siz + 4<P IZS: 3 

+ 4<PJ27 - 2<P220" + 4<P22 Si3 - 4¢01 V + 4¢ozS i3 + 2<Polfl - 4¢ozY + 4¢oz r 
- 4tP02 S:2 +4¢llX + 4¢12S ~3 -4¢ J2 a -4¢I2S iz + 4¢12S :3 + 4¢127 - 2<pzp 

+4¢22Si3 +2AIX+4AISi3 +4Aza+2AzSi2 +2A2S:3 +fJASi3 -fJ1:iSi3 =0, 

2D<P22 - 2D<pzz + 2..::1l/1z + 2J.A I + 4..::1A + 4..::11:i - 201/13 - 20<PzI + 20<P21 - 8A - 41/11 v + 41/12 S i3 + 61/1lfl 

-41/12S:2 -41/1fi +41/13S~3 -41/13Siz + 4 1/13 S :3 +41/137 -21/140" +41/14 Si3 
- - 4 I 

+2<PzoA, +4<PzoSi3 +4<P1J/1-4<P 12il -4<P21fJ +4<P21 S~3 -4<Pzlil +4<PzI S IZ +4<Pz1 S 13 

+ 4<P22 Siz +4<PzzE + 4<P22E + 4<PZ2 S ~3 - 2<Pzzp - 2<pzoX - 4¢zoSi3 - 4¢1J/1 + 4¢12il 

+ 4tPzlfJ - 4¢ZI S~3 + 4¢zl il - 4¢zl Siz - 4¢ZI S:3 -4¢22S~z - 4¢zzE -4¢22 E 
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-4¢22S~3 + 2<P22P - 2Aov +4A IS~3 + ZAIIl -4A I S:2 - ZAjJ + ZA2S~3 

-2A2S~Z +ZA2S:3 +2Az1"+SAS~3 -SAS:z +S.2'iSi3 -S.2'iS:z =0, 

+ 2D IF3 + 2DfP12 - 2D<p12 + D A2 +:ui IJiI - :uifPOI - :ui <Po I + AAo - 2/jlJiz + 2/j IF2 + 4A<p11 + 4A.2'i - 21Ji0 V 

3 I -- - 4 2 4 1 - Z +41Ji1S Z3 +4IJiIll-41JiIy-41JiI S I2 -41Ji1A.-41JiIS 23 +41Ji2S 23 -41Ji2S 12 +41Ji2S 13 +61Ji21"-41Ji2S Z3 
-- - - 1 4 - 2 - - 3 - - 3 

+ 61Ji2ll -41Ji2S~2 - 41Ji2S 13 -4IJip· + 41Ji3 S 13 -41Ji3S 12 -41Ji3E -41Ji3S 13 +41Jiji - 2lJiic + 2fPOOV - 4fPOIS 23 

+ 4fPoI Y + 4fPOI S:2 + 4fPIOS13 - 2fP02ll - 2fP02 7 - 4fP11 ii + SfP11 S~2 - 4fP 11 1" + 4fP12 S i2 + 4fP12E 

+ 4fP I2S ~3 - 4fP21S~3 + 2fP22K + 2<p00 v - 4¢OIS ~3 - 4¢oIll + 4¢olY + 4¢01 S:2 - 4¢lO'f - 4¢IOS i3 

+2<p02ll -2<P02 7 -S<p11S~3 +4¢l1 ii - S<P11 S :3 -4¢111" -4¢12 S i2 -4¢12 E -4¢12S i3 +4¢12P +4¢2IU 

-4¢2IS~3 -2<P22K+2AoS~3 -2Aoy-ZAoS:2 -2AoSi3 +ZAI1"-2Alii-ZA2S~3 +2A2S~2 +2A2E 

+ 2A2S~3 + SAS~z - S.2'S~3i - S.2'iS: 3 = 0, 

- 2DlJi2 + 2Dlftz - 4D<p1I +4D.2'i - 2/j1ft1 - 2/jfP lO + 2/j<P1O -15Ao + 281Ji1 + 28fPoI + 28<pol + 15Ao - 2lJioA 
-- 3 -- - 4 - - I 4 3 

+ 2lJioA - 41Ji1a - 41Ji1 S 34 - 41Ji1S:4 +41Ji1ll - 41Jilll - 41JilS 34 + 4lJila + 41JilS 13 - 41Ji2S 14 - 41Ji2S 13 + 61Ji7P 

-41Ji2S~4 +4IftZS~4 +41Ji2S~3 -61ftj5 -41ft2S~4 -41Ji3S~3 -41Ji3K +41fti +41ft3Si4 +2fPoc# -2fPoo fi -4fPOla 

- 4fPOI S ~4 - 4fPOI S:4 - 4fPIOSj4 + 4fPIOa +4fPIOS:3 + 2fP02 0' - 2fPzou + 4fPlIP - 4fPlI P - SfP11 S~4 + 4fP12S i4 

-4fP2IS~3 -2<poc# -2<p00fi -4¢ola -4¢0IS~4 -4¢0IS:4 +4¢olll +4¢lO ii +4¢IOS j4 -4¢lOa -4¢IOS :3 +2<P020' 

+ 2<P20U - S<Pll S~4 - S<PlI S i3 +4¢lIP +4¢llP -4¢12K -4¢12Si4 -4¢2IS~3 -4¢2IK - 2Ap - ZAOS~4 - ZAOS:4 

-2AoSj4 +2Aoa+2AoS:3 +ZA.p-2AJJ+ZA2Si3 -2A2Si4 +8AS~4 +S.2'S~4i+S.2'Si3i=0, 
- 3 1 - 2DlJil + 2DfPoI - 2D<pol + DAO - 215fPoo + 215<p00 + 2151Ji0 - SlJip -41Ji0S 34 -41Ji0S 14 +41Ji1E + 2lJioll 

-41JiIS~4 -41Ji1Si3 +SIJi.p -41JiIS~4 -41Ji2S~3 

- 61Ji2K + 4fPrxfJ - 2fPOO ii - 4fPOOSj4 + 4fPOOa + 4fPOOS:3 + 4fPOIS~4 

- 4fPOIE + 4fPOI S ~3 - 4fPoIP - 4fPOIS~4 - 4fPIOu + 2fP02K +4fP02S~4 + 4fPlIK -4¢rxfJ + 2<poo ii +4¢OOSj4 - 4¢ooa 

-4¢OOS:3 -4¢0IS~4 +4¢OIE -4¢01 Si3 +4¢OIP +4¢0IS~4 +4¢IOU -4¢02 K -4¢02S~4 +4¢l1K 

+2AoS~4 -ZAOE+2AoSi3 +ZAOS~4 +4A ISi3 +ZA IK-SASi3 -S.2'Si3 i =0, 

- 2D 1ft3 + 2DfP12 + 2D<P12 - D A2 + 2/j 1ft2 + 215AI + 4I5A - 4I5.2'i - 2 8fP02 - 28<p02 - 41ftlX + 61ft2ii + 41ft2Sj4 
- - - - 3 - - 2 -- - 2 3 I 

-41Ji2S: 3 -41Ji3S~4 -4 1Ji3E-41Ji3S 13 +4 IJiji +4 1Ji3S 34 -21Ji4K-41Ji4S 14 +4fPolfi+4fP02a+4fP02S34 +4fP02S 14 

- 2fP02ll - 4fP02li -4fPllii +4fP12S~4 +4fP12E +4fP12S~3 -4fPl7P +4fPI2S~4 +4fP22 Si3 +2fP22K 

+ 4¢olfi +4¢oza +4¢02S~4 +4¢OZS:4 -2<P02ll -4¢ozli -4¢lIii +4¢12Si4 +4¢12 E +4¢12S f3 -4¢I7P 

+4<PI2S~4 +4¢22Si3 +2<P22K -4AoX +2Alii +4AISj4 -4AIS: 3 -2A2Si4 -2AzE 

-2A2Sf3 +2Aj5+2A2S~4 +SASj4 +SAS:3 -S.2'Sj4i+S.2'iS:3 =0, 

2DlJi2 + 2Dlftz - 4DfPll - 4DA - 2/j1ft1 + 215fP IO - 215<p1O -I5Ao - 281Ji1 + 28fPoI + 28<Pol -15AO + 2lJioA + 2lftoX 

+ 4lJila + 41Ji1 S j4 +41JiIS:4 - 41Jilll - 4lftlii - 41ftlSj4 + 4lftla + 41ftlS L + 41Ji2Si4 + 41Ji2Sf3 - 61Ji7P + 41Ji2 S~4 

+ 41ft2S~4 + 41ft2S ~3 - 61ftj5 - 41ft2S;4 + 41Ji3Si3 + 41Ji3K + 41ft3K +41ft3S~4 - 2fPofiL - 2fPoo fi - 4fPola - 4fPOI S j4 

- 4fPOI S:4 + 4fPoIll + 4fP IO ii + 4fP IOSj4 - 4fPIOa - 4fP 1OS: 3 + 2fP02 0' + 2fP20u - SfP11 S~4 - SfP 11 S f3 + 4fPI.p 

+ 4fPllP - 4fP12K -4fP12S i4 - 4fP2IS~3 - 4fP21K + 2<pofiL - 2<p00 fi - 4¢ola - 4¢01 S~4 - 4¢0IS:4 - 4¢IOS j4 + 4¢lOa 

+ 4<p IOS:3 + 2<P020' - 2<p20U +4¢I.p -4¢1l P - S<Pll S j4 +4¢12S t4 -4¢2I S i3 + ZAp + ZAOSj4 +2AoS:4 

-2AoSj4 +2Aoa+2AoS:3 -2A.p-2AJJ-ZA2S;3 -2A2St4 -SAS~4 -8ASf3 -S.2'iS;4 =0, 

-2.11Ji2 + 2.1 1ft2 -4.1<pll +4.1.2'i +2151Ji3 +215fP21 +215<p21 -I5A2 -281ft3 -28fP12 + 28<p12 + 8,.12 

+ 4 IJiI V -41Ji1 S i4 -4lftlv +41ft1si3 -41Ji2Si4 +41Ji2S ~4 -41Ji2S~3 - 61Ji1/l +4 IF2S14 +41ft2S ~4 -41Ji2Si3 

-61Ji1/l +4lftzsi4 +41Ji2S ~4 +41ft2S~3 +61Ji2fi +41Ji:J] -41Ji3S~3 +41Ji3 Sj4 -41Ji31" +41ft3Sj4 +41ft3S~4 

-4Iftff+41ft37+21Ji4U-21ft40'-4fPOISi4 +4fP1OSi3 +2fPo:0 -2fP20 X +8fPllS~4 -4fP1IIl +4fPllfi 

+ 4fP12S~4 +4fPIZS~4 - 4fP12li +4fP21/3 - 4fP21 S~3 + 4fP21 Sj4 - 2fP27P + 2fP22 P +4¢OIV - 4¢01 S i4 + 4¢IOV 
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- 4<P IOS ~3 - 2¢J00 - 2¢Jzo X - 8¢JIISi4 - 8¢JIIS ~3 - 4<PllJl - 4<P1I fi - 4<P 12s ~4 - 4<PJ2S ~4 + 4<PJ2P - 4<P12 l' + 4ifJ2Jf3 

-4¢J2J SiJ +4¢J2I S j4 -4<P217 +2¢J27/} + 2¢J22 P -2AoS ~4 + 2AoS iJ +2AIJl- 2A ji -2Azf3 + 2A2S~3 

-2AzSj4 -2A2S~4 -2A2SL +2A$-8ASj4 +8ISi4i+8IiS~3 =0, 

- 2.:1IJ1J + 2.:1<1>oJ - 2A¢JOI + .:1Ao + MlJlz - 2l5A J + 4l5A +4l5Ii - 2g<1>oz + 2g¢Joz + 21J10v 

-41J10S i4 -41J1JSi4 +4IJ1JS ~4 -41J1IS~3 -41J1tfJ. +41J11y -41J12 S~3 +41J12Sj4 - 61J127 +41J1p -2<1>00 V 

+4<1>OOS~3 +4<1>oJSi4 +4<1>OlS~4 +4<1>OJS~3 +4<1>oJfi -4<1>OJY +4<1>oza +4<1>OZS~4 +4<1>ozSi4 

- 4<1>02P + 2<1>021' + 4<1>117 - 4<1>J'1fJ + ~oo V - 4<PooS ~J - 4<PolSi4 - 4¢J01S ~4 - 4ifJOIS~3 - 4<PoJfi + 4<POIY 

- 4<P02a -4¢Joz Sj4 - 4<P02S~4 + 4<PozP - 2¢Joz1' - 4ifJ1I7 + 4ifJ1'1fJ + 2Ao Si4 - 2A oS ~4 + 2AoS ~3 + 2AoU - 2AoY 

+4AIS~3 -4A JSj4 +2A17 -2AzO" -8A S~3 + 8ASj4 - 8IS~3i + 8ISj4i = 0, 

- 2.:1 cf3 + 2.:1<1>12 + 2A<p12 -.:1 Az - M<1>n - U)<P22 + 2 8cf4 + 6 cf2Y -4 cf2s ~3 -4cf3si4 -4 cf3s ~4 

-4rji3S~3 - 8 rjiji -4rji3Y -41J14S~4 -4rji4S~4 + 8 rjiff -2cf41' -2<1>02V +4<1>ozS ~4 -4<1>1117 +4<1>12Si4 

-4<1>12S 14 +4<1>I2S~3 +4<1>llfl +4<1>12 Y +4<1>2I X -4<1>2zf3 +4<1>22S~3 -4<1>22Sj4 -4<1>zza +2<1>227 -2¢Jozv 

+4ifJ02Si4 -4ifJlJv+4¢12S i4 -4¢J12S~4 +4¢JI2S~3 +4¢JIlJl +4¢JI2Y+4¢J2IX -4qJ2zf3+4¢J22S~3 -4<P22S j4 

-4qJ22U + 2¢J227 +2A)v -4AJS iJ -2..12Si4 -2A;s ~4 -2A2S~J - 2A2y -8AS~3 + S.IiSiJ = 0, 

2.:11J12 + 2.:1 rjiz - 4.:1<1>11 - 4.:1A - 2l51J13 + u)<1>21 + 2l5¢J21 + l5A z - 28rji3 + zg<1>J2 - 2g¢J12 + gA2 - 41J11v 

+41J11Si4 -4cf1v +4rjiJS iJ +41J1zSi4 -41J12S~4 +41J12S~3 +61J1p +4 rji2si4 +4rjizS~4 +4rji2S~3 +6rjizji -41J1"j3 

+41J13SiJ -41J13Sj4 +41J137 +4 cf3S~4 +4cf3S~4 -4cfjJ +4cf31' - 21J1p -2 lP4u +4<1>oJv -4<1>o( S ~4 +4<1>(017 

-4<1>IOS~3 -2<1>00 -2<1>20X -8<1>llSi4 -8<1>IIS~J -4<1>JIJl-4<1>lIfi -4<1>J2S~4 -4<1>J2S~4 +4<1>I2P-4<1>121' 

+ 4<1>2Jf3 - 4<1>21 S~3 + 4<1>21 S j4 -4<1>211" + 2<1>2'1fJ + 2<1>22 P - 4¢J01 S i4 + 4ifJ IOS iJ + 2¢Jo0 - 2¢J20 X + 8¢JIJS ~4 - 4<Pl tfJ. 

+ 4ifJ11fi + 4ifJ12S j4 + 4¢I2S~4 - 4ifJ12P + 4ifJ2/3 - 4ifJ2I S~3 + 4¢JZ1 S j4 - 2¢J2'1fJ + 2¢J22P + 2AoS i4 + 2AoS i3 - 2A Jl 

-2Aji +2Azf3 - 2A2S~3 +2A2Sj4 -2..12S~4 -2A2S~4 -2..1$ -8ASi4 - 8ASL +8.IS ~4i = O. 
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A number of properties of static general relativistic stellar models are presented which appear to 
be relevant to the ongoing search for a proof that all such models must have spherical symmetry. 
It is shown that any such model, having conformally flat spatial sections, must have spherical 
symmetry. A general procedure is described which allows one to construct the type of" divergence 
equals positive quantity" identities for static stellar models, which were used to prove that static 
black holes must have spherical symmetry. This procedure is used to produce a large new class of 
identities for the exterior vacuum regions of static stellar models and identities are constructed for 
the interior regions of uniform density models. These identities are used to prove that static 
uniform density stellar models must have spherical symmetry. 

I. REVIEW OF STATIC STELLAR MODELS 

In this paper we study the solutions of Einstein's field 
equations with matter corresponding to a perfect fluid which 
is in static equilibrium. It has been shown previousli-6 that 
such a stellar model is a spacetime with a metric which can 
be represented by the line element 

(1) 

The components of gab and the function V are independent 
of the coordinate t, and the tensor gab represents the positive 
definite metric on each t = constant submanifold, each of 
which has the same topology as R 3. Einstein's equations for 
this system can be written in the form 

Va VaV = 41TV(P + 3p), 

Rab = V-IVa Vb V +41T(p - p)gab . 

(2) 

(3) 

The tensor Rab represents the three-dimensional Ricci ten
sor of the metric gab ,and Va represents the three-dimension
al covariant derivative compatible with gab' The functions p 
and p represent the mass density and pressure of the fluid, 
respectively. These are related by an equation of state; i.e., a 
given relationship of the form p = p(P). The contracted 
Bianchi identities for the three-dimensional curvature, and 
Eq. (3) imply the equivalent of Euler's equation: 

VaP= - V-I(P+p)VaV. (4) 

In the discussion that follows, it will be helpful to define 
a number of additional quantities: 

w= vaVVa V, (5) 

na = W- 1/2VaV, (6) 

pab = g"b _ nanb , (7) 

Hab = Pa epb dVend , (8) 

tPab = Hab - ~ Pab H . (9) 

These quantities describe the geometry of the V = const. 2-
surfaces. The unit vector field n a is orthogonal to these sur
faces; Pab is the intrinsic metric; Hab is the extrinsic curva
ture tensor and tPab represents the trace-free part of H ab . 

a'Supported by the National Science Foundation. 

The quantities which define the geometry of the 
V = const. 2-surfaces are related to one another by splitting 
Einstein's equations into pieces tangent and orthogonal to 
these surfaces in the standard way. In the discussion that 
follows, we make use of two of the equations obtained by this 
splitting of Eqs. (2) and (3): 

W-IVaVVa W= -2W1;2H + 81TV(P +3p) , (10) 

w-lvaVVaH 
- !W- 1/2H 2 + V-IH - pabVa (f3b eVe W- 1/2 ) 

- W- 1/2tPab t/J"b - 81TW- 1/2(p + p) . (11) 

The derivation of these equations can be found in the 
literature. 1-3,5 

It has long been suspected that no nonspherical, asymp
totically flat solutions exist to Eqs. (2) and (3). This belief is 
motivated by an analogous theorem for Newtonian stellar 
models 7 and a similar result for the vacuum (p = p = 0) 
black hole solutions ofEqs. (2) and (3).8-10 It has also been 
shown that stationary (nonstatic) general relativistic stellar 
models (made of dissipative fluids) must be axisymmetric. I I 
Little progress has been made on the problem of static rela
tivistic stellar models however. It has been shown that if 

(12) 

then the model must be spherical.3 It has also been shown 
that no "almost" spherical static stellar models exist. 3

.
4 

For the remainder of this paper, we discuss some of the 
properties of these stellar models which appear to be relevant 
to the ongoing search for a proof that spherical symmetry is 
necessary. In Sec. II it is shown that if the 3-geometry de
scribed by gab is conformally flat, then the stellar model 
must be spherical. In Sec. III we describe a procedure which 
allows one to construct, for stellar models, the type of identi
ties which were used8-1O to prove that static black holes must 
have spherical symmetry. In Sec. IV we use the procedure 
described in Sec. III to construct identities applicable in the 
vacuum exterior regions of any static stellar model, and in 
the interior regions of models with uniform density. And 
finally in Sec. V, we use these identities to show that, in the 
special case of uniform density models, spherical symmetry 
is necessary. 
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II. CONFORMAL FLATNESS AND SPHERICAL 
SYMMETRY 

The conformal properties of a three-dimensional mani
forId are not described by the Weyl tensor (which vanishes 
identically) but by a certain third-rank tensor field, 12 defined 
by 

Rabe = VcRab - VbRac + Hgac V bR - gab VcR) . (13) 

This expression can be evaluated in terms of the functions V, 
p, etc. by using Eq. (3) for Rab . Making this substitution, and 
using the quantities defined in Egs. (5)-(9), it is straightfor
ward to verfy the following; 

R Rabe=8v-4 w 2 r.l, •,Pb+lw-2pabv WV WJ 
abc l If' ab 'f' 8 a b • 

(14) 

It is interesting to note that the matter variables do not ap
pear explicitly in this expression; this is precisely the same 
expression which was found to hold in a vacuum spacetime.9 

Expression (14), however, is true for any geometry satisfying 
Eqs. (2) and (3). 

If the geometry gab were conformally flat, then the ten
sor Rabe must vanish. 12 From Eq. (14) it would follow that 
tPab andpab Vb Wmust also vanish in this case. Consequent
ly, it would follow from the standard arguments3 that the 
stellar model would necessarily be spherical. Thus we have 
established the following lemma. 

Lemma: If the spatial geometry gab of a static general 
relativistic stellar model [i.e., a solution of Eqs. (2) and (3)] is 
conformally flat, then the stellar model necessarily has spheri
cal symmetry. 

Another expression for the square of the conformal ten
sor, which will be useful in the following section, is the 
following: 

1 V 4 W- 1R R abc 
4 abc 

= Va vaw - V-1VaVVa W - jW-IVaWVa W 

+ 81TW(P + p) + 41TVW-I(p + 3p)vaVVa W 
- 16rV2(p + 3p)2 - 81TVVavvap. (15) 

This expression is derived using essentially the same proce
dure as that described to derive Eq. (14); and we note that 
this expression agrees in the vacuum limit with an analogous 
expression derived previously.9 

III. CONSTRUCTION OF DIVERGENCE IDENTITIES 

The proof that static black holes must have spherical 
symmetry depends on constructing an identity which has the 
form of a divergence equaling a positive definite quantity 
(which vanishes if and only if the spacetime is spherical). 
One positive definite quantity, which might be suitable for 
such an identity, has been identified in the last section: Rabc 
R abc. The existence of another suitable quantity is implied by 
Eq. (12). If the spacetime were spherical, then the vector 
Va W must be proportional to Va V; we call the proportional
ity factor F. The function F = F(V, W) can be determined 
explicitly (as shall be discussed in detail in Sec. IV) once the 
equation of state of the fluid in the stellar model is specified. 
Taking F as a known function, it follows that the quantity: 

[Va W - FVa v}[vaw - FVnV] (16) 
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is positive and vanishes if and only if the model is spherical. 
Having identified two suitable positive definite quanti

ties, we are lead to ask when an identity ofthe following form 
can be found: 

Va {K1 (V,W)VaV + K2 (V,W)VaW} 
= !QI (V, W) V 4 W -IRabeR abc 

+ Q2 ( V, W) W - I 1 Va W - F Va V 12 , (17) 

whereKI,K2, QJ andQ2arefunctionsofVand WwithQI >0 
and Q2 > O. (We note that every identity used to prove the 
spherical symmetry of black hole spacetimes has been of this 
form. 8

-
1O

,13) On examining each side of Eq. (17) (using Eq. 
(15) to evaluate the first term on the right) we find, in addi
tion to functions of Vand W, terms linear in the three func
tions: va Va W, va V Va W, and Va W Va W. If we require that 
the coefficients of these functions on one side of the equation 
equal the corresponding coefficients on the other side, the 
following four constraints on the functions K I , K 2 , QI' and 
Q2 are implied: 

K2 = QI , (18) 

aQI 
Q2= Waw +~QI' (19) 

aQI _2FaQI _ aKI 
av aw aw 

- [V- I -41TVW-I (p + 3p) + ~ W-IF ]QI' 

(20) 

aKI =F2aQI -41TK VW- 1 (p +3p) 
av aw I 

- [16rv 2W- I(p+3P)2 

- ~W-IF2 + 81TV ~(p + P)]QI' (21) 
dV 

Thus, if these partial differential equations can be solved for 
K I, K 2, QI' and Q2 (with QI > 0 and Q2 > 0), then an identity 
in the form ofEq. (17) will exist. Note that Vand W play the 
role of independent variables in these equations. Each of the 
coefficients in these equations is a known function of V and 
W: F was assumed to be a known function, while p and pare 
explicit functions of V determined by integrating Eq. (4). 

A large number of solutions clearly exist to Eqs. (18)
(21). Equations (20) and (21) form a linear system of equa
tions for Q I and K I' One can imagine solving these equations 
as a Cauchy initial value problem. On an initial surface, say 
V = Vi' we arbitrarily specify the functions QI(Vi , W) and 
KI(V" W). Equations (20) and (21) allow us to compute the 
normal derivatives of these functions; consequently the 
equations can be integrated to find QI and KI (at least for V 
sufficiently close to Vi)' Thus a large number of solutions to 
these equations exist, each of which corresponds to an identi
ty of the form in Eq. (17). In order to be useful as tools for 
proving the spherical symmetry of stars, we must limit the 
choice offunctions to those for which QI > 0 and Q2 > O. At 
present, it is not known whether or not there exist solutions 
with positive QI and Q2 in general. We see in the next section 
that in some special cases, however, positive solutions do 
exist. 
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IV. IDENTITIES FOR VACUUM AND UNIFORM DENSITY 
SPACES 

In this section we use the procedure described above to 
derive identities for the special cases of vacuum spacetimes 
(the exterior regions of stars) and for the interior regions of 
uniform density stars. To do this we must explicitly integrate 
Eqs. (20) and (21) for these cases. Before these equations can 
be explicitly integrated, we need to discuss how the function 
F can be determined for a given equation of state. For the 
spherical solutions ofEqs. (2) and (3) the functions Wand H 
(the trace of the 2-dimensional extrinsic curvature) depend 
only on V; let Wo(V) and Ho(V) denote those functions. 
Equations (10) and (11) imply that Wo and Ho satisfy the 
differential equations 

dWo = _ 2 w II2n + 81TV (p + 3n ) (22) dV 0 0 r , 

dHo = _ !Wo - 1/2H02 + V-1Ho - 81TWo -112(p + p). 
dV 

(23) 

The function Ho can be eliminated from these equations, to 
obtain a single equation for Wo: 

d2Wo 

dV 2 

= V- 1dWo + Jw. _1(dWo)2 _ 81TVW. _ldWo(p +3n ) 
dV 4 0 dV 0 dV r 

+ 16r W o-
1 V2(p + 3p)2 + 81TV ~(p + p). (24) 

dV 

Given an equation of state, p = p(P), Eq. (4) can be integrat
ed to determine the functionsp(V) andp(V). Using these 
functions, Eq. (24) can be integrated to determine Woe V): the 
function to which Wwould be equal if the solution were 
spherical. Given this function, Wo' it is easy now to find the 
function F. In fact, F can be chosen in an infinite number of 
ways. One obvious choice is F = dW o/dV, but 
F=dWo/dV+(Wo - W)"orF= W"Wo-"dWo/dV 
would do just as well. Thus for each equation of state which 
we specify there exist an infinite number of different choices 
of the function F; and for each F there exist an infinite num
ber of identities in the form of Eq. (17). 

Let us now explicitly utilize the procedure, which is 
outlined above, to obtain identities that are relevant to the 
study of stellar models. We begin with the simplest case: 
identities which describe the vacuum exterior regions of any 
stellar model. The first step is to solve Eq. (24) for Wo: 

W. = _1_0 - V2)4 (25) 
o 16M 2 ' 

and thus 

dWo 
dV 

(26) 

In these expressions, the constant M represents the asymp
totically defined mass of the star. These solutions now allow 
us to choose the function F in any number of different ways. 
We select two different choices, each of which allows us to 
explicitly solve Eqs. (20) and (21) in a straightforward 
manner. 
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For our first choice we let 

F=~dWo= -8VW(I-V2) I (27) 
Wo dV 

This expression is substituted in Eqs. (20) and (21), and the 
equations are integrated. The general solution of these equa
tions is given by: 

QI = V-10- V2) -2{A (x) -8M 2 (l- V2) -IB'(x)}, 

(28) 

KI = B (x) + 8VW (I - V2) - IQI' (29) 

where x = W /Wo; A and B are arbitrary functions, and 
B '(x) = dB /dx. It is clearly possible to choose A and B in 
such a way that QI > 0 and Q2 > 0; so that these identities are 
potentially useful in our search for a proof of spherical sym
metry. This class of identities contains, as special cases, ev
ery identity that has been constructed to prove the spherical 
symmetry of black holes. For example, Robinson's identi
ties 10 are given by 

A (x) = - c, 

B(x) = - (c + d)x/8M2, 

(30) 

(31 ) 

where c and d are arbitrary constants. The two identities 
originally discovered by IsraelR (or in this notation by Miiller 
zum Hagen, et al.9

) are obtained by setting 

A (x) = 0, 

B(x) = -4M-I!2X I!4, 

(32) 

(33) 

for one identity, and 

A (x) = _2M 3/2X -3!4, (34) 

B (x) = - M- 1/2X I/4, (35) 

for the other. We see that the technique described here yields 
a considerable degree of generalization over previously 
known identities. 

Another choice of the function F, for the vacuum case, 
1S 

F= (~)3/4 dWo = -4M-1/2 VW3;4. (36) 
Wo dV 

This choice of F also allows Eqs. (20) and (21) to be integrat
ed in general in a straightforward manner. The general solu
tions for QI and KI are: 

QI = V- IW 3/4C(y) -lhM3/2V-IW-1/2D'(y), (37) 

KI =D(y)+4M-1/2VW3/4QI' (38) 

where y = W 1/4 - Wo 1/4;C (y) and D(y) are arbitrary func
tions of y. Clearly it is possible to select the functions C and D 
so that QI > 0 and Q2 > O. Consequently this represents an
other large class of divergence identities which may be useful 
in the study of the spherical symmetry of static stars. 

Let us move on now to a consideration of the non-vacu
um interior regions of static stellar models. The first problem 
one encounters is solving Eq. (24) for an arbitrary equation 
of state. I have not determined how this can be accomplished 
in general, yet. For the special case of uniform density stars, 
however, the solution can be found. We begin by integrating 
Eq. (4) for this case, to find that 

p=pV-I(V,-V), (39) 
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wherep is the constant density of the star, and Vs is the value 
of the potential Vat the suface of the star. Using this expres
sion for p, it is easy to verify that 

dW. 
dVo = J1TV(p + 3p) = J1Tp(3Vs -2V) (40) 

is the first integral ofEq. (24). We also find that with the 
choice 

(41) 

Eqs. (20) and (21) can be integrated in a straightforward 
fashion, with the result: 

QI = V-IE (W - Wo), 

KI = - J1T(p +3p)E (W - Wo), 

(42) 

(43) 

where E is an arbitrary function of W - Woo A more general 
integral of these equations exists, which involves an addi
tional arbitrary function of W - W0 0 While it is straightfor
ward to obtain the more general solution, it is rather lengthy 
and complicated and it will not be needed in the proof that 
uniform density stars mush have spherical symmetry. 

v. UNIFORM DENSITY STARS MUST BE SHPERICAL 

In this final section we will show how the particular 
identities derived in the last section can be used to prove that 
spherical symmetry is necessary in the special case of uni
form density stellar models. This discussion is a somewhat 
more detailed version of the proof given in Ref. 14. Before 
proceeding directly to the proof it is necessary to discuss in 
more detail the smoothness assumptions and boundary con
ditions for the solutions of Eqs. (2) and (3) which are appro
priate for stellar models. We assume that V and gab are C 3 

except at the boundary (V = Vs ) between the interior and 
exterior of the star. This assumption guarantees that suitable 
coordinates exist so that Vand gab are analytical func
tions. 15

,16 At the suface of the star, the differentiability is 
reduced however. The exact differentiability can be inferred 
by requiring that Eqs. (2) and (3) [and consequently Eqs. 
(10) and (11)] are satisfied even at the surface of the star. 
Equation (11) implies that the extrinsic curvature H must be 
continuous at the surface l7

; while Eq. (10) shows that Va W 
will have a discontinuity in the direction of the normal to the 
surface if the density function has a discontinuity there. The 
magnitude of this discontinuity is given by 

lim W-lvaVVa W - lim W-IVaVVa W 
V-V,! V_V,--

= - 81T Vs lim p. (44) 
p-.O+ 

In the case of uniform density stars the density function must 
have a discontinuity at the surface, while other equations of 
state may not have this discontinuity. To make use of the 
formalism derived above, we must also take care to properly 
match the function Wo across the surface of the star. To this 
end we will choose the mass constant of Eq. (25) and the 
constant obtained from integrating Eq. (40) so that Wo is 
continuous while its first derivative satisfies the discontinu-
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ityequation: 

lim W-IVaVVa Wo - lim W-lvaVVa Wo 
v-v,+- V_V,-

= - 81T Vs lim p. (45) 
p-.O+ 

This leads to the following function Wo: 

Wo = j1Tp(1 - V2)4(1 - V;) -3 for V> Vs' (46) 

Wo = J1TPV (3Vs - V) + j1Tp(1 - 9 V;) for V < V,. (47) 

Note that by choosing Wo in this way, the gradient 
Va (W - Wo) is continuous even at the surface of the star. 

We are now prepared to proceed with the proof of the 
following theorem: 
Theorem: A static asymptotically flat general relativistic stel
lar model, which is made of uniform (positive) density fluid, is 
necessarily spherically symmetric. 

The goal of the first step in the proof is to use the identi
ties derived in Sec. IV to establish that the function W - Wo 
must attain its maximum value on the surface of the star. 
Integrate Eq. (17) over the exterior region of the star using 
Eqs. (18), (19), (28), and (29) with B = O. The divergence on 
the left-hand side is converted to a boundary integral at the 
surface of the star and at infinity. The surface integral at 
infinity vanishes if A is bounded. Therefore the following 
relationship is true: 

-L= v: eg)1/2V-1W- 1/2 (1_ V2)"2A (W /Wo)vav 

X [Va W -FVa V]d 2x =1, (48) 

where 

1 = f eg)1/2{ lQI V 4 W-IRabcR abc 

+ Q2W-IIVa W - FVa VI 2}d 3x. (49) 

Let us choose the function A (U) so that it vanishes for U < Uo 
and smoothly increases to positive values for U> Uo. In this 
case QI and Q2 are nonnegative functions. If the maxiumum 
value that W / Wo assumed in the exterior of the star were 
larger than the maximum value which it assumed on the 
surface of the star, one could choose the constant Uo to lie 
somewhere between these values. In this case the boundary 
integral on the left ofEq. (48) would vanish. Since the vol
ume integral on the right would vanish in this situation only 
if the star were spherical (see Sec. II), we conclude that 
W /WO attains its maximum value (relative to the exterior 
region) on the surface of the star, or that the star is spherical. 
Thus W / Wo attains its maximum value (relative to the exte
rior region) on the surface of the star, since this also occurs in 
the spherical case. Since Wo also attains its maximum on the 
surface of the star, it follows that W - Wo also attains its 
maximum value (relative to the exterior region) on the sur
face of the star. Next integrate Eq. (17) using Eqs. (18), (19), 
(42), and (43) over the interior of the star. By appropriately 
choosing the function E, in an argument analogous to that 
described above for the exterior, it is straightforward to 
show that W - Wo attains its maximum value (relative to 
the interior region) on the surface of the star. Thus the abso
lute maximum value of W - Wo occurs somewhere on the 
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surface of the star. Also, since the gradient Va (W - Wo) was 
shown to be continuous, it must vanish at this maximum 
point. 

The next step in the proof is to show that the function 
W - Wo is in fact constant in the interior of the star. This is 
accomlished using a maximum principle for elliptic differen
tial equations. 18 In the interior of the star, Eqs. (17), (18), 
(19), (42), and (43) with E = 1 imply that 

va[V-IVa (W - Wo) ];;;'0. (50) 

The maximum principle for this type of differential equation 
states (roughly, see Ref. 18 for a precise statement) that if 
W - Wo satisfies Eq. (50) and has a maximum at a boundary 
point and if the outward normal derivative of W - Wo is not 
positive at this maximum point, then W - Wo must be con
stant. Since the gradient of W - Wo vanishes at the maxi
mum point, W - Wo must be constant. From this it follows 
(again using Eqs. (17)-(19), (42), and (43) with E = 1) that 
Rabe = 0 in the interior of the star. 

The final step is to show that W / Wo is constant in the 
exterior of the star. Chose A = 1 andB = Oin Eqs. (17)-(19), 
(28), and (29) to find that 

(51) 

in the exterior region. We know that W / Wo attains its maxi
mum (relative to the exterior region) on the boundary of the 
star. To employ the maximum principle, we must compute 
the outward directed (that is out of the exterior region) nor
mal derivative of W /Wo' We find 

deW /Wo)/dn = lim W-1;2vavva (w /WO) 
V __ V,I 

lim WI/2WO-2(W - Wo)dWo/dV. 
v- .... v,· 

(52) 

At the maximum point W - Wo;;;'O since this quantity van
ishes at infinity. Therefore d (W /Wo)/dn<.O at the maxi
mum point since dW o/dV < 0 there [see Eq. (46)]. The maxi
mum principle therefore guarantees that W /WO is constant 
in the exterior of the star. It follows from Eqs. (17)-( 19), 
(42), and (43) that Rabe = 0 in the exterior of the star also. 
Consequently (see Sec. II) the star must be spherical. 
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The argument given above has implicitly assumed that 
only a single star was present. The argument can be easily 
generalized to eliminate the possibility of mutiple static uni
form density stars. Even if multiple static stars existed, the 
argument using Eqs. (48) and (49) would still imply that the 
maximum of W / Wo would occur on the surface of one of the 
stars. If one chooses this maximal star to supply the param
eters p and Vs for Eqs. (46) and (47), the argument given 
above will go through exactly as before, with the conclusion 
that the spacetime is spherical, and consequently only one 
star is present. 
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A functional integral algorithm for the partition function and for the temperature Green's function 
generating functional of spin 112 systems is developed. Starting from the representation of the 
spin operators in terms of fermion creation and destruction operators we write the above 
mentioned objects as functional integrals over an infinite dimensional Grassmann algebra. We 
show how to eliminate the integration over the Grassmann algebra in favor of an integration over 
function space. The use of the formalism is illustrated with two simple examples. 

1. INTRODUCTION 

A convenient starting point in the modern approaches 
to critical phenomena, especially when using renormaliza
tion group techniques, is to write the partition function as an 
integral over the order parameter space. In the case of classi
cal spin systems, like the n-vector model, this procedure is 
straightforward and is known by the name of Gaussian 
transformation. 1 For quantum spin systems the Gaussian 
transformation cannot be applied due to the noncommutati
vity of the spin operators. In this paper we deal with the 
noncommutativity problem by writing the spin operators in 
terms of fermion creation and destruction operators, thus 
transforming the spin system problem into a many-fermion 
problem. 2 Once the spin Hamiltonian is written as a fermion 
Hamiltonian we just use well-known expressions for the par
tition function and the Green's function generating func
tional of a many-fermion system as functional integrals over 
infinite dimensional Grassmann algebras. 3 Then it turns out 
to be possible to eliminate the integration over the Grass
mann algebra by using a functional generalization of the 
Gaussian transformation. In this way we obtain expressions 
for the partition function and the temperature Green's func
tion generating functional as functional integrals over func
tion space. Finally, as an illustration, we apply this formal
ism to two simple systems. 

2. FERMION REPRESENTATION OF THE SPIN 
OPERATORS 

Consider a lattice with N points. With each lattice point 
Ri we associate a spin! operator Si' Spin operators associat
ed with distinct lattice points commute with each other. Fol
lowing Ref. 2 we write [S/ =S;+iS/,Sj- = (S/)*] 

S/ =(bi +br)ai, Si- =ar(bj +bn S~=!-arai' 
(2.1) 

The a's and b 's are fermion destruction operators and they 
obey the following anticommutation relations: 

[ajOajL = [bjObjL =fJij' 

[a;,aj ]+ = [bj,bj ] + = [a;,bj ] + = [ajObj] + =0, (2.2) 

fJ ij = 1 if Ri = Rj' fJij = 0 if Ri*RJ • 

Using the relations (2.2) one can easily show that the opera
tors defined in (2.1) do satisfy the angular momentum com-

mutation relations and that spin operators associated with 
different lattice points commute. 

Let H [S] be a Hamiltonian for the spin system written 
in terms of the operators Si and let H [a,b ] denote the same 
Hamiltonian after replacing the spin operators by their ex
pressions in terms of the fermion operators. Let us indicate 
by Trs the trace operation in spin space and by Trl the trace 
operation in the space spanned by the fermion operators. 
Then it is straightforward to show that for the partition func
tion we obtain 

Z.= Trs [e- f3H [SI] = 2 -N(Tr
J 

[e-f3Hla,bl]). (2.3) 

The first equality above is the definition of the partition func
tion and the factor 2 - N in the right-hand side is a conse
quence of the fact that the fermion space has dimension 22N 
(we have two types offermions per lattice site) and the spin 
space has dimension 2N. 

In the following sections we will consider the Hamilton
ian (Ji; = K i ; = 0) 

H[S] = - I[Jij(S:S;+SrS/) 
ij 

(2.4) 

Using the representation (2.1) and normal ordering the fer
mion operators we get 

H[a,b] = -Nr+ I [aara; -h +ar(b; +br) 
i 

- h- (b i + b nai ] 

+ I [Kijarajaiaj - Jijar(bibj 
ij 

+ b rb j + b rbj - b jb;)aj ]. 

In order to get the above expression we assumed 

Jij = (lIN)I { J(k) exp[ik·(R; - Rj )] J, 
k 

Kij = (lIN)I {K(k) exp[ik·(Ri - R)]J, 
k 

(2.5) 

(2.6) 

where the k summation is performed over the first Brillouin 
zone. The constants in (2.5) are 

r = H2h z + K(O)], 

a = hz +K(O), (2.7) 

h ± = (h x ± ihy )/2. 
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3. FUNCTIONAL INTEGRAL REPRESENTATION FOR Z 

For a Hamiltonian defined as a polynomial in fermion 
creation and destruction operators it has been shown3 that 
the partition function can be expressed as a functional inte
gral over an infinite dimensional Grassmann algebra. With 
the Hamiltonian H [a,b] [Eq. (2.5)], we get 

Z = 2 - N[!~", )JI J} J da7 da,n db 7 db7(e-S)]. (3.1) 

S= 1l~1 (5; (at(a7+
I
-a7)+b7 

X(b ~ + 1_ b 7) + (P IM)H [an,b n]). (3.2) 

In Eq. 0.2) by H [an,b nJ we mean the functional obtained 
by replacing in (2.5) the fermion operators aj> ar, b j , b r, by 
their Grassmann algebra representatives a7, a,n, b 7, b 7. The 
ams and b "'s obey antiperiodical boundary conditions with 
respect to the index n, ie., a~ + I = - aJ, etc. For details 
about Grassmann algebras and the definition ofintegration 
over them we refer the reader to Berezin's book.4 The oper
ations implied in (3.1) and (3.2) can be written in the follow
ing symbolic form: 

Z = 2 - N [J} J Daj Da, Dbi DIi;(e - S»), (3.3) 

S = rP 

[2: (ai !.... ai + Ii; !.... bi) + H [a(t ),b (t)]]. (3.4) Jo j at at 
In (3.4), a,(tn) = a7 with tn = (n - I)P 1M, and the antiper
iodical boundary condition in n now means aj (f3) 
= - a, (0), etc. 

Our next step is to show how to eliminate the Grass
mann variables from the problem and express Z as a func
tional integral over function space. Consider the part of S 
[Eq (3.2)J that is offourth order in the Grassmann variables: 
This term can be written as 

- ! ntl {~ [K (k)1J~ 7]~ + J (k)i ~A n}, (3.5) 

7]~ = (INN )2: [iijnaj exp[ - {lk.R)]J, 
j 

A ~ = (lNN)2: {(b j + bj)aj exp[ - (ik.Rj )] J. 
j 

Notice that the 7]'S and A 's are commutative quantities since 
they are linear combinations of quadratic forms of Grass
mann variables. By using the identity5 

f d 2z(exp{ - [1TWZZ+~)(uz+vZ)]J) 

= (exp[uvlw])/w, d 2Z = dx dy, z = x + iy, 

which is valid for any complex numbers u and v and for 
Re(w) > 0, we get 

expffi)n~1 {~[K(k)1J~7]~ +J(k)X~An} 

= Jll1J {(M - 2) J d 2
ep ~ J d28~ 

X exp( -A [ep,e,7].A n}, (3.6) 

1461 J. Math. Phys., Vol. 21, No.6, June 1980 

A [ep.8,7].A] = (J...) f (2: [1Tq;:9?: + 1T8 k 8 ~ 
M n=l k 

XD(k)(X;;9?;; +A~q;k) 

-F(k)(7l;;8 k + 7];;8 k)]), 

D(k) = [1Tf3J(k)] liZ, F(k) = [1Tf3K(k)] liZ . (3.7) 

Since the Grassmann variables obey antiperiodical bound
ary conditions with respect to the index n, it follows that the 
7]'s and A 's should obey periodical boundary conditions and 
therefore the ep's and e 's must also obey periodical boundary 
conditions. From (3.6) and (3.7) after some obvious manipu
lations we obtain, in symbolic form, 

exp S: dt {~ [Kjjtljaiajaj + Jija,(b, + bi)(bj + ~)aj]} 

= {J} S D29?j S D 28 i exp( -A [9?,8,a,b])}/ 

{J} S D 29?J D 28 j exp( - A [9?,8,O,0])}, (3.8) 

A [9?,8,a,b] = (1/13) S: dt [1T5; (ip;9?; + (8j 8,) 

+ 2: Dij(ipj(b j + b,)a, + 9?A(bi + Ii;» 
lJ 

- ~ Fij«8j + 8 j )tlj a.>], 
lJ 

(3.9) 

Dij = (lIN)L D (k)exp[ik.(R; -Rj )], (3.10) 
k 

F,j = (lIN)L F(k) exp[ik.(R i - Rj )]. (3.11 ) 
k 

The functions 9?i (I) and 8,(t ) must satisfy periodical bound
ary conditions in t, i.e., 9?,(O) = 9?i(f3), 8 j (O) = 8;(13). 
After substituting (3.8) into (3.3) the dependence of the inte
grand on the Grassmann variables is quadratic and therefore 
we can perform the functional integral over these variables. 4 

The final result is 

Z=Qexp[N(Pr+ln(l+e- Pa»], (3.12) 

Q = {I,I S D29?.f DO'; exp( - L (9?,O'J)} / 

{J} S D 29?J DO'j exp( -La [ep,O'n}, (3.13) 

Lo [ep,O'] = (1Tlf3) S: dt [5; (ip;9?; + 0'/)]. (3.14) 

L [9?,O'] = La [ep,O'] - L {Tr [In(1 - S,)] 
; 

+ t Tr[ln(l - R,)] I, 

Sj(t,t') = (21{J)A (t - t')I [F,j O'j(t')], 

Ri(t,t') = (2113 2
) S: ds B (t - S)ki(S,t') 

X [~Dijipj(S) - f3h - ] 

X [.f D;k9?k(t') - f3h + ] - Pj(t',s) 
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x [~Djjq3j(tl) - Ph - ] 

X(~D'k~k(S)-Ph + l}, 
A (t-s)=(lIP)L lAm exp[ -ifm(t-s)]j, 

m 

B(t-s)=(lIP)L IBm exp[ -ifm(t-s)]j, 
m 

Am =(-ifm +a)-I, Bm =(-ifm)-I, 

1m = 1T(2m + l)IP, 

(3.17) 

(3.18) 

l:m means summation over all integers m. For P,(t,t') we 
have 

(3.19) 

where P" So and A are interpreted as continuous matrices 
with elements P,(t,t '), S,(t,t '), andA (t - t '). In (3.13)~j(t) 
is the complex function introduced before, a j (t ) is a real 
function [the real part of the previous 8, (t ) ], and the inte
gral over the imaginary part of 8, (t) drops out because the 
a, in (3.9) couple only to the real partof8j (t). The traceofa 
matrix M with components M (t,t') is defined here as 

lim (II dt M (/,1 + 11). (3.20) 
"I --.{), Jo 

This prescription is a remnant of the normal ordering proce
dure6 and its role is exactly the same played by the conver
gence factor one introduces whenever one encounters a loop 
in the Feynman graph expansion of the temperature Green's 
function. 7 A (I - t ') and B (t - I ') are essentially the "free" 
temperature Green's function for type a and type b fermions, 
Pi (t,t ') is the Green's function for type a fermions in the 
presence of an external field - 2 l:j Fij aj(t). 

Equation (3.12) is the expression of the partition func
tion for the Hamiltonian (2.5) as a functional integral over 
the order parameter space. It is straightforward to show that 
the magnetization is proportional to the expectation values 
of the fields ~ and a. 

4. THE GREEN'S FUNCTION GENERATING 
FUNCTIONAL 

By introducing sources in the right-hand side of (3.3) 
we can define a generating functional from which we can 
obtain the temperature Green's functions as functional de
rivatives with respect to thesources.8 Let usdefineZ [11.A ] by 

Z [11.A ] = 2 - N {I} J Daj Dii, Db, Db, exp( - S[ 11.A ])}, 

(4.1) 

S [11.A ] = S + J: dt {~ [77,(b, + b;)a j + 11i iij(b j + b,) 

+Aj(!-ii,a,)]}. (4.2) 

In (4.2)Sis given by Eq. (3.4), 11,(t) and Aj(1 ) are respective
ly a complex and a real function oflattice position and t and 
they satisfy periodical boundary conditions with respect to t, 
i.e., 11,(0) = 11,(P), Aj(O) = Aj(P). 

The Green's functions of interest are 
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G;J -(/,s) = - (T(S/(t)Sj-(s»), 

Gij(t,s) = - (T(S~(t)Sj(s»>. (4.3) 

In (4.3) the symbol T( ... ) means a time ordering operation, 
S f(t ) means the operator S f in the imaginary time Heisen
berg picture,7 and for an operator X, 
(X) = Tr[X exp( - pH)]/Tr[exp( - PH)]. From the results 
of Ref. 3 concerning the Green's functions for fermion oper
ators it follows that 

(4.4) 

(4.5) 

(4.6) 

Other Green's functions can be obtained by taking the ap
propriate functional derivatives of W; for example, the mag
netization is given by the first order functional derivatives. 

Z [11.A ] can be cast into a form similar to Eq. (3.12), the 
only modifications being: 

(1) In the equivalent of Eq. (3.15) add a term 
! S~ dl [l:j Aj(t)] to the right-hand side. 

(2) In the equivalent ofEq. (3.16) replace l:j Fij aj(t') 
by l:j Fij a j(t') + !3Aj(1 '). 

(3) In the equivalent ofEq. (3.17) replace l:j D jj ~ j(t') 
by l:j D jj ~ j(/') +!311 j(t '). 

After these modifications one can make a change of 
variables, ((J-Hp', a-+(7', where ~;(t) = l:j Dij ~ j(t) 
+ !311j(/) -!3h + ,a;(t) = l:j Fij aj(t) + !3Aj(t). The effect 

of this change of variables is to remove the sources and the 
magnetic field fromSj andR, [Eq. (3.16) and Eq. (3.17)] and 
thus to show that 11 and A are sources for ~' and a', therefore 
establishing the connection between the spin Green's func
tions and expectation values of products of (~')'s and (a')'s. 

5. EXAMPLES OF THE USE OF THE FORMALISM 

We will now, as an illustration, proceed to apply the 
formalism developed above to two simple cases. First we will 
consider a system of noninteracting spins in the presence of 
an external magnetic field. The partition function of this sys
tem is given by [from (2.5), (3.3), and (3.4) with 
J jj =Kjj = 0] 

Z = [2Q exp(f3hJ2) ]N, (5.1) 

Q=(J DaDiiDbDbe-E)/(J DaDiiDbDbe- EO). 

(5.2) 

i{J (- a - a ) Eo = dl a - a + b - b , 
o at at (5.3) 

E=Eo + J: dl[hziia-h +(ii(b+b»-h -(b+b)a]. 

(5.4) 

In order to arrive at (5.1) we used the fact that for a noninter
acting system the partition function is a product of N identi
cal factors and that 

I} J Daj Daj Db j Db, 
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xexp{ - f: dt [~(iii ! ai + bi ! bi)]} = 4N. (5.5) 

After integrating over the a's we get 

Q= f Db Dbq[b,b]exp [ - f: dt(b!b )]/ 

f Db Db exp [ - f dt (b :t b )], (5.6) 

q[b,b] = exp!Tr[In(1 + hzB)]] 

+ h + h - f: dt f: ds 

XA (t -s)[b(t) + b(t)] [b(s) + b(s)]. (5.7) 

Finally, after performing the b integration, we obtain 

Q = exp!Tr[In(1 + hzB)] +! Tr[ln(1 + V)] J, (5.8) 

V (t,s) = (lIP)I [(h~ +h;)I(f;, +h;)] 
m 

X exp [ - ifm (t - s)]. (5.9) 

Now 

Tr[In(1 + hzB)] = '11~~, {~ [In(1- hJifm)]e
i1lfm

} 

- PhJ2 + In [cosh(PhJ2)], 
(5.10) 

Tr[ln(1 + V)] 

= lim, [I [In(1 + (h ~ + h ;»/(f ~ + h;) ]/1lfm] 
'1~O m 

= 2pn[cosh(Ph 12)] -In[cosh(PhJ2)] j, (5.11) 

h = (h ~ + h; + h ;)112. Thus we get 
Q = cosh( Ph 12)e - f3h/2 and so Z = [2 cosh( Ph 12)] N, 

which is the correct expression.2 

As our second example we will consider the case of the 
Ising model with a magnetic field in the z direction, in this 
caseJij = 0 and hx = hy = O. Since the Ising spin model is in 
fact a classical spin model (n-vector model with n = 1), its 
partition function has an integral representation in terms of a 
real field defined on the lattice-(it is not a functional inte
gral but a multiple integral over N real variables, where N is 
the number lattice points). 1 Since Eqs. (3.12)-(3.17) present 
an alternative representation for the partition function it is 
interesting to see how one obtains the integral representation 
mentioned above starting from (3.12)-(3.17). Let /1/(t) 
= ~j Fij uit), and write 

f..dt) = IJL~e-itvm, Vm = 21TmIP, 
m 

then 

and 
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Tn(m l , ... ,mn -I) = lim (~{I ei1lfm 
'1~' n! m 

X [AmAm - m.Am - m. - m2 
... A m _ m.- ... - m,, __ t 

+ similar terms involving all other 
permutations 

amongthema (1<a<n -1)] D. (5.13) 

It is straightforward, although very tedious, to show that 
Tn(ml, ... ,mn_ l ) = o unless m l =m2 =· .. =mn_ 1 =0. 
Therefore 

Tr [In(1 - Si) ] 

= - ! (2!Pt)(JL~Y lim,(IA':,.ei'lln) 
n~ 1 n '1~ m 

= lim (I pn[1 - (2IP)JL~Am ]]/'1lm) 
1]-----.0+ m 

= Inp + exp[ -p(a -2JL~/P)]] -In(1 + e- Pa). 

(5.14) 

Now JL~ = ~j Fij oj, and uj- m = iij because uj is real. The 
change of variables from uj to Reo) and Imoj in (3.13) has 
unity Jacobian if we take m»O only. Since Tr[ln(1 - Si)] 
depends only on uJ, the integrals over the oj, m #0, in the 
numerator are cancelled by similar integrals in the denomi
nator and for the partition function we get (with uj = uJ) 

Z = I;I f: 00 dUi e- E(O') , (5.15) 

E(u) = I ( -Pr + 1T07 
I 

-In{ 1 + exp[ - (pa -2 ~Fij Uj)]D. (5.16) 

In (5.15) Z is expressed as a multiple integral over the N real 
variables U i , - 00 < U i < 00. Let us make the following 
change of variables U i = F(0)/21T - CPj in (5.15). We get 

Z = I;I f: 00 dcpi exp( - ~ {1TCP; 

-In[ 2 cosh(Phzl2 + ~ Fij CP)] D . (5.17) 

The expression (5.17) for Z is the representation mentioned 
before, which can be obtained through a Gaussian transfor
mation. 1 In order to make this point more explicit let us 
observe that the Hamiltonian for this system can be written 
as 

H= -(lI1TP)~(~FijSjy -hz(~S~), (5.18) 

and the partition function can be written as 

Z=Tr[e- PH ] 

= Tr{ [exP(lI1T) ~ (~Fij Sj Y] exp(phz ~ SD} 

= I;I f: 00 dcpi exp( - 1T ~ cP 7) Tr[ exp ~ 
X 0hz +2 ~Fij CPj)S~]' (5.19) 
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Now 

Tr[exp~ 0hz + 2 ~Fij ~j) s:] 
= exp ~ {In[ 2 cosh0hJ2 + ~ Fij ~j)]} 

and so we see that (5.17) is equal to (5.19). This calculation 
provides a consistency check on the manipulations carried 
out in Sec. 3. 

As a final remark we would like to point out that appli. 
cations of the techniques discussed in this paper are not reo 
stricted to spin models. For example, we can use this formal· 
ism to eliminate the spin variables in the functional integral 
treatment of problems like electrons interacting with spin! 
magnetic impurities in solids, or a system of two level atoms 
in interaction with a radiation field, etc. 
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A nonperturbative method, as opposed to diagrammatic expansions, is used to study critical 
phenomena in a fluid with a small hard core and a weak, long-ranged attractive potential. Using 
the natural small parameter related to the inverse of the range of the attractive potential, spatially 
uniformly valid asymptotic estimates are made for the magnitudes of all correlations (which are 
defined as the excess from the generalized superposition approximation) in a region near phase 
transition in arbitrary number of dimensions. It is shown that if the dimension of the space is 
larger than four, the correlation hierarchy truncates at the three-body level. The pair correlation 
satisfies a linear equation. The solution is precisely of Omstein-Zernike form. For dimensions 
smaller than four, the hierarchy is still an infinite chain, but considerably simpler than the 
BBGKY hierarchy. In this case, at the critical point, the correlations are shown to satisfy a scaling 
law which is the same as that for S 4 spin systems. 

1. INTRODUCTION 

In an earlier paper I one of us presented an asymptotic 
analytical technique for the study of critical phenomena in a 
simple fluid in three dimensions. In this work we use this 
technique to investigate the behavior of correlation func
tions near phase transition in an arbitrary number of dimen
sions. Some of our results are analogous to those obtained for 
spin systems by the use ofthe renormalization-group meth
od.2

•
3 The motivation for our work comes from a desire to 

understand critical phenomena using basic Hamiltonian me
chanics as the starting point instead of an effective phenome
nological Hamiltonian, such as that of Laudau-Ginsburg
Wilson, and to study the similarities and differences between 
fluids and isotropic-spin models.4

•
5 

It is well known that the spatial dimension d of a spin 
system plays a crucial role in the determination of its critical 
behavior. For d > 4 the mean-field theory holds and the criti
cal exponents are classical. It can be shown that the pair 
correlation to its leading order satisfies a linear equation that 
is decoupled from the effects of higher correlations, even 
near the critical point. 

In this work we derive a similar result for a fluid, name
ly, that for d > 4 the critical exponents are classical. Howev
er, this happens in a less obvious manner than for spin sys
tems. The BBGKY (Bogoliubov-Born-Green-Kirkwood
Yvon) hierarchy is shown to truncate at the three-body level 
and not at the two-body level. Still the pair-correlation to its 
leading order, even including the three-body effects that be
come significant near phase transition, satisfies a linear 
equation. 

For d..; 4 the BBGK Y hierarchy can be simplified in the 
same manner as was shown for d = 3 in Ref. 1 but one is still 
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GK4-3133. 

"Permanent address: Department of Theoretical Physics, Institute of 
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left with an infinite chain of equations. In this paper we show 
that the three-body and higher correlations given by this 
chain satisfy certain scaling relations at the critical point. 
These scaling relations turn out to precisely the same as 
those obtained by Wilson2 for spin systems. 

Before presenting the technical details we shall summa
rize the asymptotic technique and explain how the above
mentioned results are derived. 

Consider a uniform system of identical molecules inter
acting through an isotropic pair potential consisting of a 
small hard core and a long-range attractive part. (This will 
be made precise later.) In this model the hard core plays a 
minor role, even in the region of phase transition. It keeps 
the system stable.6 The ratio of the average interparticular 
distance to the range of the attractive potential is the funda
mental small parameter E in our analysis. (Later on we shall 
choose it to be similar to the Kac potential where we denote 
the small parameter by E instead of the usual y. We do this 
mainly to distinguish our nonperturbative technique from 
the perturbative y expansion. 7-10 Using the infinitesimal na
ture of E, we determine the asymptotic orders of all the corre
lation functions by making successive self-consistent esti
mates as follows. We start with the equation for the pair 
correlation and obtain a first estimate of its order by neglect
ing the three-body function. Then we go to the three-body 
equation, neglect the four-body function, and use the first 
estimate on the two-body function to obtain a first estimate 
for the order of the three-body function. This is inserted back 
in the full equation for the pair function and the resulting 
modification, if any, of the first estimate on the pair function 
is investigated. The general s-body function is estimated in a 
recursive manner by using the earlier estimates on all its 
predecessors and the first estimate on its immediate succes-
sor. 

In this analysis a natural parameter arises, namely, 
ft= 1 - nft/! dx, where t/! is essentially the negative of the 
nondimensionalized attractive potential outside the hard 
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core and -I inside and n is the number density. As long as 
this parameter is of the order of unity and positive, the first 
estimates remain unchanged by the inclusion of higher cor
relations. In fact their effects are shown to become succes
sively more and more insignificant. This implies that to the 
leading order of each correlation the hierarchy can be decou
pled and solved by an iterative procedure, where each iter
ation yields an asymptotically smaller term than the one 
added by the previous one. This has been shown in Ref. I for 
d=3. 

However as fl is reduced, the correlation functions be
gin to develop very long ranges. Even though their ampli
tudes remain small, when integrated over all space their ef
fects become significant. This is most readily seen if one 
considers the Fourier transforms of the correlation func
tions. When fl is sufficiently small, yet positive, in a certain 
asymptotic (in terms of E) region, for small wave numbers, 
for every s, the s + I-body term in the s-body equation be
comes as significant as the terms involving its predecessors. 
In this region, for some value of fl, the compressibility will be 
infinite. We call this region in fl the region of phase 
transition. 

It should be stressed that the above phenomenon occurs 
only for small wave numbers. Suppose that fl is in the region 
of phase transition and hence much smaller than unity. Even 
if anyone of the wave numbers of the s-body function is 
much larger that Efl 1;2 in magnitude, we show that the effect 
ofthes + I-body function in thes-body equation is negligi
ble, whatever the value of fl may be. Thus the hierarchy can 
be truncated in this case at thes-Ievel. Only when each of the 
wave numbers is of order Efll/2 does the s + I-body term 
make a nonnegligible contribution. 

We discover the order of fl in the region of phase transi
tion as follows. Assume that fl.( I and consider the equation 
for pair correlation for small values of the wave number. We 
use the estimate on the three-body function in the three-body 
term in the equation and see what the order of fl should be 
such that this term is of the same order as that of the pair
correlation function. The result is that fl- E d for d> 4 and 
fl- E 2d /6 - d for d <A. It is here that the number of dimen
sions plays an important role. We show that for d> 4, even 
though the three-body term is significant, the major contri
bution comes from one of its wave numbers of order E. For 
d<,4, the major contribution comes from wave numbers of 
order Efl 1;2. Going then to the three-body equation, being 
only interested in the regime where one of the wave numbers 
is of order E>EflI/2, we see that the four-body term is insig
nificant. Thus the hierarchy can be truncated at the three
body level. We solve the two equations and obtain an expres
sion for the pair-correlation function to its leading order, 
which for small wave numbers is ofOmstein-Zemike form. 

For d<4, whenfl_E2d/6 - d, the major contributions 
come from small wave numbers and the hierarchy cannot be 
truncated. However, certain simplifications occur and the 
resulting set of equations is considerably simpler than the 
BBGKY hierarchy. The potential does not appear explicitly 
anywhere in these equations, but only its integral. At the 
critical point we assume that the correlation functions are 

1466 J. Math. Phys., Vol. 21, No.6, June 1980 

homogeneous functions of the wave numbers. Under this 
assumption we show that the equations for the three-body 
and higher correlations are invariant under linear scaling of 
all the wave numbers if the degree of homogeneity of the s
body correlation is Us a2 - (s - I)d], where a2 is the degree 
of homogeneity of the pair function. This is the same formula 
as obtained by Wilson2 for spin systems. 

2. EQUATIONS FOR CORRELATIONS 

We shall denote by !p l ~ a set of P particles chosen from, 
r, r + I, ... ,r + s, by lipl; the reduced probability distribution 

of this set, and by a lpl ; the corresponding correlation func

tions to be defined shortly. When convenient, we shall sim
ply list the particles. For example,f234 and a 14 will stand 
respectively for the three-body reduced distribution of parti
cles 2,3, and 4 and the pair correlation of I and 4. The corre
lation functions are defined in terms of the distributions as 
corrections to generalized superposition: 11-13 

112 fJil + a 12), 

r = 112/13/23 (1 + a ) 
) 123- 11/2]; 123 , 

r = 1123/124/134/234 r f f r (I + a ) 
) 1234- r r r f f f ) I 2 3)4 1234 , 

) 12) 13) 14 23 24 34 

_ IIliS-I,: (_I)' 

liSI:=IIJ, ... (IIlil}) (I+a lsl )' 
Is -21: 

IIlij,: is the product over all distinct sets ofj particles chosen 

from I, 2, ... ,s. The function a 12 is the usual pair-correlation 
function often denoted in the literature by h. 

For correlations in a spatially homogeneous system of 
identical particles at thermal equilibrium, assuming the exis
tence of the bulk limit, one can derive the following hierar
chy of equations from the BBGKY hierarchy. 13 Here n will 
denote the number density, e the temperature multiplied by 
Boltzmann's constant, and <Pij the two-body potential be
tween particles i andj, assumed to be spherically symmetric: 

J I ( 1 J<P12 n f J<P13 ( ) - og 1 + a 12) = - ---- - -- 1 +a\3 ax l e ax, e ax l 

X (a 23 + a 123 + a 2PI23)dx3· (2.1) 

For s;;;,3 

J I (1 - ~f J<PI.s+I (1 +a ) ax
l

og +alsl )= e ax
l 

I.s+' 

m 

XI IT a,p,I:.s+1 dxs + 1 , (2.2) 
i= t 

where the summation is over all products satisfying the fol
lowing conditions: 

(i) The sets [P, l ~ occurring in each product are distinct. 
(ii) If Pi = 1, the particle 1 is not a member of [Pi l~ + '. 

(iii) Ifu~ I !p,j~ = [p l~ ,p = s-1 or P = s. 
(iv) If P = s - 1, the particle 1 is not a member of [p J ~ . 

This means that, for example, for s = 4 terms such as 
a 25 a 235 and a l25 a 235 cannot occur in the sum, the former 
because of (iii) and the latter because of (iv). 
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We now consider a potential that consists of a hard core 
of radius 8 and an attractive part ofthe form - E dV(U), 
where E is an infinitesimally small parameter and v a positive, 
continuous, bounded function such that 

L= ,-t-!v(r)dr< 00. 

We shall assume that 8 is of the order Ed for d> 4 and 
E 2d/

(6 - dJ for d<4. The exponent is chosen such that the ef
fect of the hard core will be significant in a certain asymptot
ic region near phase transition. This will be made clearer 
later in the analysis. 

One obtains consistent asymptotic estimates of the 
magnitudes of the correlations in terms of E. To begin with, a 
first estimate on the order of a l2 is made from the equation 
obtained by neglecting a \23' Then in the equation for a 123' 

a !234 is neglected and the first estimate on a!2 is used to find 
the order of a 123' This is put back in the equation for a 12 and 
one looks for modifications, if any, of the first estimate. This 
procedure is continued recursively for all the correlations. 
The technical details of the method are presented in Ref. 1. 

We shall start with a very weak corollary of the results 
given in Ref. 1. It is that the three-body and higher correla
tions are all uniformly small in their domains and the pair 
correlation is small outside the hard core. Without going 
into any mathematical detail, one could convince oneself of 
this by inspection of Eq. (2.1) and (2.2) and observing that 
outside the hard core the potential is small. It follows then 
that the logarithms in (2.1) and (2.2) can be expanded and 
the three-body and higher correlations can be neglected next 
to terms on the order of unity. More precisely, if we set 

tP12 = -1 + exp( - ¢J12/(})' (2.3) 
we can write, 
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where the sum is over all products such that the {Pj ) 's in 
each product partition the set {s - I ) ~. For details the read
er is referred to Refs. 1 and 13. 

Let us define the function G12(x l - x2) by 

G I2 - n f tP13G23 dX3 = tP12' (2.8) 

Clearly (2.8) has a unique integrable solution G12 as long as 
the quantity 

Jl=1 - n f tP12 dX2 (2.9) 

remains positive. 14 If Jl- 1, it can be readily shown that the 
three-body term in (2.4) is unimportant and, more generally, 
for s;;.2, 

I f atPl,s+! I (laa'S}i I) n ax
l 

als+l!i+,dxs+! =0 ~ . 

In fact, one can solve every· equation of the hierarchy to the 
leading order in each correlation to obtain 

a l2 = G!2 +0(a I2), (2.10) 

(2.11) 

a 1s }; =nf Gl.s+!L.ilaIP,I;.s+! dxs+! 

+ o(a\s\)' s;;.3, (2.12) 

where the summation is the same as the one in (2.7). The 
range of G 12 is of the order of (EJlI 12)-1. This can be seen by 
Fourier transforming (2.8) and writing a Taylor expansion 
for the numerator and denominator for small wave numbers. 
Thus, if Jl is of order unity, all the correlations have ranges of 
the order of the range of the potential. The asymptotic orders 
of the correlations are obtained from (2.10)-(2.12) as 

a12-~' 
a _.c(s-IJd 

151; " 

(2.13) 

(2.14) 

One also has estimates on the derivatives from the hierarchy 
itself: 

l
aa lS !1 I (s-!Jd+! 
-- -E ax l 

for particle separations of the order of E- 1
• 

It is easy to verify that 

If atPI,s+! d I ax
l 

a ls +l};+1 Xs+l 

= o (E'd+ 1)< la~s!}1 I_CS-!Jd +!. 

IfJl-l, 

/
aa lsl ; n J JtPl,s+! d I 
-- - - a ls +l};+1 Xs+I ax! () ax! 

(2.15) 

is of the same order as IJa1s}/axll and the term containing 
a I s + !} ; + I in the s-body equation can be neglected to the lead

ing order in a lsll ' Thus the hierarchy truncates at every 
level. 

If J.l < I, however, the range of G 12' and hence the range 
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of each correlation function, becomes much larger than the 
potential. For particle separations much larger than the 
range of the potential, the left-hand side of each of the equa
tions (2.4)-(2.7) becomes small. Therefore the term involv
ing the higher correlation function has to be retained. The 
asymptotic order of J.l for which the left-hand side of the 
equation balances the term involving the higher correlation 
will be derived in the next section. Here the dimensionality 
of the system plays a strong role. For dimensions lower than 
4, at every level of the hierarchy the corresponding higher 
correlation becomes significant. Thus the hierarchy cannot 
be truncated. For dimensions higher than 4, even though the 
a 123 term is significant in the equation, the term containing 
a 1234 in the equation for a 123 is insignificant. Thus the hierar
chy truncates at the three level. We call this asymptotic re
gion in J.l the region of phase transition. This is the region in 
which the compressibility becomes infinitely large. 

3. CORRELATION FUNCTIONS NEAR PHASE 
TRANSITION 

We now suppose thatJ.l<1 and determine the region in 
which the higher correlations become significant. In order to 
do this we use the recursive procedure outlined before. We 
first obtain an estimate on each correlation by truncating the 
hierarchy at every level. We then insert this estimate in the 
term containing a I s + II ~ + 1 in the a I s I, equation and deter
mine the asymptotic region inJ.l in which the higher correla
tion term becomes comparable to a lsl ,' We shall demon
strate that for dimensions higher than 4, for any J.l, the four 
and higher correlations remains insignificant. For dimen
sions lower than four we still have an infinite hierarchy but it 
is considerably simpler than the BBGKY hierarchy. 

Let us define Fourier transforms of the correlation 
functions by 

a(k l ,k2, .. ·ks ~ 1 ) 

I s-I s-I 
= alsl;exp - i j.?1 kj,(x1 - Xj+ 1 »)J

1 
dXj+ 1 . 

We define G(k) and ¢(k) similarly. Observing that 

II OtPI,s+1 d I ax 1 a I s + 1 I ; ,1 Xs + 1 

-I~I I tPI.s+lal,s+1 dXs + 1 I, 

we get the following estimates from (2.4)-(2.7): 

a(kl)-G(kl) + n2G(kl) I ¢(k2)a(kl,k2)dk2, (3.1) 

a(k l ,k2)-nG(k l + k 2)ii(k l )a(k2) 

+ n2G (k l + k2) f ¢(k3)ii(kl,k2,k3)d k3, (3.2) 

a(kl ,k2,k3)-nG(kl + k2 + k3)[a(k l)a(k2)a(k3) 
+ a(kl)a(k2,k3) + a(k2)a(kl,k3) + a(k3)a(kl,k2)] 

+ n2G (k l + k2 + k3) f ¢(k4)a(kl,k2,k3,k4)dk4, (3.3) 

a(kl, .. ·,k.) = nG(kl + ... + ks)I II a(!kj j) 

+ n2G(k l + ... + k.) 
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x I ¢<ks + 1 )a(kl, .. ·,ks + I )d ks+ 1 , (3.4) 

where the sets {kj } in each product partition {kl, ... ,ks }. It 
should be pointed out that originally the correlation func
tions G and tP are all nondimensional quantities. After Four
ier transforming they become dimensional. They can be non
dimensionalized by dividing by an appropriate power of n 
that is not dependent upon E. Therefore, in order to avoid 
unwieldy notation, we shall loosely speak of the orders of 
these functions and other dimensional quantities. For in
stance, by Ikl = 0 (E) we shall mean Ikln - d = 0 (E). 

We begin with asymptotic estimates for ¢(k) and G (k). 
Since the potential is assumed to consist of a small hard core 
and an attractive part of the form - Edv(Er), where vCr) is a 
positive, continuous, bounded function, it is easily seen from 
(2.3) that 

¢<k)-~ I v(a)e -/k·x dx = V(E-Ik). 

Since vex) is continuous and bounded, v(k) is integrable. 
Therefore, for E = 0 (Ikl), V(E-1k) = 0 (E dlkl-1, and for 
Ikl = 0 (E), V(E-1k)-1. (This is a rather weak estimate but it 
is sufficient for our purposes.) 
Thus 

(3.5) 

and 

¢<k)-1 for Ikl = o (E). (3.6) 

We can write them together as t/J(k) = O(~ /Ikl d + ~). 
Fourier transforming (2.8), we obtain 

G (k) = t/J(k)/[1 - n¢(k)]. 

Since it follows from the positivity of vex) that 

Iv(k)l.;;;v(O), 

G(k)-tP(k)-~lkl-d for E=O(lkl). 

(3.7) 

(3.8) 

For Ikl = 0 (E) we expand ¢(k) around Ikl = 0 and 
make use of the fact that the attractive part of the potential is 
of the form - Edv(Er) to obtain 

G(k)-c(k 2+E2J.l)-1 for Ikl=O(E), (3.9) 

whereJ.l = 1- n¢(o). Therefore 

G(k)_E2k-2 for Ikl = o (E) and EJ.l1/2 = O(lkl) (3.10) 

and 

(3.11) 

The following first estimates for a(k l ) and a(k),k2) are 
obtained by neglecting the higher correlation term in each of 
(3.1) and (3.2): 

(3.12) 

a(k),k2)-G(kl + k2)a(kl)a(k2)-G(k1 + k2)G(k)G(k2). 
(3.13) 

We now use (3.13) in the right-hand side of (3.1) to 
estimate the term that was neglected in the first estimate for 
a(k l). By balancing this term with the term retained, we 
shall find the asymptotic order of J.l for which the higher 
correlations become significant. The term retained in the 
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first estimate for a(k l ) is G (kl) and the term neglected is 
n2 iJ.. (kl)J~k2)~(kI' k2)d k~ which from (3.13) is of order 
n2G (k1)f¢'(k2)G (kl + k2)G (k1)G (k2)d k2• Contributions for 
this last integral come from various regions ofk2, namely, (a) 
(Ikll) = 0 (lk2\). (b) Ik2\-lkll and Ikl + k21-lkl \, (c) 
Ik21-lkll and Ikl + k21 = o(lkll), (d) Ikzl = o(lkll)· It is 
readily seen that in each of these regions the term neglected 
in the first estimate for a(kl) is of order 

G(kl) Ik2Idtf{k2)G(kl + k2)G(kl)G(kz)' (3.14) 

First suppose that Ikll = 0 (E,uI/Z). From (3.5)-(3.11) it 
is readily seen that if E = o(kz), (3.14) is 0(€d,u-1G(k]». 
If Ikzl = 0(£), it is of order 

E4,u-llk2Id(k~ + ~j.lt2G(kl)' (3.15) 

If d > 4, the maximum contribution for this comes from the 
largest values of Ik21 in this region, namely, Ik21-E. Thus 
(3.14) is of order Ed#-]G(k l ). This becomes comparable to 
the term retained in (3.1), namely, G(kl) when 

,u-Ed (d>4). (3.16) 

If d<A, (3.15) has maximum value when Ik21-E,u 1/2. Then 
(3.14) is of order ~,u(d -6)f2 G(k]). This is larger than Edj.l-t, 
which, in turn, is larger than the contribution from the re
gion E = 0 (I k2.Jhus the three-body term becomes signifi
cant when 

(3.17) 

Jf# is larger than Ed (d>4) or ~d/(6-d) (d.;;4), the three
body term in (3.1) remains insignificant and the hierarchy 
can be truncated at the two-body level. 

We emphasize that the major contribution to the inte
gral in (3.1) comes from Ik21-E ford>4, from Ik21-E,u1/2 
ford <4, and from all oflkzl = o (E) ford = 4. We shall use 
these facts later. Next suppose that E,u liZ = o(lkl I). We con
sider the various regions of I kzl in the same manner as the 
previous case and conclude that as long as # is given by 
(3.16), (3.17), or larger, (3.14) is o(G (k l». 

We now summarize the results. If j.l= 1 - n¢(o) is 
much larger than Ed for d> 4 and E 2d /(6 - d) for d <A, the 
hierarchy truncates at the two-body level, 

i.e., 

(3.18) 

When,u becomes of the order E d for d > 4 and E 2d /(6 - d) for 
d <,4, the three-body term becomes significant for small val
ues of Ik] I. More precisely, when Ikll = 0 (E,u 1/2), where 
,u _Ed (d> 4) and,u _~d/(6- d) (d.;;4), the three-body term 
is of order G (k]). For larger values of Ikll, i.e., if 
E# 1/2 = o(lkd), the three-body term iso(G(kI» and thehier
archy truncates at the two-body level. Finally, for d> 4 and 
Ik] I = 0 (E,u ]/2) the main contribution to the three-body 
term comes from I k21 of order E. 

4. THREE-BODY FUNCTION FOR d> 4 

In the last section we showed that when,u is sufficiently 
small the contribution from the three-body term to a(k]) 
becomes significant when Ik]1 = o (E,uI;Z). We now study the 
next equation in the hierarchy. We shall show that for d > 4 
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the hierarchy truncates aBhe three-body level. We shall now 
suppose that#-E d and)kd _E#1/2. This is the region where 
the three-body term, namely, G (k1)f¢'(k2)a(k1' k1)d k1 be
comes significant. Recall that for d> 4 the majorcontribu
tion for this integral comes from the region Ik1!-E. Now 
consider Eqs. (3.2) and (3.3), where Ikll = 0 (E,u]/1) and 
)k2 1-E. 

We now have the following first estimates for the three
and four-body functions. 

a(kl,kz)-G(kl + k2)G(kl)G(kz), (4.1) 

a(kl,k2,k3)-G(kl + k2 + k3)G(kI)G(k2)G(k3) 

X[1 + G(kl + kz) + G(kl + k3) 

+ G (k2 + k3)]. (4.2) 

We insert estimate (4.2) in the term in (3.2) that was neglect
ed in the first estimate to obtain 

G(k l + kz)G(k1)G(kz) f ¢(k3)G(kl + kz + kJ}G(k) 

X[1 + G(k l + k2) + G(kl + k3) + G(k2 + k3)]dk3 
(4.3) 

and compare it with the retained term, namely, 
G (k] + kz)G (kl)G (kz). As for the two-body case, the inte
gral in (4.3) is estimated to be 

I k31 d¢(k3)G (k l + k2 + k3)G (k3)[ 1 + G (k I + k1) 

+ G(kl + k3) + G(k2 + k3)]' (4.4) 

Recall that Ikll = 0 (E,u1/2) and Ikzl-E. Therefore, using 
(3.5)-(3.11), we see that if € = o(lkJ(4.4) is 0(1) and so the 
contribution from that region is negligible. If Ik31 = 0 (E), 
since I k21- E, every term containing kz in the argument is 
order 1. Also tf{k3)-1. Then (4.4) is of the same order as 

Ik31 dG(k3)[1 + G(k] + k3)] 

-lk3 IdE2(ki + ~j.ltl [1 + ~/(kl + k3)2 + £2j.lJ. 

For d > 4 the major contribution to this term comes from the 
largest values of Ik31 in this region, i.e., Ik3 1-E. Then it is of 
order E d = o( 1). Thus we find that the term that was neglect
ed in the first estimate for a(k l• k2) is indeed insignificant. 
The hierarchy can be legitimately truncated at the three
body level. 

A similar set of estimates can also be made in configura
tion space instead of k space and it can be shown that for 
dimensions higher than 4 the hierarchy can be truncated at 
the three-body level. The k-space estimates are technically a 
little simpler. In configuration space the corresponding re
sults are as follows: 

1/I(r)-Ed, 

G (r )_€2r 2 - d. 

If Ed = o(j.l ) (d> 4) or E 2d/(6 - d) (d<4), 

a 12 = G12 + o(G12) 

for alllx J - xzl. 

Ifj.l_Ed (d> 4) or j.l_~d/(6-d) (d<;4), 

(4.5) 

(4.6) 

(4.7) 

a l2 = GI2 + o(G12) if Ix] - Xl) = 0(E- I/1j.l-1/2). (4.8) 

When IXI - x1 1_E- Ij.l-1/2 or larger, however, the three-
body term involving a 123 becomes significant in the the two
body equation (2.4). Observe that, since the range of 1/113 in 
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this integral is of order E- I, we need the estimate for a 123 
when I x I - x31-c l. By a method similar to the one used to 
estimate ii(kl' k2) in k space, it can be shown that for d > 4, if 
IXI - x21-CIIl-1/2 or larger and IXI - x31-E-I, the four
body term in the three-body equation is insignificant, i.e., the 
hierarchy can be truncated at the three-body level. Then 
(2.5) can be integrated to obtain 

a 123 = n f G 14a 24a 34 dX4 + o( n f G 14a 24a 34 dX4). (4.9) 

It may be pointed out that (4.7) and (4.9) are actual asymp
totic solutions and not mere estimates. Using (4.6), we can 
estimate the right-hand side of (4.9) to be of order 
E41xI - x4 1

4
-

da 12. Thus ford>4 the maximum contribu
tion comes from IXI - x41-E-I. Also, since IXI - x31-E-I, 
IX3 - x41-E-I as IXI - x41 rangesovervaluesoforderE-I; by 
(4.8), a 34 in (4.9) can be replaced by G34 to obtain 

a 123 =nf GI4a24G34dx4 + o(nf G14a24a34dx4). (4.10) 

This is equivalent to the statement of the last sentence of Sec. 
3. 

Now we substitute this in (2.4). Using (2.8), we have 

f f ~13 GI4a24G34 dX4 

f OGI4 
G d f° tPl4 

G d = -- 14a24 X4 - -- 14a24 X4 ax l ax l 

= ~ f H I4a 24 dx4 , ax l 

where 

H(r) = !G 2(r) +K(r) 

and 

K (r ) = foo dt/J(r) G (r ) dr. 
J dr 

(4.11) 

(4.12) 

ThusH (r) is a known function. Now (2.4) can be integrated 
to obtain 

a l2 - n f (tPl3 + H 13)a23 dX3 = tP12' (4.13) 

This is a linear equation for a 12' The compressibility is pro
portional to 

1 + f a 12 dX2 = 1 + s tP 12 dX2 

1 - n S tP12 dX2 - S H12 dX2 

StP12 dx
2 +1. (4.14) 

Il - S H12 dX2 
When Il = S H12 dX2 Ile, this is infinite. It is easy to verify 
that f H12 dX2-Ed. From (2.3) we see that 

Il = 1 + nrr - ; f vCr) dr - ! n;~ f v2(r) dr + o(~). 
(4.15) 

Thus Il is an analytic function of O. Hence G, K, and there
fore H are analytic functions of O. Let Oe be a solution to 
Il(OJ = Ilc so thatll = Ile + (0 - Oe)v + 0(0 - OJ, 0> Oe' 
It follows readily from (4.14) that S a 12 dx2 -(0 - Oe)-I, 
which is the classical result. All the critical exponents in this 
case can be easily shown to be classical. 
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5. HIERARCHY FOR d<4 

In Sec. 3 we observed that for d<4, whenll-E 2d 1(6 - d), 
the three-body term becomes significant in the two-body 
equation. To show this we used the first estimate for a(kl' 
k2), namely, nG (kl + k2)a(kI)a(k2) in (3.1), and noted that 
the last term is of order 

n3G (kl)a(kl) f I/J(k2)G (k l + k 2)a(k2)d k2 - a(k l) 

whenll-E 2dl(6 - d). In other words, in this region 

(5.1) 

Furthermore, we showed that for d < 4 the major contribu
tion to this integral comes from Ik21-EIlI/2. Similarly, we 
can consider the equation fora(k l, k2) when Ikll and Ik21 are 
o (Ell 1/2) and show that whenll_E2d/(6 - d) the four-body 
term becomes significant in the three-body equation. More 
generally, suppose Iki I = 0 (Ell 1/2) for i = I, 2, ... ,s, and con
sider the s + I-body contribution to the s-body equation, 
namely, G(kl + ... + kJ S I/J(ks+1 )a(kl, ... ,ks+ 1 )dks+l. 
The first estimate for the s + I-body function is [see Eq. 
(3.4)] 

a(kl,· .. ,ks+ I) 

-nG(kl + ... + ks+1 )a(kS+1 )a(kl + ... + ks)' 

Here we are taking just one term of a sum as a representative 
for the asymptotic estimate. Inserting this in the integral, we 
see that the contribution to the s-body equation is of order 

G(kl + ... + ks)a(kl, .. ·,ks) 

X f ¢(ks+ I )G(kl + ... + ks+ I )a(ks+ I )dks+ I' 

Since Iki t _EIl 1J2, whenll-cd 1(6 - d) [see Eq. (5.1)] this is of 
order a(kl, ... ,kJ. Thus in the s-body equation the s + 1-
body term must be retained and the major contribution due 
to the s + I-body term comes from I ks + I 1-E/-l1J2. Thus the 
hierarchy cannot be truncated. However, it is possible to 
derive a considerably simpler hierarchy, as shown below. 

Consider the estimates (3.1)--(3.4) when all the Iki I's 
are o (Ell 1/2). Since G(EIl I/2)-Il-I, 

a(kl)-G (kl)-Il-I, 

a(kl,k2)-Il-la(kl)a(k2)-1l-3, 

a(kl,· .. ,ks)-Wla(ks+ I )a(kw .. ,ks -I) 
_ Il - 2s+ I for s;;. 1. 

(5.2) 

(5.3) 

(5.4) 

Now consider the sum on the right-hand side ofEq. (3.4) for 
a(kl, .. ,kJ, namely, ~ n a({k i J). Here the sum is over dis
tinct products n a( {ki J), where the sets ! k i J partition 
(kl, ... ,ks)' Suppose a product has n terms with arguments 
consisting of PI' P2, ... ,Pn k's, respectively, so that 
PI + P2 + ... + Pn = s. From (5.4) the order of this product 
is 11 - q, where q = 2s - n. This is maximum when n = 2 
since there should be at least two terms in a product. Thus all 
the terms that are products of more than two terms can be 
neglected since they will be asymptotically smaller than the 
products containing only two terms. 

Similar estimates hold in the configuration space. The 
hierarchy takes the following form for IXij I-CIIl-1J2: 
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aa!Z I atP13 d ---n --a23 X3 
ax! ax! 

= atP12 + n I atP13 am dx3• 

ax! ax! 
For s> 2, 

aa Isli _ n I atPI,s + I --'--alsJi" I dXs+I 
axl ax l 

f atPl,s+ I " d = n ax
l 

£.,; alml~,s+ I a lnl2,s+ I Xs+ I 

(5.5) 

I 
atPl,s+1 d (56) + n ax

l 
als+II,+1 xs + 1 , • 

where {m g and In g are disjoint sets such that {m g u { n g 
= {s - 1 J ;. It follows from the estimates that 

alsl,-nI tPl,s+lalsl,+ldxs+l-palsli =o(a lsJj )' (5.7) 

This can also be seen by observing that since IXij I is assumed 
to be of order €_1p-1/2 for i,j = 1, 2, .. ,,s, i#j, and tPI,s + I has a 
range of order e l, we can expand alsl,+1 = a(xz' X3, 
... ,Xs + I ) around the point (xI, ... ,xs) and arrive at (5.7). Then 
the last term in (5.5) can be written as 

n I 1:1; tPI4a 234 dX4 dX3 + o( n I 1:1
1

3 
a 123 dX3) 

= !!... ~ I tP13tP14a 234 dX4 dX3 + o(nI atP13 am dX3) 
2 axl ax l 

= !!... ~ I tP13a m dX3 + o(nI atP13 am dX3)' 
2 axl axl 

Now the two-body equation can be integrated with the con
dition that a 12-<l as Ixd---+oo to obtain 

a 12 - nI tP13a 23 dX3 

= tPI2 + ; f tP13a 123 dX3 + o(ad· (5.8) 

Similarly, we have for s > 2, 

a lsl : - n I tPI,s+1 a ls +1l : >1 dXs+I 

=nf tPI,S+I2:alml~s+1 a lnl2,s+1 dXs+I 

+ ; J tPI,s+ I als+ 11;+ I dxs+ I + o(alsli )' (5.9) 

where I m I ~ and I n I ~ are disjoint and their union is 
Is -11~· 

In terms of Fourier variables, (5.8) can be written as 

- - n 1 a(kl) = G(kJ) + - _ 
2 1 - ntP(kl) 

xI ¢(kz)a(kJ,kz)dk2 + o(a(kl»' (5.10) 

Recall the following: When Ikll-€pI/Z, the major contribu
tion to the integral on the right-side of (5.10) comes from 
Ikzl-€pI/Z, and ¢(k) for Ikl_€pIt2 is (1 -p)n- I + o(k 2). 
Using these, we can rewrite (5.10) as 

1471 J. Math. Phys., Vol. 21, No.6, June 1980 

Similarly, for s>2, 

a(kl, ... ,ks ) 

= nG(kl + ... + ks)2: a(lk j Ip({kj j) 

+ ~nG(k1 + ... + ks) J a(kl + ... + kS+1 )dks+ 1 

+ o(a(kl, ... ,ks», (5.12) 

where the set I k j I and I kj I are disjoint and their union is 
(kl, ... ,ks)' For example, for s = 4, 

a(k l,k2,k3,k4) = nG (kl + kz + k3 + k4)[a(kIP(kz,k3,k4) 

+ a(kzp(k!,kz,k4) + a(k3P(kI,kz,k4) 

+ a(k4P(k!,kz,k3) + a(kl,k2P(k3,k4) 

+ a(k!,k3P(kz,k4) + a(kl,k4P(kz,k3)] 

+ nG (k! + kz + k3 + k4) 

X I a(kl,k2,k3,k4,ks)dks· (5.13) 

It should be pointed out that the hierarchy (5.11) and 
(5.12) is actually valid for all values of Ik!l. This is because if 
€p1t2 = o(lk!I), by (3. 18) we havea(k!) = G (k!) + o(G (k l» 
and we had seen that the last term in the right-hand side of 
(5.11) is negligible. It becomes significant only for 
Ikll = o (€pltZ). 

6. SCALING OF CORRELATION FUNCTIONS FOR d<4 

It may be observed that in the hierarchy (5.11), (5.12) 
the potential does not appear explicitly. Instead only its inte
gral appears throughp. Solving for G(k) from (5.11) and 
substituting it in (5.12), we have for s>2 

a(kl, ... ,ks) = na(kl + '" + ks) 

X(I+n J a(kI+, .. +ks,ks+1)dks+I)-1 

X 2: a(lk;)p({kj j) + ~I a(kl, .. ·,ks+ 1 )dks+ I' (6.1) 

Now p has also disappeared from the problem. All the corre
lations are given in terms of the pair function in an indirect 
way. 

Atthecriticalpoint, forsmalllkll,a(kl»G(k l). In fact 
a(O) = 00, while G(kl) =p-I. Therefore 
nS a(kl + ... + ks ,ks+ I )d ks+ I > 1 and we can write this 
hierarchy for s>2 as 

a(kl,· .. ,ks) = a(kl + ... + k s ) 

X (J a(kl + ... + k"ks + I )d ks + I ) - I 

X (2: a(( k j I p({ kj j) + ! I a(kl, .. ·,ks+ I )d ks+ I ). 

(6.2) 

It is interesting to observe that none of the physical param
eters such as density, temperature, or j.t appears explicitly in 
this chain of equations. If the pair correlation is given, all the 
other functions are determined, assuming, of course, that a 
solution exists for this hierarchy. Now let k j = A. k; and 
a(A. k; , ... ,A. k;) = A. a, + 1,8 (ki , ... ,k;) for s> 1. Substituting 
this in (6.2), we have for s>2, 
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A. a" '/3 (k; , ... ,k;) 
= A. a, - a, - d/3 (k; + ... + k;) 

X(f /3(k; + ... + k;,k;+ddk;+I)-1 

X [L A. am + a,., .. m/3(!k; j)/3({kj j) 

+Yl a,+,+dj /3(k;, ... ,k;+ddk;+I]. (6.3) 

Here 2<m <s - 2. It is an easy matter to verify that if we set 
fors;;.3, 

as = Us a2 - (s - 2)d], (6.4) 

A. factors out of (6.3) completely. At the critical point, for 
small valuesoflktl, if we assume thata(A. Ikll) = A. a'a(lkll), 
we notice that the scaling 

a(A. kl,. .. ,A. ks) = A. a'a(kl, .. ,ks) (6.5) 

holds, whereas is given by (6.4). This agrees with the scaling 
Wilson derived for correlation functions in a spin system. 2 
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We investigate quantum electrodynamics in two dimensions, (QED)2, in the constructive method. 
We construct a cutoff Hamiltonian defined on the Fock space with an indefinite metric, and 
discuss its properties and renormalization counterterms. When the fermion is massless, this model 
is exactly solvable (known as the Schwinger model). We study the massless model through the 
Bogolyubov transformation (canonical linear transformation) extended to this Fock space, 
through which the properties of the Hamiltonian and the physical vacuum are clarified. When the 
mass of the fermion M *0, we discuss the transformation of the renormalized Hamiltonian into 
the one of the so-called sine-Gordon model. The properties of the operator which implements this 
transformation are clarified; it is an unbounded operator which is isometric with respect to the 
indefinite metric. 

1. INTRODUCTION 

Two-dimensional quantum electrodynamics [(QED)2] 
:W vr::2' first investigated by Schwinger, I is considered as 
the first step to construct (QED)4' In the case of QED-type 
models, we must use an indefinite metric formalism of the 
vector field which cancels the divergences in the perturba
tion and makes the theory manifestly covariant. Two-di
mensional QED is super-renormalizable by the power
counting theorem 1-3 provided the indefinite metric formal
ism of the vector field (generalized Stiickelberg formalism) is 
used. 

This work starts with the study of the cutoff current 
Ia(x,O) = fA h,,(x - Y)J"(Y,O) dy in Sec. 2, wherej(y,O) 

= :¢(y,O) Y"t/'(y,O):, A = [ - L 12, L 12] CR, and h" is a 
momentum cutoff function. We show thatIa is a densely 
defined symmetric operator and thatIa is written in terms of 
the associated boson when the fermion mass M vanishes. In 
Sec. 3, we construct a Fock space of the vector field of the 
Stiickelberg formalism which is an indefinite formalism of 
the vector field. The Fock space has an indefinite inner prod
uce-7 < , ) = ( , 8), where 8 is a unitary and Hermitian 
operator on the Fock space. 

Next we prove that both the bare Hamiltonian H (L,a) 
and the renormalized Hamiltonian H (L,a) - RL.,,(A/-J 
- E(L,a) = HR(L,a)(R.E = counterterms) are symmetric 

with respect to the indefinite inner product (namely 8-sym
metric). Especially Hs(L.a) = H(L,a) IM~O and 
H ~(L,a) = H R (L,a) I M ~ ° are self-adjoint with respect to 
the indefinite inner product (namely 8-self-adjoint). (See 
Secs. 4 and 5.) 

Even if a Hamiltonian His 8-self-adjoint, the spectrum 
of H is not necessarily real. Further even if His semibounded 
and the spectrum is real. the vacuum is sometimes outside 
the Fock space. But we first assume that n (L,a) is the vacu
um of HR(L,a) (in the Fock space). ThenpL,,, ( ... ) 
= (n (L.a), ...• n (L,a»is a normalized 8-self-adjoint linear 

functional on the field algebra. which will be called a Lorentz 
state in this paper. We discuss whether or not the Lorentz 
states !PL,,, ( ... ) J converge on the field algebra when we take 
the limits L, a---. 00, This procedure is explicitly completed at 
least when M = ° (i.e., in the Schwinger model). and we will 

see that the Lorentz states lPL.,,} uniformly converge as L, 
a---. 00 (Sec. 6). 

For this purpose, we investigate a Bogolyubov transfor
mation which leaves canonical commutation relations with 
an indefinite metric invariant, and study its implementabi
lity by an operator on the Fock space. To obtain a represen
tation from the limiting Lorentz state is one of the most 
difficult problems in QED, since the Lorentz states are not 
positive and not continuous on the C *-algebra generated 
from! expi<P (f); f~J, where <P is the self-adjoint Segal's 
field. However, one representation will be explicitly ob
tained (following Klaiber). 

When M =1= 0, two approaches will be discussed in Secs. 
7 and 8, In Sec. 7. we consider Euclidean QED. while in Sec. 
8, we study a transformation of (QED)2 to a sine-Gordon 
model by a generalized mass-shift transformation of the fer
mion. We will see that (QED)2 -type models are isomorphic 
to two-component sine-Gordon models on the vacuum 
sector. 

Notation: 

yO = Yo = (~~). yl = - YI = (-1° ~). 
r = yOyl = ( - ~ ~). 
xl-' = (t,x) = (XO.XI) = (xo , - XI)' 

If' = (pO,p) = (pO.pl) = (Po, - PI)' 

J 
JI-' = -, Ii = Y"PI-' = yOPo + yipi = yOpo - yip. , 

Jxl-' 

8 (x) = {01 x>O, E(X) = { 1 x>O, 
otherwise. -1 otherwise. 

2. FERMION FOCK SPACE AND PROPERTIES OF 
CURRENT 

A. Two-dimensional fermion field operator 

The free fermion field of mass M obeys the Dirac 
equation 
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( - iY'JI" + M )¢(x,t) = 0 , 

and ¢ is expanded as follows: 

¢i(X,O) = J (2~1I2 [ui(p)c(p) + vi(p)d *( - p) ]e
iPX 

= J ----.!!.L .7, (p)eiPX 
- (21T)1I2 'f'i , 

where i = lor 2 and spinors u and v are, respectively, given 
by 

(
v( - P») (v(P) ) 

u(p) = v(p) , v(p) = _ v( _ p) , (2.1) 

with 

V 
_ 

( 
w(p) +p)1/2 

(p) - 2UJ(p) ,w(p) = (p2 + M2)1I2 . 

Then they satisfy the normalization conditions 

(u(p),u(p» = (v(p),v(p» = 1 , 

(2.2) 

(u(p),v(p» = 0 . 

Let Yt"e = Yt"p = L 2(R,dx) and let Yt" = Yt"e $ Yt"p (e 
and p mean electron and positron, respectively). The fer
mion Fock space is 

00 

Y p = $ y<;>, Y~ = C, 
n=O 

Y';- = ASn [ ® nYt"] , (2.3) 

1 
ASn [It ® ... ®/n ] -- ~ sgn(1T)/17(ll ® ... ®/17(nl ' 

(n!)1/2 ~ 
(2.4) 

where the Fock vacuum n is in Y~ = C. The annihilation 
[c(p) and d (p)] and creation I c*(p) = [c(p)]* and 
d *(p) = [d (p)]*) operators obey the canonical anticommu
tation relations (CAR) I c(p),c*(q») = 8(p - q) 
= I d (p),d *(q) j, etc. Since O.;;;v(p).;;; 1, ¢U) = N(x,O)f dx 

is a bounded operator if/EL 2(R,dx). 
In a periodic box (box = A = [ - L 12,L 12] CR ), 

L 2(R,dx) is replaced by L 2(A,dx). Further let 
r = l21Tnl L;n = 0, ± 1 , ... j. By the Fourier transformation 
j(p) SA /(x)exp( - ipx) dx withpEF, we can identify 
L 2(A,dx) and /2(r) = {lj(p);pEF j ;:l11(p)1 2 < 00 }. Let 
kEF and let pEl k - 1T I L,k + 1T I L ). Then c( p) is replaced by 
the following averaged operator in a periodic box: 

L J1TIL 
C A (k ) = - c(k + /) d/. 

21T - 1TIL 
(2.5) 

We similarly define c~ (k), dA (k), and d ~ (k). They obey 
the CAR in a periodic box: 

{cA (p),c~ (q)} = {dA (p),d ~ (q)} = (L 121T)8p •q ' etc. 
(2.6) 

The expressions in this approximation are obtained 
from the usual ones by the following replacements: 

J 21T 
dp--I, 

L p 
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For example, the generalized number operator NT changes 
as 

21T 
Nr-Nr,A-T IW(PY[c~(P)CA(P)+d~(p)dA(P)], 

p 

and especially, Nr~ I,A is the free Hamiltonian of the fer
mion in this approximation. 

In terms of the Fourier components, the Fock space 
Y p(JIt") is given by 

$ :~oASn ® n(De $Dp), 

where De =Dp =/2(r).Further 

V21T ~ [ ] . ¢i,A (x,O) = --z- £., Ui(P)CA (p) + vi(p)d ~ ( - p) e'PX 
P 

V:1T I¢i.A (p)e'px. (2.7) 
P 

We use this approximation throughout the paper, and then 
we will omit the index A (or L ) for simplicity when there is 
no danger of confusion. 

When M = 0, there are some ambiguities in the expres
sions of the spinors u( p) and v( p). Throughout the paper, we 
use 

(
{) ( - P») (0) u(p) = (}(p) for p=/=O, and u(O) = 1 ' 

(2.8) 

( 
(}(P») 

v(p) = _ {)( _ p) for p=/=O, and v(O) = (~) . 

B. Current operators in two dimensions 

Let 

¢K(X,O) = v'2; I ¢(p)eiPX , 
L Ipl<K 

w< + ll"(k;L,K) 

I (u(p),yOY'v(p - k »c*(p)d *(k - p) , 
L p.lpl.lp-kl<K 

w< - ll"(k;L,K) = [w< - ll"( - k;L,K)] * , 
21T 

WI"(k;L,K) = - I [(u(p),yOY'u(p - k» 
L p.lpl.lp-kl<K 

xc*(p)c(p - k) - (v(p),yOY'v(p - k» 

Xd*(k-p)d(-p)] 

= [WI"( - k;L,K)] * . (2.9) 
Let a current with double momentum cutoffs K and CT be 

ra.Ax,O) = JA ha(x - Y):¢K(y,O)Y'¢K(y,O):dy, (2.10) 

where ¢ = ¢*yO. We define 

W<#ll"(k;L) = lim W<#ll"(k;L,K) , (2.11 ) 

ra(x,O) = lim ra.Ax,O) = ~ I iia(k )f(k)e - ikx , 
K··oo L k 

(2.12) 

where 

.f(k) = W< + ll"(k;L ) + W< - ll"(k;L ) + WI"(k;L) . 
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The momentum cutoff functions {ha(x);oER 1 are real even 

functions such that (21TIL )l:p Ih~(p) 1(lpl + 1) < 00 (see 
lemma 2.1). Without loss of generality, we can choose a se
quence of h" such that ii,,(p) = X,,(P), where X,,(P) is the 
characteristic function in the interval [ - 0',0'] CR. 

Lemma 2.1: (i) When M = 0, [ W< ± )1-'(k;L ) I are 
bounded operators whose norms are dominated by 
(L /21T)lk I. Further [ W< ±)I-' = O(k;L) I are bounded opera
tors whose norms are dominated by 

(L 121T)(lk 1+ MO(lk I»)· (2.13) 

(ii) [ W< ± )1-'(k;L )} are operators such that 

I W( ± )1-'(k;L) 12«L 121T)( I k I + cO)(N 2 + I?, (2.14) 

where N is the fermion number operator and Co is a constant 
of the order M 20 (1) and independent of K and L 

(iii) [ W l-'(k;L) J are well defined (unbounded) 
operators: 

I W l-'(k;L) 12«Nr + c l (rW, c l (r = 0) = 0, (2.15) 

where NT is the generalized fermion number operator and 
constant CI (r) with r;;t:O may depend on Land k. 

Proof (i) Since Ijc(p)1I = lid (p)1I = (L 121T)112, the 
boundedness of [ W( ± )1-'(k;L ) I M = ° follows from the prop
erty of the spinors: 

II W<± )1-'(k;L )11 <L I (u(p),yDrl-'v(p - k») I = (L 121T) I k I· 
p 

Further since 

(u(p),yDrl-'v(p - k») 
= ± v( - p)v(p - k) - v(p)v(k - p) (p = 0,1) 

2 - Ipi jk-pl 

{

M(+_l_ 1 )+0(p-3)as p-++00, 

= M( ± 1 __ 1_) + 0(lpl-3) as p-+ _ 00, 

2 Ip-kl Ipi 
the same method shows the boundedness of 

W( ± )11 = O(k;L ): 

I Iv( - p)v(p - k) - v(p)v(k -p)1 
p 

«L /21T)[lk 1+ MO(lk j)]. 

(ii) Let 

W< +) = W( + )11(k;L) = (21T/L )Lf(p)c*(p)d *(k - p), 
p 

f( p) = ± v( - p)v(p - k) - v(p)v(k - p). 

We shall prove an inequality 

where OJE!iJ F ( = finite particle set). Then it suffices to as
sume that OJ contains only m electrons (c-fermions) and n 
positrons (d-fermions). We set L = 21T for brevity. 

Defining P = (PI ,.··,Pm) and Q = (ql , ... ,qn) with 

OJ = I a( P;Q) IT c*(p;) IT d *( qj)n, 
pEZ"',QEZ" ;= I j= I 
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where 

IT c*(pJ = C*{PI )"'C*(Pm)' etc. 
;= 1 

Then 

IIOJ112= L la(P;QW 
pEZ·',QEZ" 

and 

W(+)OJ= I (_l)m IT c*(pJ IT d*(qJn, 
(p,P)EZ·' ",QEZ" ;=0 j=O 

where Po = P and qo = P - k. Thus we get 

II W( + )OJ11 2 

I f(p)j'(p')a( P;Q)ii( P';Q') 
(p,P)EZlrt t-J,(p',P')EZ'" II 

QEZ",Q'EZ" 

x(n,[ jt c*(p;)rLVo c*(pj)]n) 

x(n,[ 110 d*(qnr[Jlo d*(qj)]n). 

Since PI < .. , <Pm' pi < ... <p;" (and similar inequalities for 
q's and q"s), the Wick contractions for the vacuum expacta
tion values of the c-fermion operators in the above equation 
yields the following m 2 + 1 contraction terms (excepuheir 
signs): 

Op,p' oP.P"' op,p;oP',p,op"P,.P''.p;' 

where op,P' = 0p"p; x .. xOP_,P:" and P \. PI = (PI ,,,,,PI_I' 
PI + I ,··,Pm)· Similar n2 + 1 terms arise from the d-fermion 
operators. Thus (m2 + I) (n 2 + 1) ,«m + n)2 + 1) 2 terms 
arise from the contraction. 

Now we take the sum over p,p', P,P', Q, and Q " It is easy 
to see that each of the above terms is dominated by 

( ~f2(p»)(~la(p;QW). 
This is proved by HOlder inequality and by a trivial inequal
ity I l:ja,b; I ,(l:j la j I)(l:j Ibj j). Thus we finally get 

II W( + )OJ II 2< ( ~f2(p) )1I(N 2 + 1)OJII2. 

It is easily confirmed that this inequality does not depend on 
L (except the definition of r). Finally 

If2(p) 
p 

L 1(1 - pep -,k) + M2,)< ~ (Ik I + co), 
pEr OJOJ OJOJ 21T 

where OJ = OJ(p),w' = OJ(p - k), and Co is a constant which 
is independent of Land k, and is of the order M 20 (1). 

(iii) First note that { WI1(k;L)} do not mix electrons 
and positrons. Then when r = 0, it suffices to prove the fol
lowing inequality: 

II W (k )OJII < liN' OJII, 
with OJE!iJ F' or equivalently the following inequality: 

IW(kW«N,)2, 

where 
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Let 

21T .j) 
W(k) = - I (U(P),r Y'u(p - k »c*(p)c(p - k), 

L P 

N' = 21T I c*(p)c(p). 
L P 

N'wn = nwn, ¢ = f ¢n' 
n=O 

Then for wED (N '), using Holder inequality and 
/(u,yDY'u)/ < 1, 

II W(k)wII = sup /(¢,W(k)w)/ = sup I/(¢n,W(k)wn)/ 
1/ qI 1/<1 II q\ 1/<1 n 

< sup I( 2L1T IIIc(P)¢n 112)1/2 
II q\ 1/<1 n p 

x( ~ ~I/C(P)Wn 112y12 

= sup Inl/¢nlll/wnll 
II q\11<1 n 

< sup (III ¢n 112)1I2( IIIN'wm 1/
2)112 

II qll/,,1 n m 

= IIN'wll· 
Finally, CI (1') is the minimal constant such that 

N = NT=o <NT + cl (1'). Then C I (1') depends on Land M. 
o 

From this lemma, we see that the current/,(J,O) 
= f/,(x,O)f(x) dx is a densely defined symmetric operator if 

f(x)ER and (21TIL )l:p (!PI + l)ll(p) 21 < 00. [To check this, 
mimic the proof of Lemma 2.1 (ii).] 

c. Associated bosons 

The two-dimensional currents constructed from the 
massless free fermion can be written as derivatives of neutral 
scalar (or pseudoscalar) boson J (or J) called an associated 
boson (or an associated pseudoscalar boson): 

j'(x,t) = (J"J(x,t)N-; = - e'vaJ'(x,t)N-;. 
(2.16) 

In fact following Uhlenbrock and Kaliber,8-1O Let 

21T 1 [ A. A 

A (p) = L .. /- fJ(p) I:tPl (q)tPl (p + q): 
V !PI q 

+ fJ ( - p) ~:¢; (q)¢2 (p + q)l (2.17) 

Then we define the associated bosons with sharp momentum 
cutoff (Tby 

Ju(x,t) = -i V21T ') 1 [_A(p)e-;PX 
L u;>jpj>o V 2!P1 

.] V-; [ +A (p)*e'Px + -- t(AI +A2) 
L 
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J:(x,t) = - i \1'2; ') €(p) [- A (p)e - ;px 

L u;>jpj>o ~ 

+A(p)*e;PX] _ V 1T [t(AI -A2) 
L 

(2.18) 

where px = !P I t - px, and the operators A I and A 2 are 
charges 

A I = 21T [ I c*(p)c(p) - I d *(p)d (P)], 
L P<O P<O 

(2.19) 

A2 = 21T [ I c*(p)c(p) - I d *(p)d (P)]. 
L p;>O P>O 

Lemma2.1 shows that {A #(p);pEF" {OIl arewell-de-
fined operators on D (N). We can check 9.10 

[A (p),A (q)]<P = [A + (p),A + (q)]<P = 0, 

[A (p),A + (q)] <P = (L 121T)8p•q <P, 

(<P,A (p)lJI) = (A + (p)<P, lJI), 

(2.20) 

where <P, lJIEf» F (finite particle set in Y F) and A + (p) 
= A (p)* r f» F' Moreover 

[A I ,A2] = 0, [A;,A #(p)] = 0, [HOL,A;] = 0, 

[A;,c] = u;(p)c*(p), [A;.d *(p)] = - Iv;(p)ld *(p), 

where HO:L = NT = 1,,1 is the free Hamiltonian of the fermion 
in the periodic box. Let 

Y F = $ A = (A,.A,l Y F(A), 

Y F(A) = {XEY F;A;x = A;X, i = 1,21· 
Let f» F(A ) = f» Fn.'7 F(A ). The sector vacuum n (A ) is the 
vector in f» F(A ) that has the lowest energy e(A ), and given 
by U (A )n except the normalization where n is the Fock 
vacuum and 

Then 

and 

e(A) = (1TIL)(Ai +A I +A~ -A 2 ) 

A (k)f1 (A ) = 0 for any kEF" { 0 1 ' 
Obviously 

f» AA ) c f» F(A ), 

where f» AA ) is the finite particle set of the boson obtained 
by operating {A *(k );kEF,,! 011 ann (A ) cyclically. Uhlen
brock showed f» J(A) = f» F(A). Then as the Fock spaces, 

YJ(A) = YF(A), 
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where Y J (A ) is the Fock space of the associated boson be

longing to the charges (AI ,Az):YAA) = !:iJ AA) . 
The free Hamiltonian HO•L 

= (21TIL )1: IPI [c*(p)c(p) + d *(p)d (p)] is self-adjoint and 
nonnegative. Further 

[HO.L.A + (p)]rP = IPIA + (p)rP 

for any rPE!:iJ F' Since [HO•L 4J = [A #(k )4 i ] = 0, we can 
define 

Ho.L(A )=HOL ~!:iJ F(A), 

A #(p;,.i ):=.4 #(p) ~ !:iJ F(A ), 

where H O•L (A) is called a sector Hamiltonian. Thus we get 

[HO•L (A) - ~ ~ IP IA + (p;,.i )A (p;,.i ),A #(k;,.i ) ] rP = ° 
for any rPE!:iJ F(A ). By the irreducibility of {A #(k;,.i ); kEF '\ ( ° II, we obtain the Kronig's identity 

21T 
HoL(A) = L IIPIA + (p;,.i)A (p;,.i)+ I ll e(A), 

p 

III =1 ~ Y F(A). (2.21) 

3. VECTOR FIELD WITH AN INDEFINITE METRIC 

A. The Proca field 

Letp'(x) = P'(xl, ... ,x,EY(R , and let {fl = {f! II, 
.. .jS}. We define an inner product ( , )p (P means Proca): 

if,) - J dSp I-/-l'()( P/-lPv)/-V( ) ,g p - (21T),2po P -g/-lV + 7 p, 

(3.1) 

whereJl is a (positive) constant, pO = (p,2 + 1::~ IPJ) 112 and 
pi-' = (pO,pl, ... ,p,. Since spec ( - g/-lV + p/-lpjJl2) 
= {O, 1, ... , 1, 1 + 2p2 IJlZ

} , the inner product is not positive 
definite. Let ff be the null space of the inner product and let 
JY' be a set of the above mentioned functions with the inner 

product ( , )p. Thus we define JY"=JY'lff. 
The Fock space of the Proca field of mass Jl is then 

Y = Ell 00 y(n) y(n) = S ["" (JY")] U n=O U' U 11 'O'n , (3.2) 

1 
Sn [If I} ® ••• ® Ifn}] = I" Ilf17(l)} ® ••• ® If17(nd· 

n. 1T 

(3.3) 

For given I flEK', define the creation operator U*(f) by 

U*(f)¢ = (n + 1) IIZSn+1 [(fl ®¢], ¢EYu(n). 

The annihilation operator U(f) is given by [U*(CF)]*, 
where C denotes the complex conjugation operator. Thus 

[U(f),U(g)] = 0, [U(f),U*(g)] = (Cf,g)p. 

The Proca field U/-l (x,O) has the following expression: 

u (x,O) = P [a (p) + a*( - p) ]eiPX
• J dS 

/-l [(21TY2po J 112 /-l /-l 
(3.4) 

The CCRread 

[a/-l(p),av(q)] = 0, 

[a/-l (p),a~(q)] = 8(p - q) [ - g/-lV + P/-lPvIJlZ] (3.5) 

1477 J. Math. Phys., Vol. 21, No.6, June 1980 

with]f'a/-l(p) = ° and ap(p)ll = 0. The generalized num

ber operator is given by (NT~ I = HO(U/-l» 

NT = f dSpp~(p)[ - a: (p)a/-l(p)]. (3.6) 

Especially in two dimensions, 

a/-l(p) = E/-lvpVa(p)/Jl, 

where a(p) = E/-lv]f'av(p)IJl obeys the CCR 

[a(p),a(q)] = 0, [a(p),a*(q)] = 8(p - q). (3.7) 

Then 

F/-lv=a/-l Uv - a,. Up = - JlEpv¢' 

¢ = f dp [ - ia(p)e - ipx + a*(p)eiPX ]. (3.8) 
(21T2p~IIZ 

B. Fock space with an Indefinite metric 

Let JY'1I2 be a space with an inner product 

J dSp 
(f,g)1/2 = (Z1T)'ZP/*(p)g(p), (3.9) 

where pb = (pz + Jl,2)112. The boson Fock space Y B' the 
creationandannihilationoperatorsB *(f),B (f)aresimilarly 
defined. 

For an operator A on JY'1 /2' define r (A ) by 

rCA )Y<;)cY<;), rCA )IY<;) = A ® ... ®A (n times) . 
(3.10) 

For rp = -1, F(rp) is unitary and Hermitian. We define an 
indefinite inner product < , ) = ( ,e) on Y B • Let (e) be the 
adjoint with respect to < , ): 

A(8)= eA *e. (3.11) 

In the following, when there is no danger of confusion with 
[B *(Cf)]*, the annihilation operator B (f) is defined by 

[B *(Cf)] (8) = e [B *(Cf)]*e = [B *(rpCf)]* 

= - [B * (Cf)] * . 
(3.12) 

Then the CCR with the indefinite metric read 

[B (f),B * (g) ] = (Cj,qJg)1/2 = - (Cf ,g)l/Z' etc. 

The gaugeon field B is now represented as 

B(x,O) = P (b(p)+b*(-p)]eipX
• J dS 

[(Z1T)'Zpb r12 

(3.13) 

The operator NT(B) = fd Sp[ - (PbYb *(p)b (p)] is 
nonnegative, self-adjoint and commutes with e. H o (B) 
= Nl (B) is the free Hamiltonian. In the following, B means 

JlB. ll •12 Let . 

(3.14) 

The Fock space Y A = Y u ® Y B has a indefinite inner 
product < , ) = (,e): 

(3.15) 

The Hamiltonian Ho(A) = Ho(U) + Ho(B) is self-
adjoint as well as being e-self-adjoint, and spec H o (A »0. 
The time evolution is implemented by a e-unitary operator 
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exp[itHo(A )] which is also unitary. The Feynman propaga
tor of A 1,3,11-13 is that ofStiickelberg formalism: Especially of 
Landau gauge formalism for )1.' = ° and of Feynman gauge 
formalism for f-l' = f-l. 

4. INTERACTING HAMILTONIANS 

A. Interacting Hamiltoniams with cutoffs 

The free Hamiltonian HOL = HOL (I/t) + HO:L(U) 
+ H OL (D) is not only self-adjoint but also e-self-adjoint 

(namely HO,L e is self-adjoint) since HO'L commutes with e. 
Now let 

HI(L,a,l<) = e LJ.;,,, (x,O)Ap (x,O) dx 

= VC(L,CT,K) + VO(L,a,K) + V(L,a,K) (4.1) 

be an interacting Hamiltonian with double momentum cut
offs a and K, where 

VC(L,CT,K) = e V 2rr r h" (k ) W( + )P(k;L,K')A1' ( - k ), 
L k 

VO(L,a,K) = [VC(L,a,K)](8), 

V2rr - -
V(L,a,K) = e --r hq(k )WI'(k;L,K)A1' ( - k) 

L k 

= [V(L,a,K)](8). 

Here 

A!L(x,O) = V 21T ri;.( _ k )eikx
. 

L k 

In the following we set /i,,(p) = X"'(p) for brevity. Let 

V 'C(L,CT,K) = e V
L

21T r W( + )1'(k;L,K)UI' ( - k), 
Ik 1<0" 

(4.2) 

V"C(L,CT,K)=e V
L

21T r W(+)I'(k,L,K)[,u-2B:(-k)]. 
Ik 1<" 

(4.3) 

V#O(L,CT,K) = [V#C(L,CT,I<)]<8), (# =' or "). 

V' (L,CT,K) and V" (L,CT,K) are similarly defined. Further let 

V'(L,a,K) [resp.V"(L,CT,K)J 

2 

= rV;(L,CT,K) [resp.V;'(L,CT,K»), 
i= I 

where V; (resp. V;) is a collection of terms in V' which in
clude (a(k) I (resp. (a*(k) I). For example, 

V; (L,O',K) = ~ V21T )' £l'vkVWI'(k;L,K)a(k), 

f-l L Ikl<a V 2pO 

k I' = (p°(k ),k ). 

Other operators, for example V ;:2' V ;~t, are similarly 
defined. 

Since (Glimm and Jaffe 14), for r/JEliJ, 

z: pOlla(k )tftIl
2
«tft,Ho,L tft)· 

Lemma 4.1: Let E~pO(k). Then 
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(~ pO(k»)1I2 I1a#(k)(Ho'L +E)-1I2\\<1. 

Further since (£Ho L + E) -1<.(HoL + E 1£) -l/2(£E) -1/2 
(EIOI), 

Lemma 4.1': If E 1£~max{pO(k),l J, then 

( ~ pO(k)Y/2\\a#(k)(eHo'L + E) -111«£E) -112. 

Similar inequalities hold for I b #(k)}. Let E IE 
~max IpO(k ),p,o(k ), 1). Then by Lemma 4.1' and by the 
boundedness of ( WI'(k;L,K) J, 

II V; (L,O',K)(cHoL + E) -l\\«£E) - 112C;, 

where C; is a constant which may diverge as L,K-oo. Simi
lar inequalities hold for other operators V ~ , V;' ,etc. Let K be 
the sum of these constants. Then we have 

Lemma 4.2: When L,K < 00, there are constants E, E, 
and K such that 

\\H](L,a,K)(eHoL + E) -I n <K Iv-;E, 
where K is independent of £ and E and diverges as L,K->-oo. 

Lemma 4.2': When L,K < 00, H](L,O',K) is infinitesimal
ly small with respect to HO,L in the sense ofKato l5

: Namely 
for any f/!EIJ (HO,L) there are constants £ and E such that 

IIH ](L,a,K)tftll <E\IHo'L tftll + E \1 tft\l , with O<E < 1. 

Proof By Lemma 4.2, 

IIH ](L,a,K)tftll 

<K(£E)-l/211(eHo•L +E)tftll 

<K (dE)1/2\\Ho£ ¢'II + K (E leyi2lltft\\. 
SetK (dE) 1/2=£andK (E 1£)1/2=Eto complete the proof. 

o 
Theorem 4.3: H (L,a,l<) is e-self-adjoint on D (HO,L)' 

and semibounded in the following sense: 

infReal spec H (L,O',K)~ - maxi E 1(1 - E),E J 

= -EI(1- E). 

Proof Following Kato, 15 consider the resolvent 

(H (L,a,K) _ ~ ) - 1 

= (Ho - ;) - I [1 + H](Ho _ t) - I ) .- 1 

=R(t) ! (-HIR(tW, 
n=O 

where we set Ho = HO,L' H] = H[(L,a,K), and 
R (t) = (Ho - t) -I. Since spec Ho ~O, using Lemma 4.2' 
we get 

<E sup 1..1. - t I -! + E sup 1..1. \\..1. - t 1 - I . 
-<;'0 ,(;.0 

Since the Neuman series absolutely converges for t such that 
IIH]R (t) II < 1, the set of such tEc is in the resolvent set of 
H o + HI' By a simple calculation, 15 

inf Real part of spec (Ho + HI) 

~ - maxIE /(1 - c),E J. 
Finally, since e = F(rp) is a unitary and Hermitian 
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operator, 

118H[tPll<E IItPll + €1I8HotPll· (4.4) 

This means that the symmetric operator 8H[ is infinitesi
mally small with respect to the self-adjoint operator H 0 8 
= 8Ho in the sense of Kato. Then the symmetric operator 
8 [Ho + H[] is self-adjoint on D (Ho), which means that 
Ho + HI is 8-self-adjoint. 0 

B. Total Hamiltonian 

The investigation in Sec. 2 shows that the cutoff inter
acting Hamiltonian H[(L,a) = limK _ co HAL,a,K) is a dense
ly defined symmetric operator. Let (m 1 ,m2 ,m3) be the num
ber of the Proca boson, c-fermion and d-fermion, 
respectively. Let Y(m p m2,m3)CY u ® Y F be a linear 
subspace which includes m l bosons, m2 c-fermions, and m3 
d-fermions. Further let V;#(L,a) = Iim

K
_ co V;#(L,U,K). 

These are bounded when restricted on Y(m l ,m2 ,m3): 

IIV;(L,a)II<C1(m l +1)1I2(m2 +m3), 

II v;c.a(L,a)II<C2 (m l + 1)1/2«m2 + m3)2 + 1) 

on Y(ml ,m2 ,m3 ), where C1 = O(if) and Cz = O(L~). 
First consider a Hamiltonian H O•L + V'a(L,u) 

+ V·C(L,u). Since! W( ± )1'(k;L) I may not be bounded if 
M #0, Va + V'c may not be infinitesimally small with re
spect to H O•L' Next consider H O•L + V'(L,a): 

Lemma 4.4: H O•L + V'(L,a) is essentially self-adjoint. 
Proof Note that V'(L,u) and HOL do not change the 

number ofth c- and d-fermions. Then it suffices to show that 
HOL + V'(L,u) is self-adjoint when restricted on Y u 
® Y F(m2 ,my This follows from the infinitesimal small-
ness of V'(L,u) when restricted on Y u ® Y F(m2,m3) 0 

Let H(e)(L,u) be the adjoint of H (L,u) = HOL 
+H/(L,a)withrespectto( , ).ThenH(e)(L,u)~H(L,u) 

or equivalently [H (L,u)8]* ~H (L,u)8 since 8 is unitary 
and Hermitian. Thus to prove the 8-self-adjointness of H, it 
suffices to prove the self-adjointness of H8. By mimicking 
the proof of Lemma 4.4: 

Lemma 4.5: The symmetric operator 

K= [HO•L + V(L,u)]8 

= [HOL + V'(L,u) + V"(L,u)]8 

is essentially self-adjoint. 
As will be shown in Sec. 5, the renormalization counter

term is RL.,,(AI') = - (e2/21T)S:A i.,,(x,O): dx, which is 8-
self-adjoint. ThenH(L,a) - RL.,,(AI') ( = HR(L,u) except 
for E (L,u» is again 8-symmetric and densely defined. We 
conjecture that bothH (L,u) and H R (L,u) are 8-(essentially) 
self-adjoint. (For this problem, see. 14.16) This will be dis
cussed elsewhere 

When the fermion mass Mvanishes (the Schwinger 
model), the analysis ofthe Hamiltonian is very easy. Let 

.Y = <11 ,.\.Y(Il), Y(Il) = Y u ®YB ®.'7 F(Il). (4.5) 

Let 9 u, 9 B' and 9 F be finite particle sets in Y u, Y B, and 
Y F' respectively. Define 

IiJ = 9 u ® 9 F ® 9 B' IiJ(Il) = 9n Y(Il). (4.6) 
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Let Hs(L,u) = H(L,u)IM=O' Then the Kronig identity 
reads 

Hs(L,u) = <11 ,.\Hs(L,a-,A.), Hs(L,a-,).) = Hs(L,a) I 9(11 ). 
(4.7) 

Denoting the restrictions a*(p)19(1l), A *(p)19(1l), and 
b *(p)19 (11 ) as a + (p-,). ), A + (p;-i), and b + (p;-i ) (similar 
for the annihilation operators). we get 

Hs(L,a-,). ) 
21T 

= - L :S:'f + (p-,). )K(p;a)S:'f(p;-i ): + 1,.\ e(1l ) 
L p>O 

V-; m-+ -- -h,,(O)(1l1 - 1l2)(a + (0-,).) + a(O;-i ». (4.8) 
L J-l 

Here: : is the Wick ordering, 

S:'f + (p;-i) = {a + (p-,).),A + (p;-i ),b + (p-,). ),a( - p-,).), 
A ( - p-,). ),b ( - p-,). ) },S:'f(p-,).) = [S:'f + (p;-i ) ](e), and 
JY( p;a) is a 6 X 6 Hermitian matrix: 

( ~II (p;u) ~12(P;U) ), (4.9) 

Vv12( - p;a) JY11 (- p;u) 

where 

JYII (p;u) 

Po 

o 

o 

o 

In addition 

[PI 

o 

o 

m = _e _, (J)(p) = (pO + [P1)p, 

v-; 2~ 
(J)'(p) = (pO - IPI)p, 

2V p01P1 

o 

o 

- [PI 

o 

o 

(4.10) 

and J-l' is taken to be zero, which corresponds to the Landau 
gauge formalism ofthe vector field. Finally h,,(p) 
= ho-( - p»O is assumed. 

Note that 17 there is an anti unitary operator r such that 

r 2 = 1, r; = t r(tEC), 

rK(p;a) = K(p;u)r, r T r = - T, (4.11) 

where T= rp<l1 - rp = diag(I,I, -1, -1, -1,1). In the 
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present case, r is explicitly given as 

(0 01'), C l' = diag( -1,1,1,). 
I' 

Let 7t"[(p;a) = off diagonal part of 7t"(p;a). Then 

(4.12) 
p 

if and only if 

I Ihu(p)pI2 < 00. 

p 

This is the condition so that the kernel of H[ is Hilbert
Schmidt. LetK = [HO:L + H[(L,a)]8and note that 8is uni
tary and hermitian. Since HOL 8 is self-adjoint and since 
H/(L,a)8 is a symmetric operator whose kernel is Hilbert
Schmidt, K has null-deficiency indices [Theorem 6.1 in Ref. 
18]: Namely K is essentially self-adjoint. By taking the clo
sure, we conclude the 8-self-adjointness of H (L,a) I M = o. 

The above discussion applies also for the renormalized 
Hamiltonian H :(L,a) since it is again a bilinear Hamilton
ian (see Sec. 5): 

Theorem 4.6: Let 

p 

Then bothH (L,a) andH R (L,a) are 8-self-adjoint at least for 
M=O. 

5. RENORMALIZED HAMILTONIAN 

First of all we must point out that the unrenormalized 
Hamiltonian H (L,a) is unphysical. For that purpose, we 
show that H (L,a) I M = 0 is unphysical. In this case, consider 
the following Bogolyubov transformation 17-22: 

J1'(p;.-1, )-S (p;a)J1'(p;.-1, ), 

J1' + (p;.-1, )-J1' + (p;.-1,)S *(p;a). (5.1) 

Here 6 X 6 matrix S (p;a) is chosen so that the CCR (with an 
indefinite metric) are preserved: 

S*TS=STS* = T, or S -I =S<T)=TS*T, (5.2) 

where T = qHfJ - ({J = diag(I, 1, -1, -1, -1,1). Note 

det(7t" - Tx) = det(S*7t"S - Tx), 

det(7t" - Tx) = - det(7t"T - x). (5.3) 

Then if 7t"(p;a) is diagonalized by suitable S, then the 
diagonal elements are real because of her miti city of 7t", and 
are the roots of det(7t"T - x) = O. However, 
det(7t"T - x) = (x2 

_ p2)[X4 
_ (p~ + p2)X2 + p2(P~ + m2)] 

for !PI <a, where ho = Xo. Thus there are imaginary roots for 
!PI >,u/2Iml and the real roots for !PI <,u/2Iml are not of 

FIG. I. Gauge invariant amplitude. 
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Lorentz covariant (x2 - p2)form. Then Hs(L,a) is not semi
bounded or has no real spectrum though it is 8-self-ad
joint. 4--7.9,10 However it is possible and easy to find an S such 
that the resultant Hamiltonian is partly diagonalized and 
self-adjoint. (It is, of course, again 8-self-adjoint.) 

Thus we must consider the renormalization. See Fig. 1. 
Here ~;v (k ) is the covariant (gauge invariant) amplitude 
given by 

2 f Tr{jj + M)y"(p + Ii + M)yV d 2p 
e (p2 _ M2)«p + k)2 _ M2) (217l 

= i:.... ( _ gP-Vk 2 + k f'k 1 t x(1 - x) dx 
1T Jo M 2 - x(1 - x)k 2 

= : (gP-v _ k::
V
)[1_4M 2I(k 2)], (5.4) 

where I (k 2) = f~ [( 4M 2 _ k 2) + y2k 2] - 1 dy. The integra
tion by d 2p converges if we calculate it in the gauge invariant 
way3,23.24 which ensures the conservation of the current and 
that the gaugeon field decouples from the theory, at the sec
ond order of the perturbation. We say that the theory satis
fies the stability condition if 4M2 >,u2. For 4M2 <,u2, we 
define I (k 2 = ,u2) (for example) by the principal integration 
by y.14 

Corresponding to vector boson-vector boson, gau
geon-gaugeon, and vector boson_gaugeon, we denote 
these second order self-energies by 8E ~::(k ), 8E :';(k ), and 
8E~;(k), respectively, (,u,v denote the polarizations of the 
external bosons and k denotes the momentum (Ik I <,a is 
assumed». 

First of all, by the classical perturbation theory, 14 

8E~;(k) 

_ (' I [ -I] I r;,«k» - - 8"(k) H1(L,a)(HoL - Po) H1(L,a) U conn 

where conn. means that we omit the disconnected (i.e., vacu
um) diagrams. Denoting the Wick contraction by, 3 we get 

8E~,;'(k) 

= - ~ I ~(~(k)I~(-k')Av(-k")18V(k» 2 {2"--' I I} 
21T k',k" L 

XDk, k·Dk,k" [~'t\(Po(k),k) +~';;(Po(k),k)J, 

(5.5) 
where 

11f1) (Po (k ),k ) 

= ~ (!11 w< - )f'( - k;L ) 

X (HO:L - Po(k» -I W< + )V(k;L )1!1), 

11f2\ (Po (k ),k ) 

= ~ (!1 I W< - )V(k;L ) 

X (HoL + Po(k» -I W< + )f'( - k;L )1!1). 

We define 
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The gaugeon self-energy is given by replacingpo (k ) by pb (k ). 

Now 

~;(Po(k ),k) 

= 21T'LSl-'v(p,P±k) 
L p 

X (w(p) + w(p ± k) + Po(k» -I, 

where 

SI-'V(p,p') = SVI-'(p,p') 

= (v(p) .. fyl-'u(p'»)(u(p'),Y>rVv(p» 

= ~[_ gl'n ~ + 8'v(1 + L) 
2 ww' w 

X1+-+---, ( p') p' P] 
w' w ' w 

with w = w(p), w' = w(p'). Note SI-'V(p,p ± k) = O(p -2) 
as 11'1-00. (See also Lemma 2.1.) 

We first consider the massless fermion case, i.e., in the 
Schwinger model limit, noting thatp/w(p) = €(p) forp#O, 
we have 

where 

kl-' = (Ik I,k), "I-' = (Ik I, - k). 

Thus 

v e2{ _k2//L2 for /L=V, 
tr' (Po(k ),k) = - k (k)1. 2 t' ....t. 

1T - Po /L lor /LrV. 

On the other hand, from the covariant perturbation theory, 

e
2 

( kl-'kV)1 ~:v (Po (k ),k ) = - gl'v - -k 2 ' 
1T k"=pJ,k) 

namely 
2 

~:v (Po (k ),k ) = tr'V( Po (k ),k ) + ~ - 1 )8'I!5vl
• 

1T 
(5.6) 

Next we consider the amplitude (v-g) following this 
line. Thus in order to renormalize the amplitudes following 
the covariant perturbation theory, we have 

RL.u(AI-') = - ~2 L :A i.u(x,O): dx, m = eN-;. 
(5.7) 

The case of M #0 will be similarly discussed (by ap
proximating the theory by L = 00 theory to calculate the 
energies), and we see that RL.u(AI-') is independent of M. 

Finally we consider the vacuum energy which should be 
a real quantity chosen so that inf spec H R (L,u) = O. In the 
present case, however, the spectrum of H R (L,u) is not neces
sarily real since the indefinite formalism is used. In such a 
case, the vacuum energy renormalization may be meaning
less. But if spec HR(L,u)CR, then we can expect that the 
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FIG. 2. The lowest order vacuum 
energy. 

divergent terms in E (L,u) as u- 00 is the second order vacu
um energy E2 (L,u) as a conclusion of the power-counting 
theorem.2,3 

The second order vacuum energy E2 (L,u) is given by 
Fig. 2, and 

- (11IH[(L,u)H OL1H[(L,u) 111 ) 

2 L [21T ~ ( 21T ~ SI-'V( k) = -e --2 - -£". p,p-
(21T) L Ik <u L p 

X UI-'v(k)( Po(k) + w(p) + w(p - k»-I 

+ 21T 'L SI-'V(p,p - k )BI-'v(k) 
L p 

X (pb(k) + w(p) + w(p - k» -I)], (5.8) 

where 

_ k ~k ~ ( ) 
B"v(k) = - , k'l-' = pb(k),k . 
~ 2p2pb(k) 

Though the integration by p coverges absolutely (see 
Lemma 2.1), the integration by k diverges logarithmically as 
U-oo (after the integration by p). E2 (L,u) diverges like 
const Lu 2 in the Proca formalism. 

The difference E (L,u) = E (L,u) - E2 (L,u) (renorma
lized vacuum energy) may converge even for U-oo as well 
as the cases in (r/J 4)3' (Y)2 25-29: 

(i) E (L,u) converges for u- 00 ? 

(ii) lim ~ E (L,u) exists? 
L,u---+oo L 

These questions will be affirmatively answered for M = 0 in 
Sec. 6.2. For use in that section, we calculate E2 (L,o) in the 
Schwinger model Iimit: 

E2 (L,u) 

= - L m
2

2 (21T 'L k 2(pO-I(k) - pb -I(k »). (5.9) 
81T/L L Ik I<u 

6. THE SCHWINGER MODEL 

A. General aspect 

We study postulates which QED-type models should 
satisfy. In such a formalism, we require that negative prob
ability states do not appear in physical world.2,3,30.31 

Postulate [0]: There is a Hilbert space Jf' equipped with 
an indefinite sesquilinear form ( , ) = ( ,8), where 8 is 
unitary and Hermitian. The Hilbert space Jf' contains at 
least a linear subspace Jf" such that 

(x,x);>O for xEJlt"'. 

Let 

Jf'" = {xEJlt"'; (x,x) = OJ. 
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Then the physical subspace JY'phYS is defined by (JY"; JY''') . 
Postulate [1]: There is a 8-unitary representation of the 

Poincare group, and we denote it by U (a;A ). Then 

[1.1] U(a;A )JY"CJY", U(a;A )JY''' CJY'''. 

[1.2] Let! pill be the generators of the space-time 
translation operator U (a; 1). Then these are 8-self-adjoint 
and leaveJY" andJY''' invariant. ! pll I JY'phys 1 always have 
real spectrum. Especially pO I JY'phys has real nonnegative 
spectrum. Spec! pll I JY'phYS 1 is always in the forward light 
cone. 

[1.3] There is, at least, one vector fl in JY'phys such that 

pllfl=O. 

Therefore, we must consider whether or not the renor
malized Hamiltonian satisfies the postulates except those de
stroyed by the cutoffs. 

(I) 8 self-adjointness: HR(L,aye) = HR(L,a). 
(2) Let~CY be the domain ofHR(L,a). Then from 

Postulates [1] and [2], one may expect that there is a direct 
orthogonal sum ~ = ~hYS Ell ~nphYS (with respect to 
( , » such that 

H R ~hys(unphYs) C ~hYS(UnphYS) , 

spec H R t ~hys(UnphYs) ;;'0, 

(x,x);;.O for X~hYs' 

Unfortunately such invariant subspaces cannot be in the 
Fock space in general, and this requirement is not complete
ly true. See Sec. 6.3 and the final remark in that section. 

The time evolution is expected to be implemented by 
the would-be 8-unitary group U(t) = exp[itHR(L,a)]. But 
U (t) is not 8-unitary and bonded in general. Then we define 
a,("): 

a,(A ) = expitoHR.A 

= I (it)" [HR [HR,···[HR.A l"]]' 
n! 

Formallya l satisfies 

1 [as(A )] (e) = as (A (e). a o = , alaS =a,+s' 

Let <I> (f,t) = a, (<I> (f,0», and letj(x,O) be a conserved cur
rent provided that the time evolution is implemented by a 
free Hamiltonian. However, 

JdJl(x,t) = a,(J}/(x,O) + i[HR/(x,O») 

= a,(i[H/ - RL",/(x,O)]) #0. 

Thus a, (f(x,O» is not conserved in general, and we define 
suitable Heisenberg field operators which appear in the field 
equations by improved methods when this phenomenon 
takes place. 

(3) Conservation of current: Jl-'jll (x,t) = 0. 
(4) Maxwell equation: 

( 0 + Ii 2)A Jl(x,t) - (l -Ii ,2; f.l2)JI-' B (x,t) - ej(x,t ) = 0. 

If B is a massless free field, then JI-' A Jl = ° (Landau gauge). 
Since the gaugeon field B interacts with matter fields in 

a nontrivial way, it is not obvious that the gaugeon field is 
represented as a free field. But as far as the vector field cou-
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pIes to a conserved current, this is ensured by the covariant 
perturbation theory. 3.24,32,33 If there exist a suitable space 
such thatB is represented on a Fock space which is left invar
iant by the time evolution, we denote such a space as Y phys' 
This may be completely different from the original Fock 
space (even if L, a < 00). Thus we set Y phys = JY'. In this 
case, 

(<I> I [(0 + f.l2)A Il - ej] IIJI) = ° for <1>, IJIElJiPphyS . 
Further,3,II,12,30 

<PElJiP' if and only if B (- l(X,t)<I> = 0, 

where B ( - l is the negative frequency part (annihilation 
part) of B. This is the Lorentz condition. 

(5) Dirac equation: 

(iJ - eJ) IJI (x,t ) = 0. 

(For the definition of JIJI, see Sec. 6.5.) 

B. Diagonalizatlon of Hf(L,a) 

The renormalized Hamiltonian reads 

R 21' H s(L,a;A, ) = - I :.r1" + (P;A, )Yr'R (p;a).r1"(p;A, ): 
L p>o 

+ 1,,(e(A)-E(L,a»+(p=O term), 
(6.1) 

JY'R(p;a) 

= diag! pO,!PI, - IPI,pO,!PI, - !Pll for !PI >a, 
(6.2) 

Yr'R(p;a) 

( 

Yr'R.II (p) 

= JPR ,12(-P) 

with 

JY'R,II (p) 

pO(1 + m2) 
2f.l2 

here 

m , 
- (j) 

f.l 

m 
-(j) 

f.l 

m , 
-(j) 

f.l 

!PI 

o 

m 
- -(j) 

f.l 

° 
i~1P1 

f.l 

° 

+ 

i~!P1 
f.l 

(6.3) 
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and for more general ha , H ~ is given by replacing m by mha . 

Let 

fft"R(p;u)Tu; = w;u;, (6.4) 

where w; is one of the roots of det[fft"R T - x] = 0 and U; is 
the corresponding eigenvector normalized as (u;,Tuj ) 

= (T)ij' 
Thus {w;;i = 1, ... ,6J = { ± qO, ± IPI, ± IPI J, with 

qO = (p2 + fi2)112, fi = (p2 + m2)112. (6.5) 

We obtain S (p;u) and fft"~(p;u)=S *(p;u) 
X fft" R (p;u)S (p;u) as follows: 

(1) Ipi >u:S(p;u) = 1 fft"R(P;U) = fft"~(p;u), (6.6) 

(2) IPI <u: 

S(p;u) = T(u 1 ,U2,U3 ,rU I ,rU2,rU3) 

~~+(P) :-(P) )-
(6.7) 

- (-p) S+ (-p) 

where 

Ppo + J-l2qO mK 
0 ---

2J-lfiv' pOqO 2fipo 

.m mp J-l2 + fi2 
S+ (p) = 

2J-l~ 
-1-

2J-lfi 2J-l 

im2p .m 
1-

2J-l[iv' qO IP I 2fi 

fi2pO _ J-l2qO mK 

2J-lji\lj;f 2fipo 
o 

m2 mp 
S - (p) = 

2[iv' q01P1 2J-lfi 

. m 
-1-

2J-l 

im2 im 

2J-l[iv' qO IP I 2fi 
o 

and 

fft"~(p;u) = diag{qO,IPI, -1P1,qO,IPI, -IPI J. (6.8) 

Note 

U:.s£ + fft" R .s£: U - 1 

L 3 

+ 21T .L [fft"~,3 + ;,3 +; - fft" R,3 + ;,3 + ; ltp;;· 
,=1 

Thus the vacuum energy E (L,u) should be chosen as 

L [qO - pO _ m: (pO - IPI)]. (6.9) 
° <p.;;a 2J-l 
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Then from (5.9) withpo = IPI,E(L,u) = E(L,u) - E2(L,u) 
IS 

L (qO - pO - m2z<PO - IPI) + m
2

2(p2po-1 - IPI»), 
° <P';; a 2J-l 2J-L 
which converges as u_ 00. Thus we get 

Theorem 6.1: The renormalized vacuum energy E (L,u) 
converges to E (L, (0) as u- 00 , and the renormalized vacu
um energy per unit volume converges as L,u-oo: 

I
. E(L,u) 
1m 

L,a~oo L 

= _1 100 

dp [qO + ~ p2PO-1 _ (1 + m
2 '"0]' 

21T ° 2J-l2 2J-L2 !' 
Finally we obtain the transformation rules of the opera

tors {t/J ~(x,O),J ~(x,O),B ~(x,O), U ~,a(x,O),j~,a(x,O), 
B ~,a (x,O) J, where u means the sharp momentum cutoff and 
(') means that the zero frequency parts are omitted. Let 
U(L,u;A,) be an operator on Y(A) which implements (5.1) 
and let U(L,u) = ® A U(L,u;A,). Then (we omit u, (') and 
(L,u) for simplicity): 

Ut/JU -I = fi ¢j, UBU -I = B, 
J-l 

UJU - 1 = j1 J + m B, 
J-l J-l2 

(6.10) 

u.·U- 1 fi· m B '11 = - il + - I' 
J-l J-l2 

U'n U -I 2U- eJ-l. u'n U -I B 
DO = - m ° + --=-io, D 1 = 1 • 

J-l 
Here Ul' is the Proca field of mass fi = (m 2 + J-l2) 1!2 and ¢j is 
~calar field of mass fi defined by - fiE a{3 ¢j = a a U{3 - a (3 

Ua • Note that there is a mixing between J and B, which is 
closely related to the so-called Higgs mechanism. 

The Maxwell equation and the conservation of the cur
rent do not hold among these transformed operators, which 
means that these operators cannot be the Heisenberg opera
tors which appear in the field equations. 

c. Properties of U(L,U;A), U(L,u) and the physical vacuum 
(J) 

Each Y; (= Y U' :7J , Y B) is the Fock space con
structed from the one particle space fft";. Let fft" + = fft" u 
E9 fft" J, fft" _ = fft" B and let tp = p + - P _ be a unitary and 
hermitian operator on fft" = fft" + E9 fft" _ , where P + and 
P _ are projections onto fft" + and fft" _ ,respectively. We 
define an indefinite product ( , ) = ( ,tp) in fft" as before. 
Further we can define the Fock space Y(JY) = Y(fft" +) 
® Y(fft" _ ) and the creation operators {a*(f);[EdY} as 
before. 

When 8 = r(tp) = 1, the annihilation operator is de
fined by a(f) = [a * (Cf)]* , where C is the complex conjuga
tion operator. In the present case, by unitary and hermitian 
8 = r(tp), we define an indefinite inner product 
( , ) = ( ,8) on the Fock space, which we denote {Y, 
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( , )}. In this case we define the annihilation operator by 

a(f) = [a*(Cf)] (0) = [a*(Cf)]*8 = [a*(~Cf)]*. 
{ a(f), a*(g)} obey the CCR with an indefinite metric: 

[a*(f),a*(g)] = [a(f),a(g)] = 0, 
(6.11) 

[a(f),a*(g)] = (Cf,~g) = (Cf,g)· 

We define the 8-self-adjoint (Segal's) field by 

tP '" (f) = (lN2)[a*(f) + [a*(f) ](0)]. (6.12) 

Then the CCR reduce to 

[tP",(f),tP",(g) J = ilm(f,~g) = - i Re(f,~Jg), (6.13) 

where J is the multiplication operator of i = ( -1) 112. 

Conversely 

a*(f) = [1/(2)112] [tP",(f) - itP", (Jf) J, 
[a*(f) ](0) = [1/(2)112] [tP tp(f) + itP tp(Jf)], 

and the Fock vacuum n is defined by [a*(f)] (O)f) = 0 for 
any! 

Let (B + ,B _ ) be a pair of bounded operators on K. 
Then TB = B + + CB _ (= B) is called an (invertible)~
symplectic operator (or ~-Bogolyubov transformation) if 
and only if 

(6.14) 

where T1) is the adjoint of T B with respect to Re( , ): T1) 
= ~T~~, T~ = B *+ + B *_ C. Hence the transformation 

tPtp(f~tPtp(TB f)=11'B (tPtp(f» (6.15) 

leaves the CCR invariant. We study a linear transformation 
U il I on Y which implements 

U B-
I P(tP",(f,J, ... ,tPtp(/"»f)=11'B ,(p)nB, (6.16) 

for any polynomial P of the fields and any test functionf, 
where11'B I (P) =P(tPtp(T ill fl), ... ,tP",(T ill fn» andnB 
=Uilln. 

Definition 6.1: A rp-symplectic operator TB is called 
(i) 8-unitarily implementable if there is a 8-unitary 

(i.e., bijective 8-isometric) operator U il 1 such that 
11'B ( P) = UBPU B- 1, 

(ii) weakly 8-unitarily implementable if there are a 8-
isometric (not necessarily bounded) operator U il 1 and a cy
clic vector nBEY such that (6.16) holds, 

(iii) 8-unitarily quasi-implernentable if det[1 + B (!') 
XB _ ] converges to a nonzero positive finite constant, 
whereB _ = C(Ts -JTBJ -1)/2. 

First of all, using [tP '" (T il If) + itP tp (T il I Jf)]n B = 0, 
we get: 

Theorem 6.2 34
: If f)BEY, then 

(i) B _ is of Hilbert-Schmidt class, 
(ii) ( - 00 ,0] is in the resolvent set of B (~) B + 

= 1 + B(!')B_. 
Theorem 6.3: The necessary and sufficient condition for 

TB to be 8-unitarily implementable is that [B ± ,~] = 0 and 
B _ EH.S. (H.S. means the Hilbert-Schmidt class). 

Proof If TB is 8-unitarily implementable, then 
IIUBII = IIU illil < 00, since U il I = 8U~8. LetfEK + 

= P + K. Then tP '" (f) is self-adjoint. tP '" (T nI) = tP '" (P + 
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T nf) + tPtp(P _ T J)isanormaloperatorbecausetPtp(P + g) 
and itP '" (P _ g) are mutually commuting self-adjoint opera
tors for any gEK. Now 

U 
i<P.,UlU -I _ i<P.,( P • T nf) i4>.,(P _ T J'l 

Be B - e e , 

where /lexp[itPtp(f)]/I = /lexp[itP",(P + TBf)]/I = 1 and 
/lexp[itP",(P1Bf)II = 00 whenever P1B f=l=O. ThenifTB is 
8-unitarily implementable, P1BP + = O. By considering 
tP tp (f) withfEK _ = P _ K, we also get 0 = P + TBP _ 
whenever TB is 8-unitarily implementable. 

Thus we can restrict ourselves to usual symplectic oper
ators which commute with ~. A result of Shale 17-22,34 can 
apply for the rest of the proof. 0 

If B _ EH.S., then B (!')B _ = B (~)B + - I is of trace 
class. Then Theorems 6.2 and 6.3 mean: quasi ::J weakly ::J 
unitarily. 

Definition 6.2: LetKbe a real linear subspace of K such 
that K = K eJK, where the direct orthogonal sum refers 
the orthogonality with respect to both Re( , ) and Re( , ). 
A ~-self-adjoint ~-symplectic operator S is called a general
ized ~-scaling if S leaves K and JK invariant: 

S_(h 0 ) on KeJK. 
- 0 h- 1 

(6.17) 

Theorem 6.4 34
: Under the conditions of Theorem 6.2, 

T=UH, (6.18) 

where U is ~-unitary and H is a ~-self-adjoint ~-symplectic 
operator with its spectrum in the right half plane. Further 
this decomposition is unique. If T leaves K and JK in defini
tion 6-2 invariant, then H equals a generalized ~-scaling S. 

This is proved 34 by applying an integral formula owing 
to Dunford and Schwartz 15,25 which givesH = (T(tp)T)112 

with its spectrum in the right half plane. (Note that T("')Tis 
a tp-self-adjoint ~-symplectic operator.) 

Given a generalized ~-scaling S, let TB = VI SV2 with 
V; ~-unitary. Then, since { V; J are bounded operators, 

B _ EH.S. __ S _ EH.S" 

det[1 +B(!,lB_] =det[1 +S(!'lS_]. 

Further if Vis ~-unitary, then r(V)tP",(f)r(V -1) 
= tPtp(Vf). Then 

(6.19) 

for TB = V1SV2 • Since" VII;;.l ifVis~-unitary,r(V)isun
bounded 8-isometric in general. If Ts = VS, then nB = fJs 
since r(V)n = n. 

We introduce the Q-space method 14,22.34,36: Namely in-
troduce the following unitary operator W: 

WY = L 2(Q,df./,O), WfJ = 1, Q = R "", 

dpo = IT (11') -1/2 exp [ - q7]dqj> 
i= 1 
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{ 

qi' 

WlP",(ei)W- 1
= . 

- lqi, eiEK _ , 

_I {i( -ai +qJ, 
WlP",(JeJW = 

- ai + q" eiE}( _ , 

where a, = a/ aqi and {e i I is complete orthonormal basis in 
K with respect to both ( , ) and < , ), and K ± = P ± K. 

In terms of the q-variables, fl s satisfies -

[r/t*(h - 1 )lrr/t! q I + r/t*h lrr/t{ ~ - q })fls( q) = ° 
with (fls,fls) = 1. Here hij = (ei,he) and 1/1 = P + - iP _ 
is a unitary operator such that ifl = rp and 
Cr/tC = r/t* = 1/1 - I. Then we obtain a formal vacuum fls(q): 

fls(q) = [det(a)]1/4exp [ - !(q,(a -l)q)]. (6.21) 

Here a = r/t*(h -Z)lr¢ = r/th -2¢* is a <p-self-adjoint sym
metric matrix since h is rp-self-adjoint and real (namely 
ChC = ii = h). Obviously, 

S _ EH.S.~ -IEH.S. ___ a r - 1,aiEH.S., 

where a r and ia i are the self-adjoint ( = real) and skew-self
adjoint ( = imaginary) parts of a, respectively. Note that 
<pa,rp = a r andrpairp = - ai' Then det(a) > ° whenevera r 

>0. 
Theorem 6.5 34

: Let S _ EH.S. and let a r > c for some 
c>O. Then 

(i) flsEL 2(Q,dp'o), 
(ii) (fl, fls) = det -1/4 [1 + S<!) S _ ] is positive non

vanishing finite, 
(iii) n s I EL 2(Q,dP,o)· 
Theorem 6.6 34

: Under the assumption of the above 
theorem, 

(i) fls and fls I are cyclic for Y, 
(ii) (fls,Pfls) = (n,1Ts (p)n). 
Theorem 6.7: For a generalized rp-scaling S, the vector 

fls which satisfies 

ps( P) = (fl,1Ts( P)fl) = (fls,Pfls ) 

cannot be in the Fock space if inf spec a r < 0. 
Proof: a = h - 2 takes the following from on 

JK = JK + ffJJK _ : 

(
a r ) + + (a;) + _ ). 

(a,L + (arL_ 

(6.22) 

Namelya r = (a r ) + + Ei)(arL _ onJK + Ei)JK _ . First as
sume that inf spec (a r ) + + = - A. (A. > 0). Let/EJK + be 
the eigenvector belonging to the eigenvalue - A.. Then for 
IEJK +' lIexpilP",(f)1I = 1 and 

ps(expi(/J",(f» = (fl,expi(/J",(S/)fl) = exp[ - !(Sf,S/)] 

= exp[ - !(f,(ar ) + +/)] = exp [ ~ Ilfllz]. 

If A. > 0, then the right hand can be made arbitralily large, 
which contradicts I ({}s, expi(/J",(f)fls) 1<II{}sIl2. The case 
ofinf spec (arL _ < ° is similarly discussed. 0 

The proof of Theorem 6.7 suggests that the Lorentz 
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state defined by (fl,1TB ( ••• ){} ) cannot be continuous on the 
C *-algebra generated by {expi(/J (f);/EiIt'J in general 

«(/J (f) = (/J '" = 1 (f». 
The following is proved in Ref. 34 (see also Refs. 14,25, 

35-38): 
Theorem 6.8: Under the assumption of theorem 6-6, fls 

ElJ (N), where N = ~ia*(eJa(eJ is the number operator. 
We turn to the model: Y(m = ® p>oY(p) 

® Yep = 0), where Yep) is the Fock space constructed 
from the one-particle Hilbert space iJt"(p) = C 6 with an in
definite inner product ( ,rp) with 
rp==rp Ei) rp = diag(l,l, -1,1,1, -1). 

Let B ± (0) = Ei) 0 <p"-,,B ± (p), where 

(

S*+ (p) 0) 
B + (p) = , 

o S'+ (- p) 

C
O S"_ (-P») 

B _ (p) = . 

*_ (p) 0 

(6.23) 

Let 

T(u) = B + (u) + CB _ (u) = Ei) o<p.;"T(p), (6.24) 

where T(p) = B + (p) + CB _ (p) is arp-symplectic opera
tor on iJt"(p). T(u) leaves K",=K + Ei) iK _ and JK", invar
iant and takes the following form on ~ = K", Ei) JK",: 

B + (07) ~q>B_ (J. 
(6.25) 

Then T has the decomposition T = US in Theorem 6.4. Let 
a = a(u) = T<t )T2 • Then in the Q-space 

flB = n (L,u) = det1l4(u)exp[ - Hq,(a - l)q)]. 
(6.26) 

It is easily seen that (replace m by h"m) 

c- I ;;;oa(u)r>c~lmh,,(p)!pl < 1, 

B _ EH,S'-Llh~(p)1 < 00. (6.27) 

In the following, we set hs = X", Then n BEY if u < 00 

and I ml p, I < 1. In this case 

Z(L,u)=(fl,flB ) = n det- I (S+ (p» (6.28) 
o <p<.u 

and det -I (S + (p» 

(4p,2 + m 2)(jPpo + p,2qO) + 2m2m 2
1 pi _ m 2 1 pi 

are nonvanishing finite for any p" 1m 1;;;00 and p. Further 
det -I (S + (p» = 1 + m2/8p2 + O(p -4) asp~oo. Then the 
overlap between the vacua uniformly converges to a nonvan
ishing finite value Z (L) (from below) as (uo < )u~oo. 

Theorem 6.9: (i) Letu< 00 and 1m/p,I < 1. Then T(u) is 
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weakly 8-unitarily implementable 
(ii) T(a) is 8-unitarily quasi-implementable for 

Il, I m 1;;;.0 and a< 00 (provided L < 00). 

Theorem 6.10: Defineap(L,a) = -logZ(L,a)/L. 
Then limL.(Hoo ap(L,a)=ap exists (p means "periodic 
boundary condition"): 

1 100 

ap = - dp log det[8 + (pH 
21T 0 

Z (L) and Z (L,a) are necessarily in [0,1] when 8 = 1, 
and is just the case seen in the models P(tP )d'(Y)d' 
etc.25

•29,35,36.39 But in the present model, because of the indefi
nitemetric,Z (L )andZ (L,a) are not necessarily smaller than 
I: In fact det -I [8 + (p)] > 1 forlarge p. Further a p is posi
tive if 8 = 1. In the present model, however, this is not nec
essarily positive. 

Thoughn (L,a)EYand (n (L,a),n (L,a» = 1 if a < 00 

and 1m/Ill < 1, n (L,oo)~Y. In fact B _ (oo)~H.S., and 
moreover 

On the other hand, the formal overlap det -1/4 [1 
+ B ('I') B _ ] converges to a non vanishing finite value Z (L ) 

because B ('I')(p)B _ (p) = nilpotent matrix +O(p -2). As 
is well known, if 8 = 1, then the three notions in definition 
6-1 are equivalent to each other. But for 8 i= 1, even if the 
formal overlap det -1/4 [1 + B ('I')B _ ] converges to a non
vanishing finite value, n B is not necessarily in the Fock 
space. 

Consider 

~ tP (t) = - iH ~(L,a)tP (t), tP (0) = tPo EY. 
dt 

Thus we formally have tP (t) = U ( - I )tPo with U (t) 
= exp[itH n U (t ) is formally a one-parameter 8-unitary 
group, but this cannot be well defined: U (t ) is unbounded in 
general. Instead, we consider 

at ( ... ) = expitoH~(L.")' (6.29) 

which implements the following transformation: 

at (fP",(f» = fP",(T(t)f), 

where T (t) = T B 1 Ko (t )TB and Ko (t ) is a one-parameter 
unitary group defined by (H ~ the diagonalized 
Hamiltonian) 

expitOH'/I,L.")·fP,,,(f) = fP",(Ko(t)f)· 

Ko is a one-parameter unitary group commuting with cpo 
Then T(t) is a one-parameter group of cp-symplectic opera
tors. T (t ) _ EH.S. for all tER whenever B _ EH.S. because of 
the boundedness of B + and Ko (t). However, even if T B is 
weakly8-unitarilyimplementable, T(I ) is not always weakly 
8-unitarily implementable. This is 8-unitarily quasi-imple
men table in general. 34 

Remarks: (1) One-parameter 8-unitary group U (t ) is 
calledstableifllU(t)II<M < 00 foralltER. The necessary and 
sufficient condition for a 8-self-adjoint operator H to be a 
generator of one-parameter stable 8-unitary group is that H 
is similar to a self-adjoint operator H O ,4-7.15 which is equiv-
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alent to that D (H) is decomposed as D(H) + Ell D(H) -
where D(H) ± are uniformly definite subspaces. This is not 
expected in physics [in fact either U (L,a) or U (L,a) - 1 is 
unbounded (theorem 6-3)]. (2) If 1m/Ill < 1, then H ~(L,a) 
has the spectra resolution in terms of 8-self-adjoint projec
tions IE(A );A;;;.Oj. But their ranges are not uniformly defi
nite. If I m/ Il I > I, then I E (A ) j are not defined on Y. 

D. Properties of U(L,a), U(L,a;J,.) and the physical vacuum 
(II) 

The topology of JY' = JY' + Ell JY' _ [Ell: orthogonality 
for ( , ) = ( ,cp)], is defined by (X,X)I = (x + ,x + ) - (x _ 
,x _ ) (x ± EJY' ± ), while the topology of B- 1 JY' = B- 1 

JY' + Ell B -1 JY' _ (B: cp-unitary) is defined by (X,X)2 
= (x + ,x + ) - (x _ ,x _ ) (x ± ED - 1 JY' ± ). Since B- 1 

= cpB *cp, there are positive constantsll 1 andll2 such thatlll 
IIxll , < IIxll2 <1l2 IIxil I' which means that JY' and B- 1 JY' are 
equivalent. 4 

On the other hand next consider Y and U i I D (U i 1 ) 

with UBI = reB -1). Since liB" = liB -1" > I ifBdoesnot 
commute with cp, r (B) and r (B - 1) are unbounded opera
tors. Therefore, Y and Y(B - 1 J¥) are not equivalent. This 
is the reason why the set of weakly 8-unitarily implementa
ble B does not form a group and is not invariant by cp-unitary 
operators. 

Definition 6.2: Let 21 be a C *-algebra with an identity. 
Let 210 C 21 be a Banach algebra containing the identity 
which has an algebraic involution 8 defined by A (0) 

= 8A *8. Here 8 is a unitary and Hermitian operator in ~l. 
Then the Banach algebra 210 is called a Lorentz algebra. 

In the present model, the Lorentz algebra 210 is given 
from the C * -algebra generated by I expifP (f), ¢(g), ¢*(g) I by 
taking the new adjoint A (0) = 8A *8. 

If n (L,a)EY, a (continuous) linear functionalpL.u 
( ... ) = (n (L,a), ... ,n (L,a» satisfies the following: 

(1) PL.,,(l) = 1, 

(2) PL.,,(aA + bB) = apL.,,(A ) + bpL.u(B), 

(3) PL.,,(A) = PL." (A (0» 

for all elements A,B,"', and constants a,b. 
Definition 6.3: A linear functionalp on a Lorentz alge

bra mo is called a Lorentz state ifit satisfies (1)-(3). Ifmo is in 
the C *-algebra consisting ofthe bounded operators on a Hil
bert space and if P is given as (01, ... ,01) with O1EY, then pis 
called a vector Lorentz state. 

Unfortunately, however, see the proof of Theorem 6.7, 
which implies that the Lorentz state cannot be continuous in 
general on the C *-algebra generated by 
I expifP (f), ¢(g), ¢* (g) j . 

The following conjecture is due to Hansen 40: 

Conjecture 6.1: Let mo be a Banach algebra (3 I) with 
an algebraic involution t such that IIA til = IIA II. Letp be a 

continuous Lorentz state on mo such that p( 1) = 1, peA ) 
= peA t). Then there exists a representation 1Tp of210 as clo

sable operators on a Hilbert space Y, which satisfies: 
(i) There is an invariant dense domain !iJ C Y such that 

1Tp (A) ~ !iJ is closable; 
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(ii) there are cyclic vector n and a unitary and Hermi
tian operator 8 such that 7T/A t)C 87T;(A )8,p(A) 
= (8n,7Tp (A )12); 

In addition, can we prove the following? 
(iii) (n,n) = (8n,n) = 1; 
(iv) the representation is unique up to a 8-isometric 

operator (in some sense4-7). 
Our preceding investigation strongly suggests that (iii) 

and (iv) also hold. 
The present state is continuous only for ImlJ.l1 < 1. 

Then even if the conjecture holds, it applies only for the 
small coupling region such that the state is continuous. This 
means that it is not appropriate to consider a Lorentz state as 
a (continuous) linear functional on the Lorentz algebra. 
Thus it may be rather appropriate to consider the state as a 
linear functional on the field algebra which has no topology. 

In the present model, the representation TTB is explicitly 
obtained and there is no problem: New Hilbert space 
(equipped with an indefinite metric) is again a Fock space: 

~ = .7 phys =.7 fJ ® .7 F ® .7 B' 

~phYS = .7 fJ ®.7 F' 

where.7 fJ is the Fock space of the Proca field ofmass,u. In 
QED-type models where an indefinite metric is used, we re
quire that the ghost particle (gaugeon) should be represented 
as a free field whether or not the model is exactly solvable. 
But the representation may mix the field operators, and then 
we must reconstruct the observable algebra from these field 
operators. 

E. Heisenberg fermion field operator 

For simplicity, we transformS(p) into a real matrix by 
a unitary transformation 

a(p)-a l (p)=a(p), A (P)-a2(P)==A (p), 

b (p)-a 3 (p)=ib (p). 

We denote the resultant matrix again by S (p), and define 

a\ ±)(p)=a;(p) ± a;( - p). 

We must obtain U (L,o) = ® 0 <p<a U (p) as an explicit func
tion of the generators 

(i) - 0; [a;(p)a;( - p) - h.c.], i = 1,2,3, 

(ii) - r k [(a;(p)a;( - p) - h.c.) ± (~- p)], 

(iii) - tpk [(a;(p)aj(p) - h.c.) ± (p- - p)], 

where h.c. denotes the adjoint with respect to ( , ) and 
(ij,k) = permutations of(1,2,3). We want to obtain U (p) in 
the form U(p)V(p)W(p) where U(p) = UI (p)U2 (P)U3 

(p), V(p) = VI2 (p)Vn (P)V31 (p), and W(p) = WJ2 
(p) Wn (p) W31 (p). 

Here 

and 

Uj(p) = exp( (27TIL ) [expression (i)11, 

Vij(p) = exp{ (27TIL )[expression (ii)]}, 

Wij(p) = exp( (27T1 L )[ expression (iii) 1 }. 

The sign ( + ) and ( - ) in Vij and Wij are determined by 
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S(p): 

V12 ( -), V23 ( +), V31 ( -), 

WJ2( -), W23 ( +), W31 (-). 

The angles (Ojlr;,tpj 1 are also determined by 
U (p)d(p)U -I (p) = S (p)d(p) [in the sense of definition 
6-1 (ii)], but not uniqUely determined in general. As is shown 
in the Appendix, there is a unique real analytic solution ! 0; 
(m),'TAm),tp;(m)} in a neighborhood of m = ° such that OJ 
(0) = r;(O) = tp;(O) = 0. Since UI (P),,·W31 (p) is a product 
of the exponential mappings of the generators in a neighbor
hood of S = 1, we only expect that the present expression 
generates S only in a neighborhood of S = 1. General solu
tion will be obtained as a product of ! UI }, where each UI 

generates S in a neighborhood of S = 1. 
Now in the sense of definition 6.1 (ii), 

1/1; (x,O)= U (L,u)",; (x,O) U (L,u) - I 

= Z -1I2(L,u) exp [ixt: )(x,O) J"';(x,O) 

X exp [iXt; )(x,O) ] 

==Z -1I2(L,u): exp [(y;,,, (x ,0) l"';(x,O):, (6.30) 

where 

x;,atx,O) = alB ~(x,O) + a 2J:(x,0) 

+ (Ys)jj [a3T;(x,0) + aJ) :(x,O)], 

with 

(6.31) 

a 3 = V-;(1 - J.ll,u), a 4 = el,u, 

and Z - 112(L,u) is given by 

exp [ - Ll L ([ - a~J.lz + a~ -2V-; a z 
O<P<a 

+ a~ -2V-; aJ J.. + a~ _1_)]. (6.32) 
2p 2qo 

Further ( + ) and ( - ) denotes the creation and annihilation 
parts of X, respectively (see Appendix). 

First note that 1/1; is an analytic function of 
m = el(7T) liZ, and can be defined for any (real) m though 
UI (p ) ... W31 (p) is not defined for large 1m I. Further 

(1) (az - V-;)(a3 - V-;) = 7T, 

(2) - aiJ.lz + a; - 2V-; az = 0, 

(3) -(a~ -2V-;a3 )=a! =e2/,uz, 

where the first condition is the necessary and sufficient con
dition so that ! 1/1; 1 obey the CAR and spin 1/2 transforma
tion [see Ref. 8]. In this work, { 1/1; J are obtained through the 
8-isometric operator U (L,u), and this condition is automati
cally satisfied. 

Let Pphys be the self-adjoint projection from ~ to 
~phYS that is a closed subspace of ~ which does not contain 
any gaugeon. Let 

I/If(x,O) = PphYS 1/1; (x,O)PphyS . 

Then 
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Vlf(x,O) = Z -1/2(L,0): exp [ixf,.,.(x,O) ]¢;(x,O):, 

where 

xf..,.(X,O) = a2J~(x,0) + (Ys)jj [a3J~(x,0) 

+ a4 ¢ ~(x,O)]. 
We investigate the Heisenberg vector field 1;.: 
(iJ - eJ)(x,t) = 0, 

where 

VI (x,t ) = exp[itHg(L,u) ] VI (x,O) 

Xexp[ - itHg(L,u)]. 

Since "VI is not well defined in general in the limit of 
L,u = 00, we define the Dirac equation by 

[iJ] VI - eZ - t/2 

(e;xj"[(~ -AJ+)¢2 + ¢2(~ _ ~)(-)]/Xj») 

X\e;X\"[(~ +~)(+)¢t +¢I(~ +~)(-)]e;x\-) 
=0, 

where we omit L,u and ( , ) for brevity. Thus we get (see the 
Appendix and Ref. 41) 

- 1 m -
A/l(x,t) = ...:..a/lB(x,t) + ~J(x,t) + U/l(x,t). 

fl2 flfl 

This should be considered as the Heisenberg field operator 
which appears in the field equations, and is a vector field of 
mass;i in the Landau gauge formalism, which is consistent 
with the convariant perturbation theory. But PphysAjLPphyS is 
not a Proca field. 

The gaugeon field B is invariant by the interaction and 
the Maxwell equation means that the improved (conserved) 
current is 

F. Infinite volume limit of the Schwinger model 

We first consider the fermion Wightman functions for 
L,u < 00. Let 

WL,,,(x t ,"',Xn;)ll ,"·,Yn) 

==( VI;, (XI ) ... VI;', (xnW,;, (vI ) ... 1/';" (vn» L,,,' 

where we denote the cutoffs by the subscript. Then by the 
standard method (Ref. 8, see also the appendix), we get 

WL,,, = [Z(L,u)] -nexP[;:FL,,,(Xt> ... ,xn;)lt, ... ,Yn)] 

X (¢;,(x1)".¢:,,(xn)¢j,(vI) "'¢i,,(vn»' (6.34) 

where i , andj, are 1 or 2 and 

FL,,, = L (Ys);,(Ys)j,J..1 L,,,(XI - Ym) - DL,,,(XI - Ym)] 
I,m 

L (Ys);,(Ys)j,J..1L,,,(XI - Xm) - D L,,, (XI - x m)] 
i<m 

- L (Ys)/,(Ys)j,J..1 L,.,.(v1 - Ym) - DL,a(v1 - Ym)]. (6.35) 
I<m 
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1 
L1 La(x) = -, L 

1 [. .] - exp - tqa t + lPX , 
2qa 

(6,36) 
1 

DLAx) = -, L 

Since 

_1_ exp[ _ iIPlt + ipx]. 
2IPI 

Z (L,u) -I = exp( - ;: [L1L." (0) - DL,AO)]). 

and since the number of X I such that (y s )/, = 1 is equal to 
that of YI such that (ys )j, = 1 (otherwise, the free fermion's 
Wightman function in Wvanishes) 

WL,a = Z(L,U,K) - n exp(;: FL,.,.,Axt> ... ,Xn;)l1 ,. .. ,Yn») 

X (free fermion's Wightman function), 

where FL,,,,K is given by replacing DL,u(x) in FL,s by 

DL,,,,K(X) = D L,,, (x) - DL,K(O), (6.37) 

and 

Z (L,U,K) -I = exp [ - ;: [L1 L,,,(O) - DL,,,,K(O)] l 
For fixed (t,x) such that t 2 - X2#0 

1 f dp [ . DL,u,Ax)--+DK(x) = 217' 2IPI e -'px 

- () (K - IP!)J, 

..1 L,,,(x)--+..1 (x) = _1_ f dq [e - ;qx], 
21T 2qa 

Z (L,U,K) - I-.Z (K) = exp( _ ~ log 2~) 
217'fl2 fl 

= (~) _ m212~2 

(6,38) 

(6.39) 

asL,u,-.oo, wherepx = IPlt - px and qx = qat - qx. Thus 
WL ,,, uniformly converges to 

Z (K) - n exp [(e2/;i2)FK(Xt , ... Xn;)lt , ... ,Yn)] 

X (free fermion's Wightman function) (6.40) 

as L,u-.oo provided that (XI - xml#O, (vI - Ym)2#0 for 
I #m and (XI - Ym)2#Oforany landm, whereFK is defined 
by limK~ 00 F L''',K' Here K is an artificial infrared cutoff (d ue to 
Klaiber8

) and these Wightman functions themselves do not 
depend onK. 

These Wightman functions are equivalent to those of 
Klaiber 8 by setting a = a~ - 2V 1Ta2 = 0, b = a~ 
- 2)1 1Ta3 = - e2/;i2 in his calculation except Z (K) and ..1. 

The reason why "a" vanishes is that there is a cancellation 
betweenai -2V1Ta2 = e2/fl2 and -aifl2= _e2/fl2. 
Since - 1T < b<;O for fl > 0, and since b = - 1T for fl = 0, 
these Wightman functions have the cluster property for 
fl > 0, and not for fl = o. 

Next we consider the Wightman functions of Vlf 
= Pphys VI/Pphys , which are considered as the expectation 

values of the statepL,uphys = (11,1TB,phyS ( .. )l1 ), where 1TB,phys 

Keiichi R. Ito 1488 



                                                                                                                                    

is defined by replacing 1T B ( <P ) by P phys 1T B (<P )P phys with <P 
any field operator. we denote them { Wi,u}' By an easy cal
culation we have 

Wtu = Z (L.u) - n exp[(e2/,il2)FL.u(XI'··,xn ~I' .. ,yn) 

+ (e2/Jl2)FL(x 1 .···.xn ~I.···,yn)] 

X(free fermion's Wightman function). (6.41) 

where 

Ff,a(XI.· .. ,xn~I ... ·.Yn) 

I [DL,,,,(X i -Xj) + DL,u(Yi - Yj)] 
i<j 

+ I DL,Axi - Yj)' (6.42) 

Replacing DL,u(x) by DL,a,K(X) = DL,u(x) - DL,K(O) in 
F L.u and F ta as before. and denoting the resultant functions 
as FL,a,K and Ff,u,K we finally have 

Wi,u = Z(L,u,K)- n exp( ;: DL.K(O») 

xexp(!!!...F + !!!...FB ) ,il2 L,u,K Jl2 L,U,K 

X (free fermion's Wightman function). 

Since D L,K (O~C 10gLK (C:positive constant) as L_ 00 • 

W tu do not converge for L,u--+ 00. Instead consider 

exp( - 2~2 DL'K(O»)V'f(X) 

= exp( 2~2 DL,a,K (0») exp [ixf"'(x) ltP;(x). 

Then the corresponding Wightman functions uniformly 
converge to (nontrivial) Lorentz covariant distribution func
tions which satisfy the clustering for Jl > O. 

Remark: The Wightman functions for exp[ixfultP; 
themselves converge to zero as L.u- 00. This is due to the 
fact that the present model is not super-renormalizable if the 
Proca formalism is used. Moreover the so-called short-dis
tance behavior of WP is different from that of W. 

The Wightman functions obviously converge uniform
ly even if UI-< ,jl-< , and 81-<B are included. Then we get: 

Theorem 6.11: Both the Lorentz states {p L,u} and the 
physical states {p L,u,phys 1 uniformly converge on the field 
and observable algebras, respectively. The limiting states 
satisfy the clustering for Jl > O. 

For the physical state. we can apply the Wightman re
construction theorem. 8,41 Further even for the limiting Lo
rentz state, we can obtain a representation of the field alge
bra. This is done by mimicking the Klaiber's method. To 
write do~ the representation, we introduce field operators 
J~ ± )(x), J~ ± )(x), and B ~± )(x) with an infrared cutoff K as 
follows: 

J~-)(x)= J dp iA(p)[e- iPX -8(K-lPDJ, 
V21T21P1 

J< +) = [J< - )]*, and 7~ ±) and B ~ ±) are similarly defined. 
Further we define 
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d K± (x) = + _1_' IK dp [e ± ipx - 1 ], 
21T -x 21P1 

dK±(x) = =+= _1_ ~(p)[e±iPX -1], . fX d 

21T -K 21P1 
Thus we define 

V'i(X) = C (K) exp [M + )(x) ]tPi(X) exp[ix\ - )(x)]. 

where 

X~±)(x) = alB~± )(x) + a2J~ ± >(x) + (YsL 

X [a37~ ± >(x) + a 4 ¢ (± >(x)] + a;Jl2Qd K± (x) + a 2 

X<.v--; - a 2 )Qd K±(X) + a3<'v-; - a 2)Qd K±(X) + (YS)ii 

X [a 2(\f; - a 3 )Qd x±(x) + a](\f; - a 3)Qd !(x)]. 

Here Q = AI + A 2' Q = Al - A 2' and C (K) is a finite con
stant. Though Xi include noncovariant terms d K± and d K±' 

they cancel each other when we calculate the Wightman 
functions, and recover the Wightman functions already 
calculated. 

Set a I = 0 in X;. Then we get the operator solution of 
the positive metric formalism. 41 

7. MORE ABOUT THE RENORMALIZED HAMILTONIAN 

When M #0, what shall we do? We turn to the renor
malized Hamiltonian H R (L,u). It seems impossible to obtain 
n B or 1T B explicitly in this case. But for the moment assume 
that all the (cutoff) Wightman functions are obtained: 

WL.u(x I ,· .. ,xn) = (fl (L,u),<P1 (Xl ) .. ·<pn(Xn)n (L,u». 

where <Pi (X,) are arbitrary field opeators and n (L,u) is the 
vacuum vector (if it exists) in Y of the renormaIized 
Hamiltonian. 

Thus we apply the reconstruction theorem (Conjecture 
6. I). Further if (iii) and (iv) also hold as well as the conjec
ture, the cyclic vector n in the conjecture will be the physical 
vacuum in JYphys ' Since the renormalization ensures the 
conservation of the current, we expect that the gaugeon field 
B is represented as a free boson field with an indefinite metric 
on the new Hilbert spaceJY, Thus H R (L,u) is represented as 
a self-adjoint operator in which the gaugeon part is separated 
as a free Hamiltonian of the gaugeon field B. 

But how can we obtain n (L,u) or WL,u? In fact even if 
H R (L,u) is 8-self-adjoint n (L.u) is sometimes outside the 
Fock space. and further even if H R (L,u) is 8-self-adjoint, it 
may not have eigenvectors of real eigenvalues. 

One possible method is to use the euclidean method to 
calculate SL,u(X I , ... ,xn) which are the analytic continuation 
of the Wightman functions WL,Ax1 .... ,xn) to the euclidean 
region (the so-called Schwinger functions). Since the present 
model includes the fermion fields, we will be obliged to use 
the semi-Euclidean method owing to Seiler[Ref. 42; see also 
Refs. 26-29] or use the Euclidean fermion fields owing to 
Osterwalder and Schrader. 43,44 Further we use the Euclid
ean Markov vector field of the Stiickelberg formalism. 13 

Since the indefinite metric is by-passed in the euclidean 
region. the analysis may be rather easy. At the present stage, 
however, the author can say nothing about this approach. 
but this will be discussed elsewhere [Ref. 23; see also Refs ... 
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45,46]. 
Remark: We can prove that the gaugeon part decouples 

from the matter fields in H R (L,u) as the free Hamiltonian by 
suitable 8-isometric transformation (see next section). This 
fact may imply that specHR (L,u)CR andfl (L,U)EY (pos
sibly for sufficiently small lei). 

8. MASS-SHIFT TRANSFORMATION AND SINE
GORDON MODELS 

We consider a Bogolyubov transformation which 
changes the bare mass of the fermion and apply it to the 
renormalized Hamiltonian. This technique is familiar in the 
P(,p)2 models. 35,36 Here this technique shows that the 
(QED)2 -models are related to the (quantum) sine-Gordon 
models.47-49 

A. Mass-shift transformation of fermion 

As before, we consider the theory in a periodic box A, 
and let K be the sharp momentum cutoff (M denotes the 
mass) of¢M' Consider V(L,K) which implements 

V(L,K)¢M,K(X,O)V(L,K)-I = ¢M',Ax,O) (8.1) 

or equivalently which implements (for !PI <K) 

V(L,K)C(p) V (L,K) -I = cosOpc(p) + sinOpd *( - p), 
(8.2) 

V (L,K)d *( - P)V(L,K)-I 

= - sinOpc(p) + cosOpd *( - p), 

where cosOp = v(p)v/(p) + v( - p)v/( - p), sinOp 

= - v(p)v/( - p) + v/(p)v( - p), and v/ is the v-function 
[see Eq. (2.1)] for mass M'. 

Lemma 8.1: LetjfM,K) = :ffM,,,(x,O)Y'¢M,K(x,O):. Then 

(i) VJ'rM,K) V - I = J\M ',K) , 
(ii) V:ffM,K¢M.K:V -I = :ffM',K¢M"K: + Co, 
(iii) V j'IM.KJ!-'(M.It:): V - I = :J'(M ',KJ!-'(M ',K) : + CI 

X :ffM'."¢M'.,,: + cZ' 

where the constants Co ,CI , and C2 diverge as K~oo. 
Proof Let ¢M ,.(x,O) = ¢'¢M' K(X,O) = ¢/ (¢ and ¢/ for 

the Fourier comp~nents). Note that: ¢;(p)¢/p/): 

= ¢;(p)¢j(p/) - (¢;(p)¢Ap'» = ¢;(p)~(p/) - (L /21T) 
x8p,p'v,(p)vj (p'). Thus v:¢r¢:v -I = :¢T¢': + (I/L) 

X~'P,,;A(v'(p),yDrv'(p» - (v(p),yDrv(p»], where the last 
constant is zero for r = 1" and (L) -I ~I pl';;K [M /w(p) 
- M'/w/(p)]=co for r = L This proves (i) and (ii). 

Since :ffy'¢: = if,t"¢-constant being independent of M, 
it suffices to consider how 

: (ff1"¢)(ffY!-' ¢): = 4:¢~ ¢I ¢; ¢2: 

= 4[¢~¢1 ¢;¢z - (¢~¢d¢;¢z 

- (¢;¢Z)¢~¢I - (¢~¢2)¢;¢Z 

+ (¢;¢2)¢;¢1 

+ (¢;¢1)(¢;¢2) - (¢~¢2)(¢;¢1)] 

transforms under the operation of V. Since 
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we have 

:¢;¢I¢;¢Z:=¢;¢I¢;¢2 -.1 I (K)(¢;¢1 +¢;¢2) 

-.12 (K,M)(¢; ¢I + ¢; ¢2) +.1 i(K) -.1 ~(K,M), 

which proves 

V:¢~ ¢I ¢; ¢2 : V - I = :¢; *¢; ¢2 *¢2 : 

+ [.12 (K,M') -.12 (K,M')]:ff'¢': 

- (.1 z(K,M) -.12(K,M'W. 0 

Let H O:L (¢ M) be the free Hamiltonian of the fermion of 
mass M and let 

HO:L(M,8M;K) = HO:L(¢M) + M l:ffM," (X,O)¢M,,, (x,D): dx. 

This Hamiltonian is diagonalized by V (L,K) which imple

ments V(L,K)¢M,K V(L,K)-I = ¢M+lJM,K' In fact 

V [HO:L (M,8M;K) ] V - I 

= 21T { )' w(p) + )' W'(P)} [c*(p)c(p) 
L Ipl> K I.:i<K 

+d*(p)d(p)] +E(L,M,8M;K), 

where w'(p) = (p2 + M'2)112 with M' = M + 8M and 

E(L,M,8M;K) = -2 I [w(P)-W'(P)+ M8M]. 
O.;;p,;,. w(p) 

Note cosOp = 1 +0(1)(8M)2p-2 +0(p-4)as 
fpl~oo. Then [Op JE/ 2(r) in two dimensions which im
plies I7-11 ,so 

Theorem 8.2: V(L,K) is unitary for K< 00 provided 
L < 00. Especially V (L ) = V (L, 00 ) is unitary though 
E (L,M,E>M;K) diverges as K-+ 00 . 

B. Pre-slne-Gordonlzatlon 

In the following, ¢(x,t) implies the massless free fer
mion field. Then 

(8.3) 

The operator u L,K (x) cannot be any operator (even if suitably 
smeared) in the limit of K~oo. But the following 51,52 

(U~.K(XI )"'U~'K(Xn)UL,"(y1 )"·UL.,..(Yn» 

= [ ~ sgn(1T) ;UI (¢;,K(X;)¢2,,.(Yrr(I)) ] 

X [ ~ sgn(1T) JUI (¢;'K(X)¢I,,,(Urr(j))] ' 

where we used [¢I ,¢; J = ° and [¢;'¢j J = 0, and 1T means 
permutation of (l, ... ,n). Thus in the limit of L,K~oo, 

l.h.s. = (4r)-n ll;<J - (x; - xYlllk<1 [ - (Yk - yYJ, 
n;J [ - (x; - YY + t J 

(8.4) 

where x 2 = X!-'X!-' = x6 - xi and E is an infinitesimally small 
positive constant. 

Our idea is essentially due to Coleman,53,54 and is sum
marized in Table 1. 
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TABLE I. Transformations of various Hamiltonians. 

H, G(L,u,/f;M)o=H~(,u) + M f U(L,u):¢.¢.:U(L,u) - I dx - E(L,u,/f) 

) Hl(L,u) + M fM+ -E(L,u~) U(L,u) 

/f-->oo 

V(L,/f),K--> 00 

HSG(L,u;M) .. .. HR(l/J..,;L,u) 

~ ~ 
HSG(M) .. • HR(¢M;oo,oo) 

L,(]"--+oo L,(T-'f> 00 

In this table, H R (1/JM;L,o) isHR (L,a) with the bare fer
mion mass M, and E (L,O,K) is a constant (if possible) chosen 
so that inf spec H s.G (L,O,K;M) = O. 

Let 

.2'L,u,I«X,O) = U(L,O)OL,I«X,O)U -'(L,a). (8.5) 

Then 

I( _ '" 

= Z '(L,a) -I exp[2iaJ'~( + lex) 

+2ia4j~+)(X)]OL(x)exp[( + )-( -»), 

where 

Z'(L,a)-1 =exp[ -2(a~ -2Y1Ta3)DL,u(0)-2a~.1L,u(0)] 

and a L = limK~OO a L,K' Thus we get for .2' L,u 
= limK _ '" .2' L,a,,,, 

(.2' ~,a (x I ) ... .2' ~,a (xn).2' L.a (vI ). .. .2' L,a (vn» 
= Z'(L,o)-2n exp[F~,a] 

X (a~ (XI ) ... o~ (xn)a L (vI )···a L (Yn»' (8.6) 

= I4![a~ -2Y1Ta3 ]DL,a(x; -y)-a~.1L,a(Xi -Y)) 
iJ· 

l<J 

(8.7) 

As before, we rewrite as follows: 

Z '(L,O,K) - 2n exp [F~,<>,,,] (a~ (XI ) ... o~ (Xn)OL (YI )"'OL (Yn», 

(8.8) 

where 

Z '(L,a,K)-' 

= exp! -2 [a~ -2V-;a) ]DL.a.AO) -2a~.1L.<>(O)J 
(8.9) 

and F ~,a,,, is given by replacing D L,a by D L.u.K in F ~.K' Since 
a~ = - ai + 2(1T) 1I2a) in the (QED)2 -models, 
Z '(L,O,K) - I converges to 

Z (x:) - 2 = (2K/ ji) - m'lii' (8.10) 
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as L,a- 00. Since.2' L,u does not contain the gaugeon field 
B ~, we see that B ~ decouples from the Hamiltonian by this 
transformation which we call "pre-sine-Gordonization." 

c" (QEDh and the sine-Gordon equations 

Let <p have a mass ii and let ~ = :exp(i(.81 )1/2 
<p + i(.82)I12j]:. Then 

Km + n(~(XI )"'~(Xm)~*(yl )'''~*(yn» 

= Km+n exp { 2:[PI J"(x; - Y) + pz.1 (Xi - Y)] 
'J 

- r[PIJ"(Yi - Yj) +P2.1 (Yi - Yj)]}, 
,<) 

where J" is the .1-function of mass Ii . Note 

J" (x) = D,,(x) + (l/41T) log(2K/ii)2 + 0 (ji,2x2) as ii-a, 
DK(x) = - (l/41T) log(eYK)2Ix21 

(y = 0.57 ... , Euler's constant). 

U sing the first equation, we get 

I.h.s. = K m + n exp! - (.81 /41T)[(m - n)2/2 

- (m + n)] log(2K/fi)2 

+ rJ"-DK J + O(ii2) +.1 - terms»). 

Thus if we set K = 15(ii/2Kt,/Srr, 

!~~Km + n(~(XI )"'~(Xm)~*(yl ) ... ~ *(yn» 

= 0 for m#n, 

= (8)2n eXP{PI [I DK(Xi - Yj) - I {DK(xi - Xj) 

+D"(Yi - Y))] +P2[ I.1 (Xi -Xj) 

- I{~ (Xi -Xj) +.1 (vi - Yj»)]} 
for m = n. Comparing these expressions with those of.2', we 
see that these expressions are equivalent to each other if we 
set 

PI =4(a3 -Y1T)2=41T{J.t2/ji2), 

P2 = 4a~ = 41T(m2 / ji2), 
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O=O(K) = Z (K) -2(e2YK2/4~)1I2 = (ji/2K)m'lii'(eYK/21T). 

Thus /31 + /32 = 41T (May's critical poine5) in the present 
QED-type models, and liml'---o 0 = (m/41T)eY (independent 
ofK). 

Let: :K be an artificial Wick ordering such that the D K 

functions arise from the Wick contraction. Then we formally 
have 

M~ (x) = MO(K): exp [tV /31 rp + tV /32 ~ ]:K 
on the charge zero (i.e., vacuum) sector, and we also have 

M [~(x) + ~ *(x)] = 2Mo(K): cos [ V /31 rp + V /32 ~ ]:K 

on the vacuum sector. This is nothing but the interacting 
Hamiltonian density of the two-component sine-Gordon 
model. 

Let V(x) = z:exp[i(/31 )1I2rp + i(/32)1/2~L with 
z = MO(K). Then we have 

E"n(XI , ... ,Xn;YI " .. ,Yn) 

=( V(XI ) ... V(Xn)V*CYI )",V*CYn» 

= z2n exp [/31 [ ,frDK(X j - Yj) 

- II DK(x j - Xj ) + DKCYj - Y) l] 
I<J 

+ /32 [ ~.:1 (Xj - Y) 
IJ 

- I 1.:1 (Xj - x) +.:1 CYj - Yj l]]. 
I<J 

(8.12) 

Frohlich noted that, in the Euclidean region, this is nothing 
but the generalized partition function of 2n-particles with n 
( + )-charged and n ( - )-charged particles whose interac
tions are defined by the potentials DK (Coulomb potential in 
two dimensions) and.:1 (Yukawa potential) with inverse 
temperatures /31 and /32' and by the fugacity z [=MO(K)]. 
Then he could prove the existence of the (quantum) sine
Gordon model for sufficiently small (/31 ,/32) (he only consid
ered the case that/31 = 0 or /32 = 047.52.56.57) using known 
results in the study of "stability of matters consisting of elec
trons and nucleons". 55,58-60 

In the present model, however,/31 and/32 are somewhat 
large: /31 + /32 = 41T, and their methods cannot directly ap
ply without nontrivial boson-mass renormalization (the 
model is again super-renorrnalizable). In other words, the 
sine-Gordonized (QED)2 -models lie on the May's critical 
point at which the system collapses to one point by Yukawa
Coulomb force. 

Though we have already renormalized the Hamiltonian 
of (QED)2' the Hamiltonian of sine-Gordonized (QED)2 
seems to require the nontrivial renormalization, which is 
very pathological. The author does not know whether or not 
the sine-Gordonized (QED)2 -model exists (after the renor
malization if necessary) and coincides with the (QED)2-
model on the vacuum sector. This will be discussed 
elsewhere. 
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APPENDIX: CONSTRUCTION OF U(L,a) AND tjI 

We first obtain how I a~ ± l( ± p) l transform by the fJ
isometric operators Uj> Vij' and Wij' This is easy and left to 
the reader. For example: 

Ua( ± lU- I = (coshO ± sinhO.)a( ± l l' = 1 2 
I I I I I I' , , 

VI2 ai + l( ±p)V 121 = coshT3ai + l( ±p) - sinhT3a~ - l( ±P), 

V23a~ + l( ±p)V 23 1 = COSTI a~ + l( ±p) + sinTI a~ + l( ±P), etc. 

Let U = UVWas in Sec. (6.5). We calculate the angles I OJ> 
Tj>rpj l;~ I such that (1) U(p)d(p)U -I(p) = S(p)d(p), 
(2) OJ(m = 0) = Tj(m = 0) = rpj(m = 0) = 0, and (3) they 
are hoI om orphic in a neighborhood of m = O. And finally we 
calculate tflj(x,O) = U (L,a) I/J;(X,O)U (L,u) -I. 

First note that 

[V23 V31 W ]ai ± l(p)[ V23 V31 W] -I 

= [COST2 coshrp2 C08rp3 + COST2 sinhrpl sinhrp2 C08rp3 

± sinT2 coshrpl sinhrp2 ]ai ± )(p) + [COSTI coshrp2 sinrp3 

- COSTI sinhrpl sinhrp2 C08rp3 

± sinTI COST2 coshrpl sinhrp2 

+ sinTI sinT2 (coshrp2 C08rp3 

+ sinhrpl sinhrp2 sinrp3) ]a} += )(p) 

+ I - sinTI COST2 coshrpl sinhrp2 

± [COST I sinT2 (coshrp2 C08rp3 

+ sinhrp I sinhrp2 sinrp3) - sinT I (coshrp2 sinrp3 

- sinhrpl sinhrp2 C08rp3)] la~± )(p). 

Next we shall operate V12 ( ... ) V 121. Since this operator mixes 
only ai ± ) and a~ ± ) and since Uj do not mix these operators, 
the coefficients of a~ ± l must vanish because Uai ± ) U - I do 
not contain a~± l. Thus 

COSTI COST2 coshrpl sinhrp2 = 0, 
COSTI sinT2 C08rp3 - sinTI sinrp3 = 0, 

for any m = e/(1T)1/2, which implies 

rp2 = 0, sinT2 = tanTI tanrp3' 

In this case, [VW]a(+± l[ VW] - I equals 

[COST2 coshT3 C08rp3 + sinhT3 (COST I sinrp3 

+ sinTI sinT2 C08rp3) ]ai ± l + [coshT3 (COST I sinrp3 

+ sinTI sinT2 C08rp3) + sinhT3 COST2 C08rp3 ]a~ :fl. 

Further since Uai- lU'1 does not contain a~ + l, 

coshT3 (COST I sinrp3 + sinTI sinT2 C08rp3) 

+ sinhT 3 COST 2 COS({J3 = 0, 
i.e., 
tanhT3 = - sinTI tanT2 - COSTI tanrp3 secT2' 

Defining tj = exp(O;) with i = 1,2, we finally get: 

Uai +)U -I = tl [COST2 coshT3 C08rp3 - sinhT3 (COST I sinrp3 

+ sinTI sinT2 C08rp3) ]ai +) 
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TABLE II. Coefficients of I a~ .. )( ± p) I in,t,. 

a\' '(p) : I, COShT,( - sinT,sinhcp, - cosT,sincp,coshcp,) - sinhr, [COST,coshcp,coscp, + SinT,(cosT,sinhcp, - SinT,sincp,coshcp,)] 

a\ '(p): I, '~oshr,(=+=sinT,sinhcp, ±cOST,sin<p-,coshcp,l±sinhr.,[ -cOST,coshcp,coscp-, +SinT,(COST,sinhcp, +sinT,sincp,coshcp,)U 

a', ' '( - p) : I, [COShT,(sinT,sinhcp, + cosT,sincp-,coshcp,) + sinhT, [COST, cosh<p, coscp., + sinT, (cosT,sinh<p, - sinT,sin.p,cosh.p, lil 

a\ '(-p): I,' ~oshr,(=+=sinT,sinhcp, ±cosT,sincp,coshcp,)±sinhT,[ -COST,coshcp,coscp, +sinT,(COST,sinhcp, +SinT,sincp,coshcp,)ij 

ai < '(p) : ± (I - (,COST, cosh·/".,cosh<pl Coscp,) ± t,coshT,sinT, (cosT,sinh<p, + sinT,sin.p,coshcp,) ± t,sinhT,(sinT,sinh<p, - cosT,sin<p,cosh<p,) 

aj '(p) : - (l - I, 'COST, coshr,coshcp, Coscp,) + I, 'coshr,sinT, (cosT,sinhcp, + sinT,sin.p,coshcp,) + I, 'sinhT,(sinT,sinhcp, + cosT,sincp.,coshcp,) 

aj , '( - p) : =+= (l - I, COST, coshr, coshcp, coscp,) =+= I, COShT, sinT, (COST, sinhcp, + sinT, sin.p., coshcp, ) + I, sinhT, (sinT, sinhcp, - COST, sincp, coshcp, ) 

a\ ' '( p) =+= I, [COST, (COST, sinhcp, + sinT, sincp, cosh.p,) + sinT, coshcp, coscp, 1 

a\ '( - p): t,' [COST, (cosT,sinhcp, - sinT,sincp,coshcp,) + sinT, coshcp, cosh.p, 1 

Ua\ -lU- 1 

= t I-I [COST2 COShT3 COSlp3 + sinhT3 (COST I sin<p3 

.. )J ( ) + Sin 'II SInTzCOSlp3 a l - . 

The coefficients of Uaj ± lU - I with i = 2 and 3 are ob
tained in a similar way. By comparering S (p) with these 
coefficients, we get the equations which the angles satisfy 
(<P2 = 0): 

COSTI COSTz cosh<p1 = --~-=-

sinTI 
COSlp3 = € --, 

S2 

COSTI sin7z 
sin<P3 = -----

sinTI COST2 
COShT.l = € sinhT3 = 

S3 

where € = sgn(m) = sgn(e) and 

SI = (2COS
2
TI COSzTz -1) 1/2, 

--, 

Sz = (1 - COSZTI COSZTz)l12 = (1 - si)I12N2, 

S3 = (2COSZT2 - COSz7zCOSzTz -1) 112. 

Further defining ti = exp[OJ with i = 1,2 and 13 

= exp[ - OJ, 
(1) SI tl = 1, 

SI S3/SZtZ = ji/J.1.-, 

(AI) 

(2) 

(3) 

(4) 

tzis l tl = (pO/qO)II2, (A2) 

2SzCOSTI COSTz = Iml/J.1.-, 
2sinTIsinTzcosTz mp 

t zszs3 ji\I Po I pi 
(5) 

Independent parameters are S I ,S 3 ,t 1 ~ t 3' and then we can 
solve these equations. But for large I m I, there are no real 
solutions. In fact from (4), 2COSzTI COSzTz 
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= 1 + (1 - (m/J.1.-?)II2. The reason is clarified in Sec. 6.5 
and not essential. Now 

(1) [¢i(X,O),A(p)] = Ipl-I/Zui(p)e-iPX¢i(X,O), 

(2) [¢i(X,O),A *(p)] = I pl- Il2u,(p)e,/>x¢i(X,O), 

by the definitions of A (p) and A *( p). 
We first consider WZ3 ¢i (x,O) W 23 I : 

W23 =llo<p<."W23 (P), WZ3 (p)=exp[<PI(P)g23(P)}, 

g23(P) = - ~[(a;(p)a3(p)-h.c.)+(p--p)]. 
L 

Let F = WZ3 (P)¢i(X,O)W Z3 J. Then we get 

. d 
F--F= W23 (P)[gz3(P)'¢i(X,O)]W Z3

1 

d<pJ 

= [xj + ) + X) - 1 JF, 
where 

xi + 1 = ~I pi-liZ! - (cosh<p1 -1)2 a;( - p) 
L 
X eipx - sinh<p i 2a; ( - p )e'PX J, 

X~+l=X\+)(p_-p), xl-)= - [x)+l]*. 

Since [x,j J = 0 with X = X ) + ) + X ) -). we can integrate 
this equation under the condition F(<p1 = 0) = ¢i(X,O): 

F= exp[xi ]¢i(X,O) = Z-112 exp[xj +)]¢i(X,O) exp[x) - l], 

Z - 112 = exp[41T(e<f'J -l)/L I pi ]. 

Wecan similarly obtain lfri(x,O) = [UVWJ¢i(X,O)[UVWJ- I 

in theform ofexp[(1T/L )Ipl- I12X.l¢i(X,O) or in the form of 

(6.30). Here Xi = Xi(P) is a linear combination of fa; ±) 

( ± p) J; ~ I , and their coefficients are in Table II. 
In Table II, we omit e ± ipx for brevity and p > 0 is as

sumed. In addition, the upper signs in ( ± , + ) correspond 
to i = 1, and the lower signs to i = 2. We rewrite these coeffi
cients in terms ofm,J.1.-,ji, andp. This is done by using (1)-(5) 
after eliminating <PI ,<P3' and '13 , The results are the 
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followlng: 

a; + l( ±P):O, 

+( _ mp ) 
- pV qolPl ' 

a~+)(p):±(I-S2t2/S1S3)= ± (1 - It/ii), 

a~ +)( - p): + (l - It/ii), 

ai-)(±P):-(l-sI S3/S212)= -(i-ji/It), 

a~ + l( ± p):O, 

(_ l. 2UI COST 1 COSTz m 
a, .- -----~ 

. SI t1 It 

Thus by multiplying (rr/L )IPI- I/Z e ± ipx, we have 

; / p/-1I2Xi (p) 

- I a3 - (p)e iPX . V 2rr { e i [() 
- -L- -; V 21pI 

+ a~-)( - p)e'p-,] + V--;( 1 - ~) 

X i [a~ - )(p)e'PX 

V21pl 
+ a~-)e-iPX] + (1'5)i,V-;(1 _ ~) "- / i 

It v 21pI 
X [a~ + )(p)eiPX - ai +)( - p)e - jPX] 

e -i 
+ (1'5L --=- "- / 

It V 2qQ 

X [a\ - )(p)eip-, + a\ - I( - )e - iPxl}, 

where we have used (1'5) = diag( -1,1). Then using the ex
plicit expressions for B ~,J ~,7~, and ¢;, we have the final 
expression in Sec. 6.5. The wave function renormalization 
constant Z (L,u) arises from the relabelling (Wick-type re
ordering) as before: 

exp[ix,(x,O) ]¢j(x,O) 

= Z (L,u) -1I2:exp[iX,(x,O) ]¢i(,O):. 

Z (L,a) is easily obtained by means of the following 
equations: 

(1) e-H B = eAeB exp( - HA,B]) = eB~ 

X exp( - ![B,A J), 

if [A,B) = el, with CEe, 

(2) ¢~ = e - ).~¢ if [A,¢] = A¢, with AEG. 

These equations are frequently used in order to investigate 
the fermion Wightman functions and the sine
Gordonization. 

Finally remark that 

~ ei(x) = ( ~ f(x»)ef(X) = ef(X)( ~ f(X») 
dx dx dx 

if [I(x), (d /dx)f(x)J = 0. This is also used to obtain '/fj(x) 
and to consider the Dirac equation. 
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A general matrix algebraic study is made of higher spin wave equations with minimal 
electromagnetic interaction, in relation to one of the basic problems, namely the problem of 
possible change in the number of constraints implied in the equation on introducing the 
interaction. Considering equations of the general form (ft7T' - m)tJ1 = 0, wherein the matrix Po is 
required to have a minimal equation PI; = PI; - 2 to ensure uniqueness of mass, we show that when n = 4 
extra constraints may be generated at critical external fields, while for n = 5 there may also be loss 
of constraints on introduction of external fields. We obtain general algebraic criteria which 
determine whether or not such pathologies would arise in any particular case, and verify the 
validity of these criteria by considering a variety of known equations. 

1. INTRODUCTION 

The classical problem of construction of relativistic 
wave equations has been studied from various angles-field 
theoretic, matrix algebraic, and group theoretic. 1 Of various 
types of equations which have resulted from these studies, 
the equation written in the manifestly covariant form 

(- itp' all- + m) tf(x) = 0, (1.1) 

which is linear in the derivative, has a special appeal because, 
unlike in higher order equations, the prescription for the 
introduction of the minimal electromagnetic interaction is 
unambiguous. The minimal prescription does not, however, 
ensure that the equation gives a consistent description of a 
particle with the desired properties. In fact, it has been dis
covered2

-
8 over the years that several types of difficulties 

arise in theories of higher spin particles interacting with ex
ternal fields. They are related to the fact that in every unique 
mass-spin equation of the form (1.1), excepting the Dirac 
equation for spin-!, the wavefunction if; must necessarily 
have more components than are required for the particle. 
The wave equation must then incorporate the appropriate 
number of constraints to ensure that just the required num
ber of components (no more, no less) are independent and 
the rest are determined by the essential components. While 
the free equation (1.1) is so formulated as to meet this re
quirement, the introduction of interaction with an electro
magnetic or other field may, and often does, cause a failure in 
this respect by leading either to unacceptable restrictions on 
the external field (as noted by Fierz and Pauli9

) or to a loss of 
or an increase in the number of constraints. 

Loss of constraints on introduction of the minimal e.m. 
interaction was first found to occur in a theory of spin-2 
particles described by a 50-component wavefunction 10; and 
recently we have noted II that the same difficulty arises in the 
spin-~ equation formulated by Glass. 12 It has also been point-

a)Present address: The Ramakrishna Mission, Saradapitha, Belur Math, 
P.O., West Bengal-711202, India. 

ed out that in certain theories (e.g., Rarita-Schwinger spin
~), 13 extra constraints may appear at certain critical values of 
the external fields. 14 However, there has been no investiga
tion so far on general classes of wave equations to determine 
whether any general criteria exist for the occurrence (or oth
erwise) of this type of pathology. Our main aim in this paper 
is to show that such criteria can indeed be established in 
terms of the structure of the P matrices. 

It is already known 15 that diagonalizability of Po is a 
sufficient condition for a theory to be free from many of the 
ills that higher spin theories are subject to. For example, the 
noncausal modes of propagation in external fields, to which 
attention was drawn first by Velo and Zwanziger,3 do not 
arise if Po is diagonalizable. 16 This virtue of diagonalizability 
property is vividly brought out by our studies 17 on the 
Bhabha-Gupta equation l8 which showed that, only for the 
particular choice of the free parameters in the equation 
which makes Po diagonalizable, does one have the correct 
number of constraints (for all external field strength), cau
sality of propagation, and (anti) commutators free of the 
external field. However, for this choice of parameters, the 
charge density is of indefinite sign, even in the absence of the 
external field, leading to difficulties in quantization. In fact, 
for diagonalizable Po, the requirement that the field equa
tion describing particle of half-integral spin ;;;.~ should lead 
to secondary constraints (established in the pioneering work 
of Johnson and Sudarshan 2) cannot be met. Also, if the spin 
were integer;;;. 1 and Po diagonalizable, the requirement that 
the energy density be nonnegative cannot be satisfied. 19 

It becomes necessary therefore to consider especially 
various classes of theories wherein Po is not diagonalizable. 
Theories with nondiagonalizable Po 's such as Khalil's the
ory for spin-! 20 and the spin-l theory ofShamaly and Capri21 
demonstrate that nondiagonalizability of Po by itself need 
not make a theory prey to the various kinds of ills which 
some theories (e.g., Rarita-Schwinger theory for spin-~) suf
fer from. Thus encouraged, we take up for study the general 
classes of the equations of the form (1.1), characterized by 
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either of the minimal equations P ri - P ~ = 0 or P g - P ~ 
= 0 for Po . These are the simplest two cases (for nondiagon

alizable Po) of the Harish-Chandra condition for uniqueness 
of mass,22 namely 

P~-2(P~-I)=0, n>2. (1.2) 

Assuming only the above algebraic property besides the con
ditions imposed by Lorentz invariance, we determine gener
al criteria for the number of constraints contained in Eq. 
(1.1) to remain unchanged on introduction of the minimal 
electromagnetic interaction. 

The plan of the paper is as follows: After a resume of the 
conditions for relativistic invariance of equations of the form 
(1.1) in Sec. 2, we take up in Sec. 3 the study of equations 
with nondiagonalizablePo obeyingp 6 = P 6. We enumerate 
the constraints in the presence of interaction and find that 
there is a possibility of more constraints than in the free case 
being generated for a particular strength of the external e.m. 
field. This would imply a breakdown of covariance, despite 
the manifestly covariant appearance of the equations. We 
derive a general condition that must be obeyed if such a 
breakdown is to be averted. The next section (Sec. 4) pre
sents an analysis of equations coming under the algebra P g 
= P ~. In this case there is in general a possibility of loss of 

constraints. We obtain in Sec. 4 a set of conditions which 
would ensure that such a pathological situation does not 
arise. We then give examples of specific theories which suffer 
from, and others which are free of, these difficulties, and 
show how their behavior is traceable to violation of or con
formity to our conditions. It may be mentioned here that the 
conditions deduced in Secs. 3 and 4 involve the Lorentz 
group generators appropriate to the wave function, and 
hence place restrictions on the structure of the wave equa
tion in terms of the Lorentz group representations entering 
therein. Deferring a detailed analysis of these restrictions to 
later publication, we present in Sec. 5 a discussion of the 
results of this paper against the background of the earlier 
literature on relativistic wave equations with interaction. 

2. MANIFEST COVARIANCE OFTHE WAVE EQUATIONS 

It is well known that if t/J( x) is a finite component wave 
function, which under the Lorentz transformations 
X~X' = Ax transforms according to a single or double val
ued representation S (A ) of the Lorentz group 

t/J( X~t/J'( x') = S (A) t/J( x), (2.1) 

then the relativistic invariance ofEq. (1.1) demands that 

S(A )-1 PI' S(A) =A I' v pv. (2.2) 

When expressed in terms of the infinitesimal generators J of 
rotations and K of boosts, Eq. (2.2) goes over into the follow
ing set of equations: 

[Jj ,Po] = 0, 

[Jj ,Pj ] = i€ijk Pk , 
[Kj ,Po] = iPj , 
[Kj ,Pj ] = i8ij Po . 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

By eliminating Po between the last two of these equations, 
one gets 
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(2.4) 

Equations (2.3a) and (2.4) show how Po and the Lorentz 
generators are interrelated. When the latter are specified, the 
determination of the PI' proceeds through the solution of 
this pair of equations for Po followed by the evaluation of the 
pj using Eq. (2.3c). In carrying through such a process ex
plicitly, it is conventional to employ a canonical basis which 
diagonalizes J 2 and Jz. (See, for instance, Ref. 23). In the 
present work, however, it will be most convenient, for the 
purpose of the general analysis, to use a basis which reduces 
Po to a direct sum of minimal blocks [See Eqs. (3.3a) and 
(4.1) below.] 

Apart from covariance, we demand also that Eq. (1.1) 
should describe particle of unique mass. The necessary and 
sufficient condition on the P matrices for this is that 

(2.5a) 

or 

(2.5b) 

where the sum is over permutations g; of the vector indices. 
If all the,u j in Eq. (2.5b) are chosen to be zero, the equation 
simplifies to 

<P6-1)P~-2=0, n>2. (2.6) 

Equations (2.4) and (2.6) are the only requirements that we 
shall make in our analysis. 

When n = 2 in Eq. (2.5b), one has the familiar Dirac 
algebra. The case n = 3, of which the Kemmer algebra24 is a 
special case,zs has been investigated systematically by Hur
ley and Sudarshan. 23 There have been no systematic analyses 
of cases n > 3 (for which alone Po is nondiagonalizable). As 
already stated, our aim is to consider certain aspects of gen
eral classes of theories corresponding to n = 4 and n = 5. 

3. THE ALGEBRA f3b - ffb = 0 

In this section we consider equations involving nondia
gonalizable Po characterized by the minimal equation 

P6 =P6 . (3.1) 

The corresponding relations among the P matrices are ob
tained by setting n = 4 in Eq. (2.5b): 

(3.2) 

Of the equations belonging to this category, the most famil
iar one is the Rarita-Schwinger equation lJ for spin-~ parti
cles, which is known to suffer from the following troubles 
when minimal coupling to the electromagnetic field is intro
duced: (a) indefiniteness of anticommutators between field 
components/ (b) noncausal propagation,3 (c) an energy 
spectrum ceases to be wholly real when the particle is placed 
in a sufficiently strong magnetic field,6 and (d) the occur
rence of an excessive number of constraints when the mag
netic component of the external e.m. field takes a certain 
value. However, these troubles are not a necessary concomi
tant of the algebraic property (3.1). In fact, the spin-l equa
tion recently proposed by Kha1il20 [which does have Eq. (3.1) 
as the minimal equation for Po] is not afflicted by any of the 
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above problems. This observation raises the following ques
tion: Is it possible to understand the nice behavior of Khalil's 
equation in terms of any algebraic condition obeyed by /30 in 
relation to the Lorentz group representations entering into 
the equation? Conversely, is the pathological behavior of the 
RS equation a consequence of violating some such condi
tion? We seek to answer these questions in this section. We 
first obtain a condition which/3o and the Lorentz generators 
need to obey in order that breakdown of covariance (in the 
form of a change in the number of constraints at particular 
values of the external fields) can be avoided. We then verify 
that this condition is indeed satisfied in Khalil's equation, 
while it is violated in the RS theory. 

To carry through our calculations in a transparent fash
ion it is convenient to take the matrix /30 in the block-diag
onal form 26 

Po~C 0 J, (3.3a) 

where 0 is a null matrix and the block A and B have the 
minimal equations 

A 2 _ 1 = 0 and B 1 = O. (3.3b) 

The boost generators K (in the representation carried by tP) 
will also be partitioned conformably to /30 : 

(3.4) 

By virtue ofthe relation/3j = i[/3o.Kj ], one can then obtain 
the matrix/3j in a similar form. Taking the column" also to 
be partitioned conformably into three parts "I' "2' "J' we 
write the equation (/3011'0 - p.'If - m)" = 0 as the follow
ing set of equations: 

(A11'0 - m) tPl + i[KII ''If, A ] tPl - iA Kil ''lftP2 

+ i(K13 ''lfB - A K13 ''If) tP3 = 0, (3.5a) 

lK21 ''lfAtPl - mtP2 + lK23 ''lfBtP3 = 0, (3.5b) 

(B11'0 - m) tP3 + i (K31 ''lfA - B K31 ''If) tPl - iB K32 ·'If "2 
+ i[K33 ''If, B ] "3 = o. (3.5c) 

Equations (3.5) provide a convenient starting point for 
the analysis of the constraints on tP. First of all we observe 
that Eq. (3.5a) provides an equation of motion for tPl (A 
being nonsingular) and Eq. (3.5c) for BtP3' However, Eq. 
(3.5b) is a constraint equation as it does not involve any time 
derivatives. One more set of constraints may be generated by 
multiplying Eq. (3.5c) withBfrom the left. SinceB2 = 0, we 
then get 

- mBtPJ + iBKJ1''lfAtPl + iBK33 ''lfB''3' (3.6) 

Equations (3.5b) and (3.6) are the "primary constraints" of 
the theory in the terminology of Johnson and Sudarshan. 2 To 
see whether further constraints exist, we have to differentiate 
the primary constraints with respect to time (or rather, apply 
the operator 11'0)' When this is done, Eq. (3.5b) does not lead 
to any new constraints. Instead it gives an equation of mo
tion for tP2: 

m11'0 tP2 = {imK11 .'If + K2I .'If [KII ''If,A ] - eK21 .15' A + K23 ''If(K31 ''lfA - B K31 ''If)} tPl - {K21 ''lfA K 12 ·'If 

+ K23 ''lfB K32 ·'If} tP2 + {K21 -'If(K\3 ''lfB - A KI3 -'If) + K23 ·'If [K33 ''If,B ] - e K23 ·g' B} tP3. (3.7) 

On the other hand, Eq. (3.6) on operating with 11'0 leads to 

(iB K33 ·'If - m) 11'0BtP3 + iB K31 ''lf11'0 AtPl - eB K33 ·g' BtP3 - eB K31 ·g' AtPl = 0, (3.8) 

wherein 11'0 AtPI and 11'0 BtP3 may be replaced by expressions free of time derivatives by using Eq. (3.5a) and (3.5b), respective
ly. Thereupon we get the secondary constraint equations 

{(im + B K33 ''If)(K31 -'If A - B K31 -'If) - eB K31 -15' A + imB K31 ·'If + B K31 ·'If [KII ''If,A ]}tf;\ - {(im + B K33 ''If) B K32 ·'If 

+ B K31 ''lfA K 12 .'If} tP2 - {m 2 + B (K''If/3oK''lfb} tP3 + {imK33 ·'If + B (K33 ·'lff + B K31 ·'lfKI3 .'If - eB K33 .g'} BtP3 

= o. (3.9) 

The next step is to apply 11'0 to this equation and elimi
nate 11'0 "I' 11'0 tP2' and 11'0B"3 using Eqs. (3.5a), (3.7), and 
(3.5c), respectively. The time derivative still persists through 
a term involving 11'0 "3' namely 

[B(K''If/3oK''If)33 + m 2
] 11'0tPJ' 

This term can be rewritten using the equation (( K j ,/3 0 ].Kj ] 

= /jij/3o as 

{lB(K''If);3 B - !ieB(K{Jo·F.K)33 + ml}11'OtP3 , (3.10) 

where 

(3.10a) 

with summation over the repeated indices. In the first term 
in Eq. (3.10), B11'o "3 can once again be eliminated using Eq. 

(3.5c). The time derivative term which finally remains is, say, 

{m 1 -lieB(K{JooFoK)33}11'O"3 =M11'OtP3' (3.11) 
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i 
Observe that in the absence of electromagnetic interaction 
this term reduces to m211'0 tP3' so that the equation obtained 
by differentiating Eq. (3.9) is an equation of motion for tP3 
and not a constraint. We should require that the same state 
of affairs be maintained also in the presence of interaction. 
This means that M, the operator in curly brackets in Eq. 
(3.11), should be nonsingular for all values of the external 
fields. It is not difficult to verify that a sufficient condition 
for this to be true is that the second term in the square brack
ets in Eq. (3.11) be annihilated by B operating on the right, 
i.e., 

(3.12a) 

or equivalently 

(3. 12b) 
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As this is to hold for all Fij' we must have (in view of the 
antisymmetry of Fij) 

Po (l - P ~ )(K;Po Kj - KjPo K;)( 1 - P ~) Po = O. 
(3.13) 

This condition, however, is somewhat stronger than neces
sary. It can be shown that if a basis in which Po is in the 
Jordan canonical form is employed, then the necessary and 
sufficient condition is that 

B (KPo ·F·K )33 BB t 

be nilpotent or equivalently that 

Po(l-P~)(KiPoKj -KjPoK;)(I-P~)f3of36 

(3. 14a) 

(3. 14b) 

be nilpotent. If this condition is not satisfied, M ofEq. (3.11) 
becomes singular from some value of the external magnetic 
field-note that the electric field components FOi do not en
ter-and for such a field the equation obtained by differenti
ating Eq. (3.9) gives rise to extra constraints which have no 
counterparts in the noninteracting case. A change of Lo
rentz frame would change the value of the field, resulting in 
the disappearance of these new constraints, and this evident
ly means a breakdown of Lorentz covariance. To avoid this it 
is necessary that the operator (3.14) be nilpotent. 

Having formulated this general condition, we now pro
ceed to test whether it is obeyed in specific theories. In prac
tice, we first test whether Eq. (3.13) is obeyed and only if it is 
not does it become necessary to test Eq. (3.14) for nilpotency. 
It is important to note that, though we have used the reduci
bility of f30 to the form (3.3) in deriving Eq. (3.13), this con
dition itselfis independent of whether f30 is in such a reduced 
form or not. Therefore, in testing particular theories, f30 and 
K as given with respect to any convenient basis can be em
ployed in Eq. (3.13). 

A. Rarita-$chwinger theory for spin-j-

The Rarita-Schwinger equation for spin-~ particles em
ploys a 16-component wave function t/J(x) which transforms 
according to the representation (I,D Ell G, 1) Ell (O,D Ell (!,o) of 
the homogeneous Lorentz group (HLG). Written in the gen
erallinear form, the equation reads 

([JOffO - J3'1T - m) t/J(x) = 0, 

with27 

Po = (~ ~), 
where A and Bare 8 X 8 matrices given by28 

o 1 1 

(

-1 

-1)' B~2 ~ 
-1 

o 
o 

o 
o 
-1 
-1 

(3.15) 

(3.16) 

V 
(3.17) 

In A, I stands for the unit matrix of dimensions four and in B, 
1 stands for the unit matrix of dimension two. (Note that 
B 2 = 0.) The infinitesimal generators K of Lorentz transfor
mations are given by 
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(3.18) 

where 

Kll =( 0 -t~) 
-t~ o ' (3.19a) 

K13 = (~ 0 u ~) , u 0 
(3.19b) 

K3 , = Ki3' (3.19c) 

0 0 0 -oil 
K" ~( ~ 0 -~ 

(3. 19d) 
-~ 0 o . 

-10' 0 0 0 

Here, ~ forms the spin-~ representation of angular momen
tum, while 0' stands for the set of Pauli matrices. The compo
nents of u are rectangular matrices given by 

(YJ o ) (YJ ~} u, = iV2 0 1 u
2 

= V2 0 
3 -1 o ' 3 1 

0 -V3 0 V3 

-2iV2( ~ (3.20) U2 = 
3 0 1 . 

0 0 

The following relations among n, 0', and ~ will be used in our 
calculations: 

[~; '~j 1 = i€;jk~k , 
u;uJ - uju; = e i€ijk~k , 
~iUj - ~jU; = ~ i€ijkUk , 

U;Uj - UjUi = - i i€ijkUk , 

u;uj - uJui = - ~ i€ijkUk , 

[ui,uj ] = 2i€ijkUk . (3.21) 

Using these it is an easy matter to check that the condition 
(3.13) is indeed violated. In fact, the matrix ofEq. (3.13) may 
be seen to reduce to a nonnull matrix whose nonzero ele
ments are proportional to O"K. (Here K is the magnetic 
field Ki = !€ijk.f}k) Multiplying the nonnull matrix by f36 
on the right, one readily finds that the less stringent condi
tion of nil potency ofEq. (3.14) is also not satisfied. Alternati
vely, one can verify directly that M of Eq. (3.11) becomes 
singular in the present case when ¥K = m 2. It may be re
called that it is at this critical value that other troubles of the 
RS theory begin to manifest themselves: The anticommuta
tors between the field components cease to be of definite sign, 
the equation ceases to be hyperbolic) and the energy eigenva
lue spectrum ceases to be wholly real. 8 

B. Khalil's equation for spin 1/2 

Khalil's equation20 for spin-1 particles employs a 20-
component wave function transforming according to the 
representation 

T(A) = T, (A) + 2T2 (A) + Tl (A) + 2T2 (A), 

where 

(3.22) 
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In a basis diagonalizing J 2 and Jz ' the boost generators in 
TI (11 ) are given by 

K(I) = _ ,.( 11: 
ut 

In T2 (11), 

i K(2)= - -0'. 
2 

(3.23a) 

(3.23b) 

Here 0', 1:, and u are the matrices already defined in the 
previous subsection. The first row (column) ofEq. (3.23a) is 
associated with spin value ~ and the second with!. In the 
representations TI and T2 , the boost generators are the neg
ative ofEqs. (3.23a) and (3.23b), respectively. Using these 
we have, for the boost generator K in the reducible represen
tation employed by Khalil, 

!o' 

C - !o' 
!1: U 

ut iO' 
iK= -11: 

0 
-u 

_u t -ia 
!o' 

(3.24) 

In the same representation, the matrix /30 is given by 

0 1 0 f ° 0 ° if 

° 0 0 ° f -if 0 

0 ° 
/30 = 

f ° 0 0 0 
' (3.25) 

0 f 

° -if 
if ° 

wherein the non vanishing blocks are mUltiples of the unit 
matrix of dimension 2. Using the above forms of /30 and K, 
one can easily verify that the condition (3.13) is satisfied in 
this case. The absence of any difficulty about the number of 
constraints in Khalil's equation is thus explained. 

Before proceeding to the next higher algebra /3 g = /3 ~ , 
we wish to draw attention to an interesting connection be
tween our condition for covariance and a sufficient condi
tion for causality which was recently obtained by Khalil. 29 

He has shown that a field 1/1 obeying the general equation 
(fJ.rr - m) 1/1 = 0 (which incorporates minimal e.m. interac
tion) propagates causally if 

(3.26) 

Note that this condition automatically ensures that the 
unique-mass condition (2.6) is satisfied, but it is more restric
tive than Eq. (2.5b). For n = 4, Eq. (3.26) reduces to 

[~ (/3p,/3pA., - gp, p,/3p,) ] /3p, = O. (3.27) 
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Setting,ul =,u2 =,u3 = 0 and,u4 = i in this equation, one 
gets 

(f3 ~ - 1) /30/3; = O. (3.28) 

On using /3; = i [/30 ,K; ] together with /3 6 = /3 ~ , Eq. (3.28) 
reduces to 

(f3~ -1) /3oK;/3o = O. (3.29) 

It is obvious that ifEq. (3.29) is satisfied, Eq. (3.13) is auto
matically satisfied. Thus, the condition (3.26) which is suffi
cient to ensure causality of propagation is (perhaps not sur
prisingly) sufficient also to prevent the appearance of 
constraints in a noncovariant fashion. It remains to be seen 
whether a weaker condition than Eq. (3.26) might be suffi
cient to keep the propagation causa1.30 

4. THE ALGEBRA /f6 - ffb = 0 

When the degree of the minimal equation (2.6) of /30 
goes up to five, a new type of trouble makes its appearance. It 
is the possibility of loss of constraints (or equivalently, an 
increase in the number of degrees offreedom) when interac
tions with external fields are switched on. As we pointed out 
in a recent paper, II Glass' equation 12 for spin-~ (which be
longs to the category of equations with /3 g = /3 ~) is subject 
to this pathology; but there are other equations which are 
not. Examples are the spin-2 equations of Schwinger and 
Chang31 involving a 30-component field (which was studied 
by Hagen32) and the Shamaly-Capri equation for spin-1.21 
Our aim in this section is to derive an algebraic criterion for 
the general linear wave equation (f3'1T-m) 1/1 = 0 with /3 g 
- /3 ~ = 0 to lead to the same number of constraints in the 

presence of external fields as in the free case, and to show 
that the specific examples mentioned above are consistent 
with this criterion. 

A. A General condition for preservation of constraints 

The minimal equation /3 g = /3 ~ implies that /30 can be 
brought to the block-diagonal form 

(4.1) 

with the minimal equations 

A2=1, B 2=O, and C 3=O (4.1a) 

for the individual blocks. Partitioning K and 1/1 in a manner 
conformable to /30 ofEq. (4.1): 

K12 K13 

K= 
K22 K23 

,1/1= (4.2) 
K32 K33 

, 

K42 K43 

we rewrite the equation of motion 

(f301To - P'1f - m) I/J(x) = 0 
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as the following set of equations: 

(A1To - m) tPl + i[Kll'TT,A ] tPl - iA KlZ'TTtPz 

+ i(K13 'TTB - A K13 'TT)tP3 + i(Kl4 'TTC - A Kl4 'TT)tP4 = 0, 
(4.3a) 

iK2l 'TTAtPl - mtPz + iKz3 'TTBtP3 + iKz4 'TTCtP4 = 0, (4.3b) 

(B1To - m) tP3 + i(K3l 'TTA - B K3l 'TT) tPl - iB K32 'TT tP2 

+ i[K33 'TT,B ] tP3 + i(K34 'TTC - B K34 'TT) tP4 = 0, 
(4.3c) 

(C1To - m) tP4 + i(K4l 'TTA - CK4l 'TT) tPl - iCK4Z 'TTtP2 

+ i(K43 'TTB - CK43 'TT) tP3 + i[K44 'TT,C ] tP4 = O. 
(4.3d) 

It is evident that Eq. (4.3b) is a constraint equation. Further 
constraints may be obtained by premultiplying Eq. (4.3c) by 
Band Eq. (4.3d) by C 2

• We then get, in view ofEq. (4.1a), 

- mBtP3 + iBK3l '1TAtP! + iBK33 '1TBtP3 
+ iBK34 '1TCtP4 = 0, (4.4) 

- mC z tP4 + iC z K41 '1TA tPl + iC2K43'1TBtP3 

+ iC 2K44 '1TCtP4 = O. (4.5) 

Equations (4.3b), (4.4), and (4.5) are the primary con
straints. Operating with 1To on Eq. (4.3b), we get an equation 
of motion for tP!; but from Eq. (4.4) and (4.5) we get further 
constraints. They are 

{(im + B K33 'TT)(K3l 'TTA - B K31 'TT) + imB K31 'TT + B K3l 'TT[Kll 'TT,A ] + B K34 'TT(K4l 'TTA - CK4l 'TT) - eB K3l ·1!? A} tPl 

- {(im + B K33 "rr)B K32 'TT + B K31 'TTA K12 'TT + B K34 'TTC K42 'TT} tPz 

+ {(im + B K33 'TT) K33 'TT + B K31 'TTK 13 'TT + B K34 'TTK43 'TT - eB K33 '1!?} BtP3 

+ {(im + B K33 'TT) K34 'TT + B K3l 'TTK I4 'TT + B K34 'TTK44 'TT - eB K34 .1!?} CtP4 

- {mz + B(K'TT PoK'TT)33}tP3 - B(K'TT PoK'TT)34 tP4 = 0, (4.6) 

{C(im + CK44 'TT)(K41 'TTA - CK41 'TT) + imC 2 K41 'TT + C ZK41 'TT [KII 'TT,A ] + C ZK43 'TT(K3I 'TTA - B K31 'TT) 

- eC zK41 ·1!? A }tPl - {C(im + CK44 'TT) CK4Z 'TT + C 2K4l 'TTA KIZ'TT + C 2K43 'TTB K32 'TT} tP2 

+ {C(im + CK44 'TT) K43 'TT + C Z K41 'TT K1J'TT + C Z K43 'TT K33 'TT - eC zK43 ·1!?} BtP3 

+ {C(im + CK44 'TT) K44 'TT + C2K41'TTKI4'TT + CZK43'TTK34'TT - eC zK44 ·1!?) - m2}CtP4 

- C 2(K'TT PoK'TT)43 tP3 - C 2(K'TT Po K'TT) tP4 = O. 

Using Eq. (2.4), Eqs. (4.6) and (4.7) can be re-expressed as 

{m 2 -FeB(KPo·F.K)33}tP3 -VeB (KPo·F·K)34 tP4 = 
!ieC Z(KPo ·F·K)43 tP3 + !ieC Z(KPo ·F·K)44 tP4 = .... 

(Here the dots stand for terms involving only those parts of tP for which equations of motion are available.) 

(4.7) 

(4.6a) 

(4.7a) 

In the absence of external fields, Eq. (4.6a) yields tP3 in terms of other quantities for which we already have equations of 
motion and hence time differentiation ofEq. (4.6a) simply yields an equation of motion for tP3' When Fij #0, a similar 
situation obtains, with the difference that the combination [m 2 

- FeB (K{3o ·F·K)33 ] tP3 - !ieB (KPo ·F·K)34 tP4 of the compo
nents of tP3 and tP4 is involved instead of just tP3' Leaving aside for the present the possibility that the number of such 
independent linear combinations may be less than the number of components of tP3 at some particular Fp ,' (which would mean 
extra constraints at that Fpv ), we observe that no further constraints follow from Eq. (4.6a). 

Equation (4. 7a), on the other hand, leads to tertiary stage constraints on differentiation, if there are no external fields. 
When Fw is non vanishing, however, the presence ofthe last two terms on the left-hand side ofEq. (4. 7)-which reduce to the 
terms exhibited in Eq. (4.7a)-would prevent the emergence of the corresponding constraints unless certain conditions are 
satisfied. Before examining what these conditions (for preservation of constraints) are in the most general situation, we 
consider a relatively simple special case corresponding to /30 matrices wherein the block B in the form (4.1) is absent. In this 
case all terms involving B or quantities bearing the subscript 3 would be absent from the various equations. With the 
penultimate term in Eq. (4.7) thus dropping out, the troublesome term that still remains is the last term. The presence of this 
term causes an equation of motion (rather than the desired constraint) to result from operating on Eq. (4.7) with 1To ' unless 
C 2(Kf30 ·F·K)44 happens to have the form MC (M being some matrix operator). Only if it has this form, or equivalently only if 

C Z(K/30·F.K)44 C 2 = 0, (4.8) 

then the combinations CtP4 of the components of tP4 occur in Eq. (4.7), and Eqs. (4.3) are sufficient to reduce the time 
derivative ofEq. (4.7) to a constraint. Equation (4.8) is a necessary and sufficient condition for preventing a loss of constraints, 
It is easily verified that this equation may be transcribed as 

(1 - /3~)P~(K{3o'F'K)/36(l - /3~) = O. (4.9) 

In the general case when the block B is also present in Eq. (4.1), the situation is much more complicated. It turns out (see 
Appendix for details) that in addition to the requirement (4.9), the following conditions also have to be obeyed for the 
preservation of correct number of constraints: 

(i) BX3 ) BB t must be nilpontent: 
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(BX33BB t/ = 0, with k a positive integer: 

(ii) for any given k in Eq. (4. lOa), 

(4. lOa) 

(C 2X43 BB t')(BX3JBB )tr(BXJ4 C 2C 2t) = 0, for r = 0,1,2,.··, k - 1, (4. lOb) 

where 

X = KfJo ·F·K. 

Having thus obtained the general conditions33 for the preservation of the number of constraints, we now proceed to 
examine the role of these conditions in the specific theories cited earlier. We first take up the 30-component theory for spin-2 
formulated by Schwinger and Chang (and further studied by Hagen), and show that the freedom from loss of constraints in 
this case is a reflection of the fact that Eq. (4.9) is obeyed. Next, the Glass equation for spin-~ is analyzed and violation of the 
above condition is demonstrated, thus explaining the loss of constraints in this case. Finally, the spin-l equation given by 
Shamalyand Capri is investigated and found to obey our conditions. 

8. The Schwinger-Chang theory of spln-2 

The Schwinger-Chang equation for spin-2 employs a 
30-component wave function transforming according to the 
(reducible) representation 

(4.11) 

of HLG. In the canonical basis in which J 2 and Jz are diag
onal, the infinitesimal generators K of boosts may be parti
tioned into rows and columns labeled by the "spin" values 
associated with the eigenvalues of J 2: 

K= 0~;-2 
spin-l spin-O 

k:, ) k21 kll 

o kto 
The explicit forms of k - s are as follows: 

k" ~ ~ G ; D· 

~ ~ D· 

o 
kt 
o 

o 

o 
o 

o 

0 

0 

0 

o 
-kl 
o 

2'V2 kt 
Y3 I 

0 

0 

0 

0 

spin-2 

spin-l 

spin-O 

(4.12) 

(4.13a) 

(4.13b) 

(4.13c) 

(4. 13 d) 

k2 and kl are rectangular matrices whose elements connect 
states of different angular momenta within the same irredu
cible representation of the Lorentz group. 

The matrix /30 may now be readily constructed. Since 
LBo ,J] = 0, /30 does not link different spin values and is there
fore block diagonal in the canonical representation used 
here. Further, only those elements of/3o can be nonvanishing 
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~I-----------------------------------------
which link Lorentz group representations (m,n) and (m' ,n') 
such that m' = m ± 1 and n' = n ± 1. Consequently, we 
may write down /30 as34 

a
o 

__ (X Y z) spin-2 
P, spin-I, 

spin-O 

where 

(4.14) 

x~ (~ 
0 p" ) 0 /3~3 , 

/331 /332 

(4. 15a) 

y~O. 
0 0 

p" ) 0 0 /3S7 

0 0 /367 ' 

/37S /376 0 

(4. 15b) 

Z~ (p: 
/389 p,,, ) 
0 o . 

/310.8 0 0 

(4. 15c) 

Here the "elements"/3rs are block matrices which are multi
ples of identity. The dimensions are 

/313 ,/331 , /323 ,/332 - 5 X 5, 

/347 ,/314 ,/3S7 , /367 ,/37S , /376 - 3 X 3, 

/389 , /38,10 ,/398 ,/310.8 -1 X 1 (numbers). 

The condition (2.4) needed for relativistic invariance, 
namely, [[K; , /30 ] ,K)] = oij Po, imposes the following re
strictions on the elements /3rs: 

/331 = Y3/374' /313 = Y3/347 , 

Y2 Y2 
/37S = Y3 /398' /3S7 = Y3 /389 , (4.16) 

/332 = Y3/376 , /323 = Y3/367 . 

The algebra /3 ~ - /3 b = 0 leads to the additional 
requirements 

/331/313 + /332/323 = 1, 

/37S/357 = -!, 
{398/389 = - 1 ' 
/3S.IO/3IO,S = 1 . 
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From Eqs. (4.14)-(4.17) we can easily verify the following: 
(a) X has the minimal equation X 3 

- X = 0; (b) Yand Z 
have minimal equations y3 = 0, Z 3 = O. It is clear from (a) 
that X is diagonalizable and would in a suitable basis go over 
into the A and 0 block ofEq. (4.1) while Yand Z together 
would constitute the C block. The B block is absent. 

Having assembled all the materials we need, it is now a 
simple exercise to verify that 

P6(1 - P6) K; Po Kj P6(1- P6) = 0, (4.18) 

which shows that the condition (4.9) is obeyed. Since, as we 
have just pointed out, Po of the present theory does not in
volve a B block, the conditions (4.10) drop out altogether. 
Equation (4.18) is therefore sufficient reason for nonloss of 
constraints in this theory. 

C. Glass' equation for spln-3/2 

Glass' equation employs a 20-component wave func
tion '" which is equivalent in its transformation properties to 
a vector-spinor together with a Dirac spinor. Thus, '" trans
forms according to TI + TI + 2T2 + 2T2, 

TI =(1.1), 

T2 = 0,0). 

The minimal equation obeyed by Po in the Glass eq'uation is 
P ~ = P ~. The explicit form of Po given by Glass is 

Po = (~ -:6)' (4. 19a) 

where 

0 0 0 

0 -1 
1 V2 

2 
2V3 V3 

Po = 0 
1 

0 ---
2V3 2 

(4. 19b) 

0 
V2 

V3 
0 

Here Po is a lOx 10 submatrix partitioned into 
4 +2 +2 +2 subblocks. The infinitesimal generators of 
boost are 

K= -i~ ~, 
where 

ut 
N= 

( 

-p: 

o 
o 

u 

o 
o 

o 
o 

-!(J 
o 

(4.20a) 

The matrices u, 1:, and (J are those defined earlier (Sec. 3). A 
straightforward calculation of Fij P6(1 - P6)(K;PoKj 
- KjPoKJ P 6 (1 - P 6) shows that it is a nonnull matrix 

whose nonzero elements are proportional to u-JIf", thereby 
violating our condition (4.9). This is indeed the reason why 
the Glass equation suffers from a loss of constraints when 
there is a coupling to a nonzero magnetic field. 
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D. Spln-1 equation of Shamaly and Capri 

The spin-l equation given by Shamaly and Capri em
ploys a 20-component wave function", which is equivalent in 
its transformation properties to a general second rank tensor 
together with a vector. Thus, '" transforms according to the 
representation 

(1,1) EB (1,0) EB (0, 1) EB G,D EB (0,0) 
- TI + T2 + T2 + T3 + T4 . 

In the canonical representation of the Lorentz generators, 
we partition K as follows: 

~ 
0 K21 

K = - i KoL KII KIO 

Kio 0 

o 

). (4.21) 

where 

T2 T2 TI T3 

K21 = (0 0 _1_kt o ) TI , 

V"3
2 

(4.22a) 

C 
0 0 

~) 
T2 

K" ~ ~ 
-81 0 T2 

0 0 TI 

0 0 T3 

(4.22b) 

K" ~ (~ 
0 

D 0 

2V2k! 

0 

(4.22c) 

8 1 , k2 , and kl are the same matrices which were introduced 
in Sec. 4.B. (The representations of HLG to which each 
block belongs is also indicated.) 

Specification of Po now proceeds as in the last section. 
In the canonical representation it has the form 

c 0 ~). Po = 0 X 
o 0 

(4.23) 

where Xis a 12X 12 matrix 

x~u 
0 0 a,) 0 0 a 2 

0 0 
, 

a 3 

a 4 as a 6 0 

(4.24a) 

with elements which are multiples of the unit matrix of di
mension 3, and Y is a 3 X 3 matrix 

(4. 24b) 

Here, a l a 2 "'a6 , 8 1 , 82, 83 , and 84 are arbitrary constants. 

Equation (2.4) imposes the conditions 

Vs82 = V6a 3 , Vs84 = V6a6 , (4.25) 

while the additional restrictions 
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a 1a4 +aS a 2 +a3a(, = 1, 
83 8 1 + 84 82 = 0, (4.26) 

are imposed by the algebra P 6 = P ~. Armed with this 
knowledge, one can readily verify that the minimal equa
tionsofXand Yare (X 3 

- X) = o and y3 = 0, respectively, 
and hence that no part with the minimal equation B 2 = 0 is 
involved in flo. Consequently, the conditions (4.10) become 
irrelevant. As for the condition (4.9). it is easily verified us
ing Eqs. (4.21)-{4.26) that (1 - fl~) fl~ KJ30Kj itselfis a 
null matrix. This explains why the minimal electromagnetic 
interaction does not caUse any change in the number of con
straints in the case ofthe Shamaly-Capri equation. 

The causality of propagation of the equations belonging 
to this algebra still remains an open question. As before. we 
can establish some connection between the causality of prop
agation on the one hand and the loss of constraints on the 
other. A sufficient condition for causality in equations obey
ing this algebra has been given recently by Khalil, as 

{~ (Pll. flIlA., - gl'.ll,fll', ) } flll.flil• = O. (4.27) 

Ontakingltl =1t2 =Jl} =Jl4 =0 and Its =i,Eq.(4.27) 
gives 

(l - fl ~) fl ~ Pi = 0, 

which may be further reduced to 

(I - fl ~) fl ~ KJlo = 0, 

(4.28) 

(4.29) 

by using the fact that fli = i [.Bo , K; J and.B 6 -.B 6 = O. 
Comparison ofEq. (4.29) with our c<lndition (4.9) shows 
that any equation obeying Khalil's condition for causality 
will automatically be free of the pathology of loss of con
straints. Thus, Khalil's condition for causality is also a suffi
cient condition for nonloss of constraints. It may be noted 
that even the less stringent condition 

{~ ({l,t. flll.flll ,(3Il. - gll.Il • .BIl , (31l. )} flll' = ° (4.30) 

is sufficient to prevent loss of constraints since it leads to Eq. 
(4.28). 

5. RESULTS AND DISCUSSION 

The work presented in the foregoing sections serves to 
emphasize and define more clearly than hitherto the link 
between the troubles of higher spin unique-mass wave equa
tions and the algebra <Jftheflmatrices. The valueofn i.n the 
minimal equation (3 ~ = f3 ~ - 2 (the condition for unique 
mass) determines the number of levels of constraints in the 
wave equation which is strongly linked to the variety of con
sistency problems encountered in the theory. The types of 
difficulties which have come to light in the course of invest i
gation of specific theories include (i) noncausal propagation 
in the presence of external fields, (ii) occurrence of modes of 
complex frequency when high magnetic fields are present, 
(iii) appearance of extra constraints at particular values of 
the external fields. (iv) (<ISS of constraints, and (v) una~cepta
ble changes in the commutation rules for field components 
on introduction of interactions, in addition to (vi) the prob
lem of possible indefiniteness of chargel energy in the free 
theory itself. 
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When the degree n of the minimal equation goes up to 
three (i.e.,.B 6 = (3Q)' the wave equation involves just prima
ry constraints, but none of the troubles (i) to (v) arises as for 
as in known35; in fact, it is known that whenever (30 is dia
gonalizable (even in multimass theories), (i) and (ii)--(v) can
not occur.7.17.36.37 However, as a special case of a result of 
general validity proved by Johnson and Sudarshan, the ab
sence of secondary constraints in this case leads to the prob
lem (vi), and thereby to difficulties in quantization.38 With 
n = 4, there are both primary and secondary constraints
and the difficulties of the types (i}--(iii) and (v) appear for the 
first time. [Type (iv) loss of constraints does not Occur until n 
goes up to 5 bringing in tertiary constraints.] However, the

ories characterized by f3 ~ = fJ ~ or {J ~ = f3 ~ do exist in 
which the introduction of minimal electromagnetic interac
tion does not cause any change in the number of constraints. 
We have set up in this paper criteria by which such theories 
can be identified. Theories which fail by these criteria may 
still be made acceptable in the matter of constraints by intro
ducing suitable nonminimal terms in the electromagnetic in
teraction. A general investigation of the possibilities in this 
respect is currently in progress. Those theories which satisfy 
the criteria for conservation of constraints may still be unsa
tisfactory in other respects, e.g., propagation of the field in 
question may be acausal in the presence of interactions. We 
have noted that a sufficient condition for causality, obtained 
by Khalil, does imply also conservation of constraints.39 The 
interesting work of Cox on the causality question may be 
mentioned here,30 but a necessary and sufficient general con
dition for causality is yet to be obtained. Until investigations 
on this and other question (such as the possibility of ta
chyonic modes) are completed, it will not be possible to rule 
out the existence of consistent higher spin theories. 
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APPENDIX 

We present here the proof of the conditions (4.10) for 
general flo. We first note that a basis can always be found 
wherein the matrices Band C ofEqs. (4.1) have the parti
ti.oned forms 

I 
o 
o 

(AI) 

Here the blocks are square (nult and unit) submatrices. We 
use these forms in the following, and also break down the 
parts rP} and rP4 ofthe wavefunction rP further, so as to con
form to the partitioning (AI) of Band C: 

(A2) 

One sees readily that equations of motion follow for ¢J2 from 
Eq. (4.3c) and for X2 and X} from Eq. (4.3d). As for /PI and 
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X I' they do not figure in these equations, but do in Eqs. (4.6) 
and (4.7). Partioning the blocksX33 , X 34 , X43 , andX44 of 
X = ! ieK/3o ·F·K which appear in the latter equations into 
subblocks aij' Pij, etc. as 

X33 = (aij)' i,j = 1,2; X 34 = (f3ij)' i = 1,2, j = 1,2,3; 

X 43 = (rij), i = 1,2,3, j = 1,2; X 44 = (8ij)' i,j = 1,2,3; 
(A3) 

we find the relevant equations to be 

(a21 + m2) 'PI + P21XI + ... = 0, 

r31'P1 + 831XI + ... = 0. 

(A4a) 

(A4b) 

The dots stand for terms involving other parts of the wave 
function for which equations of motion have already been 
obtained. 

In the absence of external fields, the equation of motion 
for 'PI is obtained by solving Eq. (A4a) for 'PI and differenti
ating with time; on the other hand, Eq. (A4b) would reduce 
to a constraint (not involving X I) from which an equation of 
motion for X I follows, nevertheless, on differentiating twice. 
We require that the same scheme should prevail also in the 
presence of arbitrary external fields. Inspection ofEq. (A4a) 
shows that if the matrix operator (a21 + m2

) acting on 'PI is 
to be nonsingular for all external fields, the term a 21 which is 
linear in the field must be nilpotent, i.e., 

(a 21 )k = ° (AS) 

for some integer k, for all configurations of the field Fl'v' 
Once this is satisfied, the explicitly written terms in Eq. 
(A4b) can be expressed as 

[-r31(a21 +m2)-IP21 +831 ]XI = .... (A6) 

If the XI term is to be absent from Eq. (A4b) for all external 
fields (as when Fl'v = 0), the square-bracketed operator in 
Eq. (A6) must vanish order by order in the external field 
strength. Since each of the quantities r31' a 21 , P21' and 831 is 
of first order in the field, this condition requires that 

(A7a) 

and 
r31 (all Y Pll = 0, r = O,l, ... ,k -1. (A7b) 

[These, like Eq. (AS), must hold for all configurations of the 
external field.] Using the definitions (AI) and (A3), one can 
readily express the conditions (AS) and (A 7) in terms of the 
larger blocks X33 , X 34 , .. of X as 

(BX33 BB t)k = 0, 

(C 2X43 BB t)(BX33BB t)'{BX34 C l C 2t) = 0, 
r=O,l, ... ,k-l. (AS) 

Finally, these in tum can be written directly in terms of 
X _ !ieK/3o ·F·K (rather than in terms of its partitioned 
blocks), with the help of projection operators P Band P e 
which isolate the Band C blocks, respectively, of Po: 

° B 

1504 J. Math. Phys., Vol. 21, No.6, June 1980 

PePo = 
(

0 ° ° c), (A9) 

It is readily verified that withB and Cas in Eq. (AI), PB and 
P e are given by 

Pe = p2pt' + pt'p2 + !(Ppt'p + ptp 2pt), 

PB = (1- PC>(Ppt + ptp), (AW) 

respectively, where 

p= (1 -P~)Po. 

With the aid of these, Eqs. (AS) may be written as 

(PBPO XPoPlPB)k = 0, 

(1-P~)P~ KPo·F.Kp~ (1-P~) = 0, 

(Pe P~X{JOPlPB)(PB {JoXPo{JlPBy(PBXPoPl PC> = 0, 
r=0,1,2, ... ,k-1. (All) 

It may be noted that Eqs. (ASHAl1) make use of the 
form (AI) of the Band Cblocks of Po. Actually, it is not 
difficult to see that the same results hold good even if the 
actual form of Po is related to the type of standard form 
considered here by a unitary transformation. The restriction 
to such representations of Po is not a serious one-it is sim
ply the counterpart of the familiar assignment of he rmiti city 
properties to the matrices in the Dirac theory. 
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Classical field theory is developed in the arena of extended phase space Vg, the space of position, 
time, momentum, and energy. This enables one to incorporate Born's reciprocity which demands 
equal status for the variables q and p. The present formulation is covariant under the extended 
Poincare group Pg acting in Vg. Variational methods for classical field theory are generalized. 
Besides the usual concept of the totaI4-momentum, one encounters the notion of average position 
and time of the field distributions. The total charge emerges from a dynamical viewpoint. The 
Dirac and Duffin-Kemmer algebras are generalized in this setting. The corresponding wave 
equations would lead to a dynamical theory of the elementary particles. The symplectic structure 
is not considered because ofthe difficulties to represent spinors. 

I. INTRODUCTION 

In classical Hamiltonian mechanics and the subsequent 
quantum particle mechanics the basic equations remain in
tact under the substitutions q' = - p, pi = q. Born i and 
Lande2 advocated this covariance (which was called the reci
procity principle) for quantum field theory. Yukawa3 incor
porated this idea of reciprocity in his formulation of nonlocal 
fields. In spite of these brilliant attempts, the simple and 
potent idea of reciprocity has not been pursued for the last 
decade. 

The present author4 formulated field theory in 4-di
mensional complex space-time in order to obtain quantized 
or discrete space-time and tt the same time to utilize the 
larger group of covariance for the interpretation of isotopic 
or internal groups. 

In this series of papers the 4-dimensional complex 
space-time is reinterpreted as the extended phase space Vg. 
Also the idea of reciprocity is generalized to the group of 
transformations lP':q' = q cost/> - p sint/>, pi = q sint/> 
+ p cos¢>. The group lP' and the Poincare group P4 are sub
groups of the 36-parameter extended Poincare group Pg• 

That is why a field theory covariant under Pg is developed in 
the present paper. It may be mentioned that space reflection, 
time reversal and Born reciprocity are special cases of the 
group lP'. 

In Sec. III the Lagrangian formalism is presented in 
detail. The various Noether's theorems are derived. The in
tegral constants of a field are constructed. Among these is of 
course the usual total 4-momentum of the field. In addition, 
another 4-vector emerges which can be conveniently inter
preted as the average position and time of the total field. The 
total charge, which is one of the integral constants, has a 
dynamical significance. In each of these four phase planes of 
Vx a field quanta can have rotational motions, both orbital 
and spin. These motions viewed in space or time are nothing 
but the space or time oscillations or vibrations or tremors.5 

The total charge is the sum of the total angular momen
tum of the field in each of these four phase planes or the total 
tremor of the field. The orbital part of the tremor corre
sponds to the isotopic contribution T to the total charge Q 
and the intrinsic part corresponds to the baryonic contribu-

tion !B of the toal charge to make Q = T + Vl. In Sec. IV the 
matrix-wave equations covariant under the extended Lo
rentz group Lg are studied. The most general multiplication 
rules among eight matrices a A are derived. The generaliza
tions of Dirac and Duffin-Kemmer algebras are obtained. 

In Sec. VI the Lagrangian formalism is applied to a 
matrix-wave field. The Green's functions are exhibited. The 
conserved integral constants of a matrix-wave field are 
determined. 

The Appendix provides a brief review of the Lie algebra 
D4 , which is pertinent in the present theory. 

II. NOTATIONS AND THE EXTENDED POINCARE 
GROUP 

The extended phase space Vg is a flat manifold of space
time-momentum--energy, where the points have real coordi
nates (qi,q2,q3,q4,pi,p2,p3,p4) or, in short (q,p), which phys
ically represnts the possible occupation of a particle at the 
event (q) with 4-momentum (p). Small italic indices take the 
values 1, 2, 3,4, capital indices take the values 1, 2'00.,8, and 
small Greek indices take the value 1,2, 3. The summation 
convention is followed. The units are so chosen that 
a = b = c = 1, where a, b are the fundamental length and 
momentum, respectively, (Ii = ab), and c is the velocity of 
light. All other physical quantities are expressed as pure 
numbers. 

The metric form of Vg is assumed to be 

(2.1) 

where 1]= [1]ij ]=diag(€(r) = diag( _1 3
, +1) and thus sig

nature of Vg is -4. 
The homogeneous linear transformations in Vg which 

leave <P invariant are the following: 

q'i = aJqj + b J pj, 

p'i = cJqj + dj pj, 

where 

1]ij(a~~ + c~~) = 1]ij(b ~b~ + d ~d~) = 1]kl , 

(2.2) 

(2.3) 
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Defining the matrices A =[aJ], B== [b j], C= [cj], D== [d j] 
and denoting by A tr the transposition of A, (2.3) can be writ
ten as 

A tr1JA + C tr1JC = B tr1JB + D tr1JD = 1J, 
(2.3') 

A tr1JB + C tr1JD = O. 

The above equations show that the transformations (2.2) 
generate a group involving 28 real parameters. This group 
contains the Lorentz group as a subgroup whenever A = D, 
B = C = 0 and thus will be called the extended Lorentz 
group Ls (see the Appendix). This group also contains a 4-
parameter Abelian subgroup of reciprocity [which is isomor
phic to (U\ X U\ X U\ X U\)] and is given by 

q,a = qa cosifJ a _ pa sin¢ a, 

p: p,a = qa sin¢ a + pa cos¢ a (no summation), (2.4) 

q,a + i p,a = (qa + ipa)e;¢·. 

The original Born reciprocity Po can be recovered from 
(2.4) by putting ¢ a = 1T12, i.e., 

q,a = _pa, 
p. 

o· fa a p =q. 
(2.4a) 

One possible way of generating the usual reflection symme
tries is via the continuous group P. For example, the space 
reflection 1T a can be generated by ¢ a = 1T, ¢ P = 0 for f3 =l=a, 
and ¢ 4 = 0 (see Fig. 1), i.e., 

1Ta :q,a = _ qa, q'P = gP, 
q,4 = q4, 

p,a = _ pa, p'P = pP, (a=l=f3), 
p,4 = p4. (2.4b) 

The total space reflection is P =1T\1T21T3. The time reversal 
(the present definition differs from the usual time revers!!.l T) 
T' can be generated by putting ¢ a = 0, ¢ 4 = 1T, i.e., 

T':q,a = qa, q,4 = _ q4, p,a = pa, p,4 = _ p4. (2.4c) 

It can be noted that 

PT'=P~ . (2.4d) 

Po (q,p) 
p 

(q,p) 

q 

7T(q, p) 

FIG. 1. (q-p)-phase plane. 
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The inhomogeneous transformations which leave cP invar
iant are 

q'; = b; + ajqi + b j pi, 

Ps: p'; = d; + cjqi + d jpi, (2.5) 

where b;, d; are arbitrary real parameters and the remaining 
parameters satisfy (2.3). This group of transformations in
volve 36 real parameters and will be called the extended 
Poincare group Ps. 

Before the tensor representations ofthe group (2.2) or 
(2.5) are defined the following notations would be 
advantageous. 

(t)=( t I,t 2,t \t\t5,t6,t 7,t s) 
=(ql ,q2,q3,q4,pl ,p2,p3 ,p4), 

(2.6) 

Now the Eqs. (2.1), (2.2), (2.3), (2.5) can be expressed neatly 
as 

cP =JIIAB dt A dt B, t'A = l~tB, VrJVL =JII, 
(2.7) 

Now the tensor field representations under transformations 
(2.7) can be defined by the following: 

T,A".( ~') = IA .. I-D .. TC"(~) 
B,,· ~ C B D" ~ , 

(2.8) 
[I BD] = [l~]-I. 

Examples of the simple tensor fields are the following: 

(i) Scalar field: ¢'( t') = ¢ (t), or, ¢ '(q',p') = ¢ (q,p); 
(ii) Vector field: A 'B( t') = 1 ~A C( t). (2.8') 

The above can also be expressed in terms of two 4-dimen
sional vector fields. 

(A q') = (A I,A 2,A 3,A 4), (A p) = (A 5,A 6,A 7,A S), 

A ,q'(q',p') = ajA <i(q,p) + b jA pi(q,p), (2.8") 

A 'P'(q',p') = cjA q'(q,p) + djA pJ(q,p). 

(Summation convention still operating on indexj above.) 
The raising and lowering of captical italic indices can be 
performed as follows: 

[JIIAB] = [JIIAB ], 

(2.9) 

An alternate way of raising and lowering indices is to intro
duce the totally antisymmetric Levi-Civita tensor 
EABCDEFGH= ± 1,0 in the usual manner. From an rth order 
tensor TA,,,A, a dual tensor of order 8 - r, (0<r<8) can be 
defined as 

(2.10) 
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The expressions like 

TA TA = 1/ij(Tq'TqJ + TPiTpi). 

u V AB = u· ·Vqiqi + U ·Vq'pi 
AD q'q.l q'pJ 

+ U Vpiqi U Vpipi 
p'qJ + p'pi , 

are invariant under the extended Poincare group Pg• 

III. THE LAGRANGIAN FORMALISM 

The infinitesimal version of the extended Poincare 
group Pg can be summed up as 

t'A=~+(8;+~)tB, EAB = -EBA , 
(3.1) 

8t A = t ,A - tA = ~ + ~ tB, 

where I ~ I, I ~ I are small positive numbers. 
Under (3.1) a tensor field ,p A .. ( t) transform infinitesi

mally and the local variation is 

8,p A·· _ ,p 'A .. ( t ') - ,p A.'( t) = (!)ECDSCD,B .. A .. ,p B .. ( t), (3.2) 

neglecting 0 (£2) terms. Here SCD. A .. B .. is a numerical tensor 
representing generalized "spin." The substantial variation is 
defined as 

8,p A .. =,p 'A .. ( t) -,p A .. ( t) 

= _ ~a '" A .. + (l)ECD [S A .. ", B .. B'I' 2 CD.B .. 'I' 

+ (tcaD - tDaD),pA .. ], (3.3) 

where aA a/aS A. 
The invariant action integral for a complex tensor field 

,p A .. , ~ A .. (the bar stands for the complex conjugation) can be 
defined as 

A - L d 8t L [,pA"(S),~A"(S),aB,pA",aB~A .. ], (3.4) 

where D is a simply connected domain in Vg, bounded by a 
piecewise smooth, orientable, closed, compact boundary hy
persurface a (D). The variational principle 

8A = 0, 8,p A"Ia(D) = 0, (3.5) 

yields the Euler-Lagrange field equations 

(3.6) 

The invariance of the action integral (3.5) under (3.1) 
implies that 

+ ( aA \J\~B .. + L8tA ] = 0. 
aaA B 

.. r (3.7) 

By considering different possible cases for 8,p B .. one ob
tains various Noether's theorems. For example, in the case 
~#O, EAB = 0, using (3.1) and (3.3), Eq. (3.7) yields the 
following differential conservation law: 

(3.8) 

T B= --- B,p + c.c. - uBL. A -( aL )a .. ( ) ~A 
aaA" 
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The notation (c.c.) stands for the complex conjugate of the 
preceding terms and 8; is the Kronecker delta. 

In the case ~ = 0, EAB #0 Eq. (3.7) provides another 
conservation law, namely, 

aA~C = 0, ~c -M;c + Y;c = -/cB' 
M;c =tBT~ -tcT;, (3.9) 

Y;c = (~ \~ Bc .. ,p .. + (c.c.). 
aaA,p" r 

The symmetrized conserved tensor corresponding to (3.8) is 

OAB = TAB +G)aC[(~)SAB",p .. aac,p'. 

+ ( a~ .. )SBc .. ,p·· + ( a:~" )SAC .. ,p·· 

+ (c.c.)] . (3.8') 

The infinitesimal version of the reciprocity transformation 
(2.4) is obtained by putting ~ = 0, 

(3.10) 

In this in variance the following conservation law which is a 
special case of(3.9) appears: 

aAfA) = 0, fA) _ T(A) + G)A (A), 

T(A) _ q'TA _ niTA (3.11) 
pi Y q.l' 

B (A ) - ( aL ) ij(S" S .. )'" .. + ( ) 
= aa A,p .. 1/ q'p' - piq''' 'I' c.c .. 

The superscript infA) is bracketed for it is not necessarily a 
vector field under the extended Lorentz group L g , although 
it contains two vector fields under the ordinary Lorentz 
group. 

If the action integral (3.4) is invariant under the infini
tesimal phase transformation (nongeometrical!) 

~ , .. = ~"e - i< , 

then another conservation follows, namely, 

aAnA = 0, 

nA=+i[(a~L~ .. 'y"-r(a~~" )]. 

(3.12) 

(3.13) 

To obtain the integral conservation laws, one would 
consider t 4, the time as the preferred coordinate and pick a 
cylindrical domain DC Vg such that D lies between two 
t 4 = constant hypersurfaces and surrounded by a closed 
wall u generated by t4-lines (see Fig. 2). It is also assumed 
that T; = ~c = nA = ° outside the tube having D as a part. 
Across u the usual jump conditions 

T;VA = ~CVA = nAvA = 0, 

are imposed, where VA is the unit outer normal to u. Then 
applying the 8-dimensional Gauss theorem to the differen
tial conservation laws one finds the following integrals 
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FIG. 2. The 7-dimensional bounding hypersurface is a (D) = OUil(l)uil(2)' 

KA- Iv d7ST~, 
JI BC= Iv d7S M~c> Y BC= Iv d7S Y~c, 
J BC -JI BC + Y BC = - JBC , 

T Iv d 7S T(4: B= Iv d 7S B(4), 

N= Iv d 7Sn4, 

(3.14) 

to be independent of S4, and thus constants of motion. It is 
usual to extend I!. to the whole of the S 4 = constant hyper
surface V7 and still assume the convergences of the above 
integrals. Keeping this in mind and Eq. (3.8), (3.9), (3.11), 
(3.14) one can also write the constants of motion as 

Jij=Jq'qJ, 

Lij==Jp'pJ' 

T==. f d3qd4p[(~)(qiap _pia i)l/J" + (c.c) Jv, aaq4l/J'" q 

+p4L ] , 

B=2 f d3qd4p[(~)rl(S;,pj" -S;iqi . .>r + (c.c.)] , 
Jv' aaq4l/J 
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Q=eo(T +!B), 

N=i f d 3qd 4p [ (at~i- p--r( :~4 r) ], (3.15) 

where eo is a charge parameter and aqi=a laqi' ap,=alap', 
and Greek indices take the values 1,2,3. Some physical 
interpretation is in order now. For the l/J "-field distribution, 

(i) Ka is the total momentum; (ii) H is the total energy; 
(iii)Xa is the center of mass; (iv)X4 is the center of time; (v) 
Jij is the total angular momentum, part of which is the total 
spin uij; (vi) Lij is the total angular momentum in momen
tum space (which is a generalization of the Newtonian con
cept p X F for a particle); (vii) T + tB is the total oscillation 
of tremor of the field which is proportional to the total 
charge; (viii) B is the total intrinsic (spinlike) tremor to be 
identified with the baryon property; (ix) T is the total exter
nal (orbital-like) tremor to be identified with the isotopic 
plus strangeness property. 

IV. THE COVARIANT MATRIX-WAVE EQUATIONS 

The matrix-wave equations which are covariant under 
the extended Lorentz group L8 are taken to be the linear, 
first-order set of partial differential equations 

(4.1) 

where the eight matrices ~ are required to be an irreducible 
representation of the generators of an abstract algebra and I 
is the unit matrix. 

The general commutation rules or multiplication rules 
of the algebra are derived from the in variance ofthe wave 
equation (4.1) under the extended group Ls: 

S'A = l~sB, t/J' = T(L )t/J, T(L )aAT(L )-1 = I iJAaB, 
(4.2) 

where T (L ) is the representation of the extended group in the 
vector space of representation of the algebra. An element of 
this algebra K =k A a A 

, «k A)E Vs) undergoes the following 
transformation 

K' = k ~ a A = T (L )KT (L ) - 1 • (4.3) 

As a matrix of finite degree, K satisfies a minimal polynomial 
equation with coefficients being polynomial functions of the 
numbers kA • But (4.3) shows that the minimal equation is 
invariant under the action of the extended group Ls so that 
the coefficients must be functions ofthe invariant combina
tion k 2=k A k A. Therefore the minimal polynomial of the 
matrix K of the highest degree 2n or 2n + 1 can be factorized 
into the forms. 6 

(K2 -AIF1)(K2 - A2k
21)"'(K 2 - A2nk21) = 0, (4.4a) 

K (K2 - A2k 21)(K 2 - A3k 21) ••• (K 2 - A2n + 1 k 21) = 0 , 

(4.4b) 

where Ai are complex constants in general. 
Equations (4.4a) and (4.4b) can be written explicitly in 

terms of a-matrices as 
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(aA,,,B,, _ A2n ff
A,,,B'''I) = 0 , (4. Sa) 

kA, kA, kB, ... k A,,, " kB,,, " a A, 

X (aA'aB, _ A~A,B'I )"'(aA,,, , 'aB,,, " 

_A ffA,,,+,B'''+'I)-O 
2n+1 - • (4.Sb) 

Since above equations should hold for every (kc)EVs, the a
matrices should satisfy the generalized commutation rules 

I (aA'aB, - A Iff A , B'I)"'(aA,,,B,,, - A2n ff
A,,,B'''I) = 0 , 

p 

(4.6a) 

I aA'(aA'aB, - AlffA,B'I)oo'(aA,,, "B,,, +' 
P 

_A ffA'''t,B'''+'I)-O 211 +1 - , (4.6b) 

where p stands for the summation over all possible permuta
tions of 4n or 4n +2 indices respectively. 

For the infinitesimal version T(L) = I + (1!2)~BSAB 
of the transformations (4.2) of the aA-matrices one has the 
following: 

[ac,SABI = ffCAaB -ffCBaA , (4.7) 

where [A,Bl=",AB - BA. 
Together with the algebraic multiplication of the corre

sponding Lie algebra D4 (see Appendix), namely, 

[SKL,SMNI 

=ffKNSLM -ffKMSLM +ffLMSKN -ffLNSKM' (4.8) 

the problem of finding all covariant equations (4.1) boils 
down to finding the general solutions of (4.6a) or (4.6b), 
(4.7), (4.8) for a A and SAB' 

For the variational derivation of the wave equation and 
the construction of the tensors TAB,rac in Eqs. (3.8), (3.9), 
one needs a nonsingular matrix A such that 

(aA)t = AaAA -I, (4.9) 

where the dagger denotes the Hermitian conjugation. If such 
a matrix exists, it can be chosen to be Hermitian because 
(A t) -I A commutes with all the irreducible aA 's and thus 
must be a scalar matrix. In case the constants Ai'S in Eqs. 
(4.6a), (4.6b) are real one can infer by taking the Hermitian 
conjugates of these equations that (aA )t-matrices satisfy the 
same multiplication rules as aA-matrices. Therefore in such 
a case A must exist. 

As a simple example, consider the minimal polynomial 
of degree 2. In this case A 1 can be set to 1 by suitable normal
ization. According to (4.6a) the multiplication rules are 

(4.10) 

An irreducible representation of the aA-matrices satis
fying (4.10) are 16 X 16 matrices (this is the only possible 
size) exhibited below6

: 
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a l =ia1XIXIXI, a 2 =ia 3xa 1XIXI, 
a 3 = ia 3 Xa 3 Xa l Xl, a 4 = a 3Xa 3Xa 3Xa 1 , 

as = ia 2XI Xl Xl, a 6 = ia 3Xa 2XI Xl, 
a 7 = ia 3 X a 3 X ~ X I, as = u 3 X a 3 X a 3 X a 2 , 

A =a 3 Xa 3 Xa 3 XI, 
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A t=A =A -I, 

SAB = G)[aA,aBI = (p[aAaB -ffABI] , (4.11 ) 

where M X N denotes the Kronecker product of the matrices 
M, N; a a are the Pauli matrices, and I is the 2 X 2 identity 
matrix. 

These aA -matrices generate an associative Clifford alge
bra of order 2S6. One basis is en, n,...n'=(a lY'(a2y'''·(asy" 
where the n A are integers mod (2). This is a generalization of 
the Dirac algebra. 

V. GENERALIZATION OF DUFFIN-KEMMER ALGEBRA 

For the next example the minimal polynomial of degree 
3 is considered. Using the symbols f3 A instead of a A in this 
case (4.6) yields 

f3Af3Bf3C +f3Cf3Bf3A =f3AffBC +f3CffAB' (S.I) 

Thesef3A 's generate a generalization of the Duffin-Kem
mer algebra. 

In this case SAB = [f3A,/3B] . Furthermore, one can 
show that the matrix-wave equation 

[f3 AaA - imI]¢(5) = 0, (S.2) 

contains the scalar and vector field equations. 7 This can be 
proved using the following consequences of(S.I): 

f3~ = £(A )f3A , 

f3Af3 ~ = [c(B)I - f3 ~ ]f3A (A =lB) , 
(S.3) 

f3Af3Bf3A = ffABf3A (A not summed) , 

f3~f3~ =f3~f3~ , 

where £(A )~AA' A not summed. Some additional matri
ces would be required and they are 

8 

r= II f3~, "'A=rf3A , 
A=I 

for A = 1,2,00',7, 

for A = 8, 

"'AB -"'Af3B' "'Af3B = ffABr , 

"'AB = - "'~A' "'ABf3c = ffBc"'AB - ffAC"'~ . 

Defining four wavefunctions 

(S.4) 

¢ ~irtP, ¢A="'AtP, VA ~(im) -1"'AtP, UAB="'ABtP , 
(S.S) 

and multiplying (S.2) from the left by "'A' r, "'AB' ",'A, one 
can obtain the following four wave equations, respectively, 

aA¢ = - m¢A' aA¢A = m¢, (S.6a) 

aBVA-aAVB=UAB' aBuAB=_m2VA. (S.6b) 

Equations (S.6a) and (S.6b) are scalar and vector field 
equations. By (S.2), (S.S), (S.6a), and (S.6b) one can con
struct the irreducible representations of f3A-algebra in di
mensions 9 and 36, respectively. These together with the 1-
dimensional trivial representation f3A = 0 are believed to be 
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the only possible irreducible representations. The wave 
equation (4.1) with the choice of (4.10), (S.6a), and (S.6b) 
would be the most relevant one for the applications to ele
mentary particles. 

VI. THE MATRIX-WAVE FIELD THEORY 

We return to the general case of the wave equation (4.1). 
This equation is derivable from the variational principle with 
the Lagrangian 

L = (21) -I [(aA IhaA,p] + (h.c.) + m¢,p, 

¢=,ptA , (6.1) 

and (h.c.) stands for the Hermitian conjugate of the previous 
terms. 

The various matrix-Green's functions of the field equa
tion (4.1) are furnished by 

G(a)<t - S') 

=-(21T)-Sif
oo 

d 7
; f d;4 [aA;A -mI]-1 

~ 00 JC(a) 

X/;A(SA_S,A), (6.2) 

where C(a) are the various contours in the complex; 4 -plane. 
The integrand in the last contour integral will have simple 
poles at the finite points of the; 4 -plane. The homogeneous 
Green's functions would involve contours C(a) , which are 
closed Jordan curves enclosing some of these poles. On the 
other hand, for the inhomogeneous Green's functions the 
contours C(a) should be along the real line ( - 00,00) and in 
the neighborhood of each real pole either the principal value 
is considered, or the semicircular detours (in upper or lower 
half-planes) are taken. 

The various tensor fields obeying the differential con
servation laws are computed from (3.8), (3.9), (3.13), (6.1), 
(noticing L = 0 by the field equations) to be 

TAB = (21)-1 [(aB¢)aA,p] + (h.c.), 

M~c = sBT'i.: - ScT~ , 

y~c = - (21) -1¢aASBC,p + (h.c.) , 

.t;c = M~c + Y~c , 
nA = ¢aA,p. 

The integral constants (3.1S) of the ,p-field are, 

Ka =(21)-1 f d 3qd 4p [(aqa ¢)a4,p] + (h.c.), Jv, 
Xa = (21) -I ( d 3q d 4p [(apa ¢)a4,p] + (h.c.) , Jv, 

(6.3) 

Jab = (21) -I f d 3q d 4p [qa(aqb ¢)a4,p - qb(aqa ¢)a4,p] , Jv, 
- (21) -I f d 3q d P [¢a4Sqaq.,p] + (h. c.) , Jv, 

Lab = (21) -I f d 3q d 4p [Pa(apb ¢)a4,p - Pb(apa ¢)a4,p] , Jv, 
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- (21)-1 f d 3qd 4p [¢a4Sp•p.,p] + (h.c.), Jv, 
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APPENDIX 

The homogeneous extended Lorentz group Ls has 28 
infinitesimal generators. 

SAB = -SBA=SBaA -SAaB . (AI) 

These generate a split simple Lie algebra 

[SAB,ScDl = C~~,CDSEF' 
where the structure constants are 

C~~,CD==..A'AD8~8~ +ffAC8!8~ +ffBD8!8~ 

(A2) 

+ffBC8~8~ . (A3) 

For the canonical form of (A.2) one has to make the 
following complex linear transformation 

S 'a = 2 - 112 [S a + is a + 4] , 

(A4) 

The canonical forms of the generators are 

(AS) 

E(_e._e.)=S~+4,b' E(_e._ -ehJ=S~+4,b+4 . 

The root diagram in an inner-product vector space V4 con
sists of the 24 vectors ± ea ± eb , ai=b. The corresponding 
Lie algebra is D4 • 

The Cartan matrix is 

-1 
2 

-1 

-1 

o 
-1 

2 

o 
-~) o . 

2 

(A6) 

The corresponding Dynkine diagram (Fig. 3) is shown 
wherea l = el - e2,a2 = e2 - e3,a3 = e3 - e4,a4 = e3 + e4 
are a set of fundamental roots. 

FIG. 3. Dynkine diagram. 
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Any representation of the algebra has a weight vector 
(m.,mZ,m3,m4) where mi's are all integers or all half-inte
gers. The Weyl reflection group Wis the group of perm uta
tions of mi's with an even number of changes of sign. Any 
irreducible representation can be characterized by the high
est weight (m.,m2,m3,m4)' Four fundamental representa
tions of D4 can be chosen to be al> a 2, a 3, a 4 in Fig. 3 where 
the numbers inside the parentheses indicate dimensionality 
of these representations. The triality of 8-dimensional repre
sentations a l> a 3, a4 are to be noted. 

Weyl's dimension formula for the irreducible represen
tation (m l ,m2,m3,m4) of D4 yields the dimensionality 

d = (ml +3)2 - (m2 +2)2 • (m. +3f - (m3 + If 
5 8 

• (m I + 3f - m~ • (m2 + 2)2 - (m3 + 1)2 

9 3 
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Extended phase space. II. Unified meson fields 
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The classical scalar equation in the extended phase space Vg is studied. It is the generalization of 
the usual Klein-Gordon equation and is covariant under the extended Poincare group P g • In this 
equation there is obvious symmetry of the variables q and p and thus the principle of reciprocity is 
automatically incorporated. The scalar field is expressed as a Fourier integral 
¢ (q,p) - f dk dx a(k,x)e i(kq + px) to compute the integral constants like the total energy, total 
momentum, etc. Then the integral constants turn out to be meaningful quantities by interpreting 
f(k,x)-laI 2 as the statistical distribution function for the scalar field particles. Next the scalar 
field is expressed as the Fourier-Bessel integral 

¢ (p,(J)- 1 J~ 00 f" dk ka(k,t )J,(kp)e
iIB = 1 ~ ~ 00 ¢ (I>, P = v' q2 + p2, e = arctan(p/q). 

The integral constants are computed from a single (t )-mode ¢ (I). These are accessible to physical 
interpretations. Especially, the total charge can be linked up with the Gell-Man-Nishijima's 
formula, provided one of the quantum numbers (t), say t3 , is identified with the isotopic quantum 
number and 2t4 is identified with strangeness. With each of the (t )-mode ¢ (I) a meson field is 
associated so that the ¢-field itself is the unified meson field. 

I. INTRODUCTION 

Extended phase space Vg of space-time-momentum
energy is advocated instead of the space-time, for the formu
lation of the meson field theory. 

The generalized Klein-Gordon equation for the scalar 
field in Vg is introduced. The group of covariance for this 
field equation is the extended Poincare group Pg• As an ele
ment of this group one has the transformation 
q' = - p,p' = q which is the reciprocity transformation of 
Born.1 Yukawa2 pursued Born's reciprocity in his theory of 
the nonlocal scalar field. He had two equations for the scalar 
field, one for the space-time and another for the momen
tum--energy space. In the present paper the generalized 
Klein-Gordon equation is obtained by gluing his two equa
tions together so to say. The first advantage of this procedure 
is that the group of covariance is enlarged and secondly the 
scalar field thus obtained can describe various mesons in a 
unified fashion. The generalized Klein-Gordon equation 
studied here is mathematically equivalent to one written for 
the complex space-time. 3 

In Sec. II, the Lagrangian methods for the scalar field 
are pursued. Applying the variational formalisms devel
oped4 in Paper I, the various integral constants such as the 
total energy, the total momentum etc., are expressed. 

In Sec. III, the plane wave decomposition or the Four
ier transform of the scalar field is obtained. Next the integral 
constants are computed by using the plane wave decomposi
tion. These are all expressed as 7 -dimensional integrals in the 
dual extended phase space. The integrands are proportional 
tof(k-,x)=la(k...,xW, wherea(k...,x) is the complex valued am
plitude, k is the dual momentum x is the dual position-time. 
These integral constants become tantalizingly meaningful if 
f(k...,x) is interpreted as the statistical distribution function for 
the mesons in the dual phase space. This view point strongly 
supports the statistical interpretation of the quantum me-

chanics.5 These integral constants fit in well with the total 
energy, the total momentum, the average position, and the 
average time of the scalar field. 

In Sec. IV, instead of the coordinates q,p the variables 
p = (p2 + q2)1/2, e = arctan(p/q) are introduced. These are 
analogous to the action-angle variables. The first purpose is 
to facilitate by the variables e, the description of the rotation
al motions in the p-q planes (which are oscillations or trem
ors in space-time) and to obtain the corresponding tremor 
quantum numbers (t) = (t l,t2,t3 ,t4 ). Secondly, in the subse
quent development of the quantized Vg, the 4 eigenvalues of 
the quantized p will bring lattice structure of Vg while the e 
variables will be completely uncertain. This change of varia
bles brings in, naturally, the Hankel transform 
¢ (p,e)- ~'('~ ~ 00 f; dk k a(k.,t )J,(k,p)eiIB 

= ~;:, _ 00 ¢ (I) instead of the usual Fourier transform. The 
integral constants are evaluated from the Lagrangian for
malism for a single (t )-mode ¢ (1)( p,e). These are expressed 
as the 3-dimensional integrals in the dual momentum space 
and are accessible to physical interpretations. The most in
teresting one among these constants is the total charge Q 
which is proportional to (t 1 + t2 + t3 + t4). For the special 
case t 1 = t2 = 0 writing the strangeness s = 2t4 one obtains 
the Gell-Man-Nishijima's6 expression for the meson charge. 
Furthermore, if one accepts - rl[ J2/ Jp'(Jpj 
+ (1/p~J/Jpj] as the (mass)2-operator instead of the com
monly used7 

- rlJ2/ JqiJqj, then the field ¢ (I) will have 
(mass? = m2 -1Jij(t;fj/pp0. The last formula for the spe
cial case tl = t2 = 0, S = 2t4 goes over to (mass)2 = m2 

+ t ~ / p~ - S2 / 4p~ which is the analog of the Okubog mass 
formula. From the preceding discussions it appears that 
each of the (t )-mode ¢ (1)( p,e) can describe a particular me
son so that the scalar field ¢ (p,e) = ~'('~ ~ 00 ¢ (I)(p,e) 
stands for the unified meson field. 

In Appendices I and II the rigorous computations of 
the integral constants are provided. 
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II. NOTATIONS AND THE FREE SCALAR FIELD 
EQUATION 

The extended phase space Vs of space-time-momen
tum-energy is coordinatized by 
S=( S I,S2,S3,S4,S5,S6'S7,S8)=(ql,q2,q\q4,p\p2,p3,p4) 
-(q,p). The capital italic indices take 1,2, ... ,8; the small ital
ic indices take 1, ... ,4; the Greek indices take 1,2,3. Summa
tion convention is followed over the indices, which occur 
more than once. The units are so chosen that a = b = c = 1, 
where these are, respectively, fundamental length, momen
tum, velocity, and all physical quantities are pure numbers. 
The metric tensor of Vs is given by [ffAB ] 
-diag[ _13,1, -13,1] and the Minkowskian metric tensor 
is [17 ij ] = [17 q'q} ] =diag[ _1 3, 1]. The raising and lowering of 
the tensor indices in Vs are accomplished by ffAB andffAB. 
The partial derivatives are denoted by aA =alas A, aq , 

=alaq',=alapi. The equation, say (3.8) of Paper I isindicat
ed by (1-3.8). 

The Lagrangian for the complex scalar field is assumed 
to be 

L (<pi,aA,aAi)-"JIH(aAi)(aB<P) - m 2i<p, (2.1) 

where m is the mass parameter, and the bar stands for the 
complex conjugation. 

The Euler-Lagrange field equations in this case go over 
to 

(2.2) 

which is the generalization of the Klein-Gordon equations. 
The various Green's functions for the partial differen

tial Eq. (2.2) are 

G (S - S ')==(21T)-S foc d 7; 
(a) _ oc 

x ( d;4(m2_;B;Bt le i{;A(sA-s.A), (2.3) 
JC(J) 

where C(a) are the different contours in the complex ;4_ 
plane, which are exhibited in Fig. 1. In the complex; 4 -plane, 

Cp 

FIG. I. The complex ;4_plane. 
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FIG. 2. A singular surface I2 of the Green's functions. 

the two poles of the integrand in (2.3) occurs at points 

;4= ± [(;1)2+(;2f+(;3)2+(;5)2+(;6)2 
+ ( ; 7)2 _ ( ; 8)2 + m2] 1/2 

== ± n. 

q2 

These points are situated either on the real axis or else on the 
imaginary axis and are symmetric about the origin. 

The Green's functions (2.3) are singular [one can easily 
see from (2.3) for the point S A = S ,A on N7 that 
lims->s' I G a ( S - s ') I = 00] on the null hypersurfaces in Vs 
given by 

N7:(SA - S ,A)(SA - S~) = 0. (2.4) 

To get a visual picture of these null hypersurfaces, consider 
N~O):SASA = ° and five hyperplanes given by 
S 3 = S 5 = S 6 = S 7 = 0, S s = E> 0, a constant. The inter
section ~2 of all these hypersurfaces is given by the 3-dimen
sional equation ( S 1)2 + (S 2)2 = ( S 4)2 + E 2 and plotted in 
Fig. 2. The various tensor quantities obeying the differential 
conservation laws for the complex scalar field can be com
puted from (2.1) and [cf. (1-3.8), (1-3.9), (1-3.13)] 

TAB = (JAi)(aB<P) + (c.c.) - /jABL, 

vIIABc =SBTAc -ScTAB' Y A
BC =0, 

.r BC = vilA BC + yA BC' nA = iiaA <P + (c.c.), (2.5) 

where (c.c.) stands for the complex conjugation of the pre
vious terms. 
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Now using (2.1) and (2.5) some ofthe integral constants 
[cf. (1-3.15)] become 

Ka= { d 3qdjJ T4a = ( d 3qd 4p 
JV7 JV7 

X [(aq4j)(aqatP) + (c.c.)], 

H=K4={ d 3qd 4pT44= ( d3qd4p[(aq4j)(aq4tP)] 
J~ J~ 

+ (aqaj)(aq"tP) + (apaj)(apatP) - (ap4j)(ap4tP) + m2jtP, 

Xi {d 3q d 4p T4pi = ( d 3q djJ 
JV7 JV7 

X [(aq.j)(apitP) + (c.c.)], 

(0)2=(0"\2)2 + (0"23)2 + (0"31)2 = 0, 

T= { d 3qd 4p {(aq4j)(qiapi -piaq,)tP + (c.c.) Jv, 
+ p4 [1li(aq,j.aq}.tP + ap,j.ap1tP) - m2jtP ]}. 

B=O, Q=eoT, 

N= { d 3qd 4pn4=i ( d 3qd 4p [jaq.tP]+(c.c.),(2.6) 
JV7 JV7 

where eo is a charge parameter. 

III. THE PLANE WAVE SOLUTIONS AND THE 
STATISTICAL INTERPRETATION 

Now assuming the appropriate restrictions on tP satisfy
ing (2.2), the Fourier integral of this function can be stated as 

tP(s) = (21Tt4 f~oo d8~A(~)O(~B~B _m2)e- 'i;,i;', 

(3.1) 

where o(x) is the Dirac delta function for the variable x. 
Integrating out the variable ~ 4 (3.1) yields 

tP (q,p) = (21Tt7/2 f~ 00 d 3k d 4x (2fl (k--,X»-1/2 

X [a(k--,x)e - i(k"q" + x.,p") 

+ iJ (k--,x)ei(k"q" + X,pa)] , 

j (q,p) = (21T)-7/2 f~ 00 d 3k d 4x (2fl (k--,X»-1/2 

X [a(k--,x)ei(k"q" + X,p") 

+ fJ (k--,x)e - i(k"q" + x.,p,,)], 

where 

(~A)=(kitxJ, (kJ=(k 1,k2,k3), 

(x)=(x I'X2,X3,X4 ), 

(3.2) 

~----------------

fl (k--,x)= + V kaka + XaXa - x~ + m 2, (3.3) 

kaqa _kaqa + flq4, a(k--,x)==(41Tfl )-1/2A (k--,fl,x), 

iJ (k--,x)=(41Tfl t l/2A ( - k, - fl,x). 

It can be noticed from (3.3) that fl can take imaginary val
ues. To exclude that possibility for the sake of physical credi
bility the 7-dimensional integration in (3.2) should be re
stricted to the domain 

D7-{(k--,x)lkaka +xaxa -x~ +m2>0}. 
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This procedure might imply some additional restrictions on 
tP (q,p). 

Computing some of the integral constants in (2.6) (cal
culated at q4 = 0) with (3.2) one obtains (cf. Appendix I) 

Ka = { d 3kd 4x [1+ (k.,x)+f- (k--,x)]ka' JD, 

H =K4 = { d 3k d 4x [1+ (k--,x) + f _ (k---x)] fl (k--,x), 
JD, 

Xa= (d 3kd 4x[I+(k--,x)+f_(k--,x)]xa, (3.4) JD, 
N= r d 3kd 4 x[I+(k,x)-f_(k--,x)], 

JD, 
f + (k--,x)=lfJ 12 ;;;'0, f _ (k,x)_laI 2 ;;;.0. 

Some physical interpretation can be reached now. 
From the above equations,f + (k,x),f _ (k--,x) can be quite 
naturally intepreted as Boltzmann type distribution func
tions for the similarly created scalar particles and antiparti
cles in the (Fourier) dual phase space. This viewpoint defi
nitely supports the statistical interpretation of the quantum 
mechanics.5 The integral constants: 

(i) Ka represents the total momentum; (ii) H is the total 
energy; (iii) Xa if the first moment for position and time; (iv) 
N is the total number. 

All these integral constants are for the scalar field represent
ing the scalar particle ensemble. 

IV. APPLICATIONS TO THE UNIFIED THEORY OF 
'~ESONS 

To relate the complex scalar fields to the meson theory, 
it is more suitable to treat the Hankel transform rather than 
the Fourier transform of the field tP ( 5). For that purpose in 
each of the four phase planes (see Fig. 3) the polar coordi
nates are introduced as 

(4.1) 

p 

(q,p) 

q 

(-q,-p)=1T(q,p) 

FIG. 3. The (q - p)-phase plane. 
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where 0 <pa, 0<0 a < 21T. In these coordinates the general
ized Klein-Gordon equation (2.2) goes over to 

l1Jij[ap,apJ + (l/p')apj 

+ (l//p )a8ia8j J + m 2 J ¢J (p,O) = 0, (4.2) 

where (p)=(pl,p2 ,p3 ,p4), (0)=(0 1,0 2,0 3,0 4) and summation 
has been carried out on the indices which occur more than 
once. 

Separating the variables and demanding that the angu
lar functions are single-valued, one gets the basic solution 
functions as 

(4.3) 

where (t )=(tl ,t2,t3,t4) and each of ti = 0, ± 1, ± 2,···. The 
functions ¢J (I)(p) satisfy the partial differential equation 

l1Jij[apiapJ + (l/p')apj - (tJ/p~f) J + m2 J ¢J (I)(p) 
= O. (4.4) 

The solutions of the above equation can be expressed as 
Bessel functions and some of the Green's function9 can be 
cited as 

G(I)(p,p') 
(a) 

= roo d3KKIK~3 r dK4Kim2 -1JijKiKj)"IJI'(Klpl) Jo Jc(a) 

X JI, (K JPI! )J12 (K 2 p2)J12 (K 2 p,2)J1, (K 3 p3)J1, (K 3 p'3) 

XJI• (K4p4)J1. (K4P,4), (4.5) 

where for Cia) see Fig. 4. In the complex K4-plane the two 
poles ofthe integrand in (4.5) occur at points 

K4 = ± liJ(/f)= ± v' KaKa + m2 . (4.6) 

The most general solutions ofEq. (4.2) can be written as 

¢J(p,O) = (21T)"3/2 1"" d 3 KKIK2K3 

X ! [a(/f,t )JI, (KI pl)J12 (K2p2)J1, (K3p3)JI, (liJP4) 
(1)=-00 

+ r(/f,t )YI, (KI pl)Yl2 (K2 p2)YI,(K3 p3)yt• (liJK4)] e
ita8 ", 

(4.7) 

where JI (Kp), YI (Kp) are the Bessel functions of the first and 
second kind and ~(t) -~" ~12 ~I, ~I.' But the above expres
sion is singular at (p) = (0). To avoid such a singularity one 
should exclude the Bessel functions of the second kind in 

FIG. 4. The complex K4-plane. 
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general. Therefore the solutions of the following form would 
be used: 

¢J(p,O)= f ¢J(t), 
(,) = - 00 

(4.8) 

One can also derive (4.8) from (3.2) using the Jacobi-Anger 
formulas eiUsin<p = ~;'= _ ooJ,(u)ei'<P, eiucos<p 
= ~;"== _ 00 (1)IJ,(u)eit<P. 

To investigate the physical properties of the ¢J field in 
the above series expansion the various consequences of a 
single (t )-mode ¢J (I), (t) =1= (0) would be looked into. For that 
purpose the integral constants (2.6) would be computed us
ing ¢J (,) field. At this stage a difficulty is encountered. If one 
allows p4 to take negative as well as positive values in the 
process of integrations, physically unacceptable results 
emerge; for example, N(I) = O. Therefore the range ofp4_ 
integration would be restricted to 0 <p4 < 00. Mathematical
ly, it means that some of the derivatives of ¢J (t) would be 
singular at p4 = 0 and physically it means that there would 
be a barrier or sources along the hypersurface p4 = 0, sepa
rating positive and negative energy parts of Vg. There are 
also usual sources at (p )_( (0). With this understanding 
some of the computed integral constants (see Appendix II) 
are the following: 

K(')=O H(t)= 100 

d 3KKKK/(Kt\f"(K) a , 1 2 3 -, JLV ~ , 
o 

X~) = 0, (T(t) = 0, B (I) = 0, 

Q(t) = _ 1T;o (t l + t2 + t3 + t4) 100 

d 3KKIK2K3/(/f,t), 

/(/f,t) = (2I1T)la(K,t W>O. (4.9) 

In the above/{/f,t ) is the distribution function of the particles 
at(t )-modein thewave-numberspace.Ka (,) = Xa (,) = Ocan 
be physically understood by noticing that in the basis of Bes
sel functions the incoming and the outgoing waves are equal
ly mixed. The charge constant Q (I) has a peculiar multiplier 
1T/2 as well as an interesting factor (t l + t2 + t3 + t4). If the 
antiparticles ofthe (t )-mode should have the opposite charge 
they must be associated with the ( - t )-mode, i.e., with the 
field ¢J ( - I). The charge-conjugation operation could be de
fined as 

(4.10) 

The various reflection properties (see Fig. 3) of the ¢J (t )-field 
can be brought under investigation by Eq. (4.8) [cf. (I-2.4a)
(1-2.4c»). These consequences are straightforward and can 
be summarized in the following: 

1Ta¢J (1)(p,O)-¢J (1)(p, ... ,O a + 1T, ... ) = sA (l)(p,O), 

I:" =1:" I:" I:" _ ei(', + 12 + t,)1T 
~p-~I~~3 - , 
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(4.11) 

Furthermore, a plausible mass operator will be introduced 
below: 

M 2(p,Jp)t/J(I)(p,() - {17ij[J
p
,JpJ + (1/p')Jp

dl 
X t/J(r)(p,(). (4.12) 

By (4.4) one obtains 

(mass)2 = m2 -17ij(t;t/P~f). (4.13) 

Excitation of all four of (t )-modes or any of the larger ti -

modes would require very high energy and thus be less prob
able. Most likely is the excitation of one or two ti -modes to 
some lower quantum values. 

For an interesting special case tl = t2 = 0, t3 and 
S/2=t4 being not necessarily zero, and with the definition of 
the charge parameter e= - (1T/2)eo, one can collect from 
(4.9), (4.11), (4.13), the following formulas: 

H(r,.s) = f'" d 3K KIK2KJ(/f.,t3,s)uJ(/f.), 

Q(r,.s) = e(t3 + s/2) L'" d 3K KIK~3f(/f.,t3,s), 
f;- _ e"-'11' f;- _ e is11'/2 f;- _ ei(l, + 5/2)(11'/2) 
~p - '~T' - '~Po - , 

(4. 14a) 

(4.14b) 

(4.14c) 

(4.14d) 

Equation (4. 14b) can be identified with the Gell-Man-Nishi
jima's formula6 for the meson charge provided the space 
tremor quantum number t3 is identified with the isotropic 
quantum number and twice the time tremor quantum num
ber t4 is identified with the strangeness s. Equation (4. 14d) is 
the analog of the Okubo mass formulas for the mesons. One 
can generalize in a straightforward manner the above formu
las for the case when t/J (p,() is in general double valued func
tion around the origin, or in other words when ti 
= 0, ± 1/2, ± 1, ± 3/2, .. ·. With this understanding, appli

cations of the above results could be made to the mesons in 
Table I. 

By Eq. (4.8) infinite numbers of mesons exist, so that 
Table I can be continued as long as one wishes, predicting 
new mesons on the way. But it has been confined to the 
discussions of the most familiar mesons. Moreover, the old 
assignments of the quantum numbers have been retained for 
t3 and s, although such adoption is not absolutely imperative 
from the theory. Comparing with the usual SU3-model 
mainly three differences have arisen here. 

(i) 1To in the present scheme has parity S p = 1 instead of 
-1. 

(ii) The parity of the K mesons satisfy S ~ = - 1, which 
is a reminder of the parity of the spinor fields. This situation 
has been forced into by the choice of the half-integral values 
for the quantum numbers Ii' 

(iii) Each of the mesons (except for 1T~ is one of the 
three kinds which are practically indistinguishable. They 
can only be separated out by measuring the individual pari
ties SI' S2, S3' 
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For a convincing assignment ofthe quantum numbers 
ti' the experimental informations on S .. S 2' S 3' S T' are defi
nitely required. 
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APPENDIX I 

The derivation of 

Xa = r d 3K d 4x [f + (k,x) + f _ (k...,x)] x a, (All) 
JD1 

would be performed here. Recall the representation of the 
delta function 

8(y) = (217)-1 f: "" e
iyu duo 

From (3.2) one gets 

[aq"t,6 ]q'=o = (217t7/2 r d3k.d4X(2/J)-1/2(ikJl.) 
JD1 

(AI2) 

X [ - ae - i(k,q" + XuP") + pi(k"I" + xuP")] , 

[aql,t,6 ]q'=o = (217t7/2 r d 3kd 4x(2a)-1/2(iIJ) 
JD1 

X [ - ae - i(k,q' + XuP") + pei(k,q" + xuP")] , 

[aq"t,6 ]q'=o = (217t7/2 r d3kd4x(WtI/2(ixa) 
JD1 

X [ - ae - i(k,q" + XuP") + pei(k,q" + xuP")] , 

(AI3) 
From (2.6), (AI.2), (AI.3), it follows that 

Xc = [XC]q4=O = (217t7 r d 3qdjJ r d 3kd 4x(iiltl/2 
JV7 JD7 

X r d 3k I d 4x' (2a 't 1/2 {(iIJ ')(ixc) 
JD, 

X [a'i(k'"q"+x'uP") _{3'e- i(k'"q"+x'uP")] 

X [_ ae - i(k,q" + X,P") + pei(k,q" + X,pb)] 

+ (c. c.)} 

= r d 3kd 4x(W)-1/2 r d 3k'd 4x'(W,)-1/2 
JD7 JD7 

X ([a 'xc(ii'a + {3'P) + ax'c(a'a +P'{3)] 

X 83(1£ - 1£ ')84(X - x') - [a 'xc(a'P + {3 'a) 

+ ax' c (a '{3 - P'a) ]83(1£ + 1£ ')~(x + x')} 

= L, d 3
k d

4
x (lal 2 + 1{312)xc - (D L, d 3

k d
4
x 

X{[a( - kJ - x)P(kJx) - a(k,x)p( - k., - x)] 

+ [a(k.,x){3( - k., - x) - a( - kJ - x) {3 (kJx)]} xc' 

The last integral vanishes because whenever (k...,x)ED7 also 
the point ( - k., - x)ED7. Thus (All) is obtained. 

APPENDIX II 

Some ofthe computations of the integral constants (4.6) 
would be demonstrated here. For that purpose some basic 
equations regarding the Bessel function of the first kind 
would be listed below. 10 

(d Idp)Jt(p) = (l/2)[ J t _ 1 (p) - Jt + 1 (p)], (AUla) 
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Jt _ 1 (p) + J t+ 1 (p) = (2t /p)Jt(p), 

aq [Jt(Kp)e ± itO] 

= [cosOap - (l/p) sinOao ] [Jt(Kp)e ± itO] 

= (K/2) [Jt _ 1 e+ iO - J t + 1 e± iO] e±itO 

(AIlIb) 

= [(l/2)KCOSO(Jt _ 1 -Jt+1)+(it/p)sinOJt ] e+ itO, 
(AIl1c) 

ap [Jt(Kp)e ± itO] 

= [sinOap + (l/p) cosOao ] [Jt(Kp)e ± itO] 

= ± (iK/2)(Jt _ 1 e+ iO + J t+ 1 e ± iO) e± iO 

= [(l/2)K sinO (J'_I - J, + I) ± (it /p) cosOJ,] e ± itO, 
(AIl1d) 

where the upper and lower signs should be read separately. 
Further equations are 

L"" dp pJt (Kp)J, (K'p) = (K)-18(K - K'), 

L"" dp(ptl [J,(ap)f = (2ttl, 

L"" dp(p) - UJ,(Kp)J" (Kp) 

= (2tl(K/2)"-lr(u)r [(t+ t' - u + 1)/2] 

(AllIe) 

(All If) 

X ! r [ (u + t + t' + 1 )/2 ] r [(u + t - t I + 1 )/2 ] 

xr[(u-t+t'+1)12]j-I, (AIIIg) 

where the above integral is valid for ° < u < t + t' + 1 and is 
the critical case of the Weber-Schafbeitlin integral. Some 
combinations of such integrals do exist by analytic continu
ations of the original restrictions on u,t,t'. To prove that the 
following formulas on the gamma functions would be need
ed. r(z) has poles at z = 0, -1, - 2, ... , and furthermore, 

r(z + 1) =zr(z), (AIlIh) 

r(z)r(I-z) = -zr(z)r( -z) = l7CSC(l7Z),(AIIli) 

r (2z) = 22z - 117 - 112 r (z + l/2). (All Ij) 

Then from (All 19)-(All 1j) it follows that 

L"" dp p( J; _ I + J; + I - 2J;) 

= .:}~~ [ 17 -1I2(K/2)" -122u 
-I r [(u + 2)/2] 

X [4t 2 _(U+1)2]-I](r[(2t-u+I)/2]) 
r[2t+u+1)/2] 

X (r[(U~1)/2])] 
=0, 

L"" dp (J; + Jt - I J, + 1 ) 

(AII1k) 

r [ (2)-I(KI2)"-lr(u)F[(2t-u + 1)/2] 

= u~ r[(2t+u+1)/2]r[(u+1)/2]r[(u-I)/2] 

X Cu ~ 1) + (u! 1) )] 

= -4K-I[r(l/2)r(-l/2)]-1=2(l7Ktl. (AIlll) 
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To calculate the integral constants N(t), Q(t), H(t), respec
tively, at q4 = 0 with the restriction 0 <p4 < 00, one has to 
put ()4 = 1T/2. Therefore from (Alllc) it follows that 

¢(t) = (21T)- 312 1"" d3KKIK2K3a(/f.,t)eitJ)UJt,(K,pI) 

... J t• (Wp4) , 

[aq.i(I)]0'=1'/2 =it4(21T)- 312 1"" d3KKIKzK3(p4tl 

X ( -l)t'ae - il~O" J'I (K,pI) ... J" (Wp4). 
(All 2) 

Now from (2.6), (AII2) and the restriction 0 <p4 < 00 the 
expression for N(t)is 

N(t) = [N(t)]o' = 1'/2 

= ( - i f: "" d 3q d 3p 1"" dp4 [(aq,i(t)¢ (1)]0' = 1'12 ) 

+ (c.c.) 

( 
(21' ("" r"" d 4 

= ti21Tt
3 Jo d 3() Jo d 3p plp2p3 Jo ; 

xl"" d 3
KKIK2K3 

X 1"" d 3K' Kj K; K; [( - z)] I, lie - ilr [(l)"a' eil,o ''] 

XJII (K ,p1)Jtl (Kjpl) .. ·JI• (Wp4)JI. (W'p4») + (c.c.). (AlB) 

Now the ()-integrations are performed. Then working out 
pa ,p4,K~ integrals using (AIIle), (AIIlt) one finally arrives 
at 

N(') = (D f" d3KK,K2K3IaI2) + (c.c.) 

= So"" d 3K KIK2K3Ia(K,t )1 2. 

Next from (2.6) consider the integral constant 

Q(I) = eo(I, + 1; + 12), 

1,_ f" "" d 3q d 3p So"" dp4 {aq·i(') 

X (qiap ' - iaq.)¢ (t)}o. = 1'12' 

(AII4) 

12= f: '" d 3q d 3p 1"" dp4 (p4{llij [aqii(t)aqj¢ (I) + apii(t) 

+ apl¢ (I) - m2i(t)¢ (I)})O' = 1'/2 . (AIlS) 

To evaluate II it should be noted that 

[(qiapi -iJq.)¢(t)]O'=l'12 

= [(ao' +ao' +ao' +ao·)¢(I)]0'=1'12 
= i(tl + t2 + t3 + t4)(¢ (1)]0' = 1'12 . (AII6) 

From (All I e), (All it), (AII2), (AIlS), (AII6) it follows that 

11 = - (tl + t2 + t3 + t4)ti21Tt3 
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XJII (K,pI)JI, (Kjpl) .. ·JI, (Wp4)JI. (W'p4) 

= -(1I2)(tI+t2+t3+t4) So"" d 3KK,K2K3Ia(/f.,tW· 

(AII7) 

Now in the second integral 12 the individual terms diverge 
but the combinations exist. To prove that the usual defini
tion of an improper integral can be employed, and that is 

12 = lim [I~)(L) + I~r)(L) + I~ir)(L) + I~iV)(L)], 
L~"" 

I~)(L)=== - fl' d 3() 1"" d 3p plp2p31L dp4 p4 

X [a"..i(')·aq"¢ (1)]0' = 1'12' 

1~r)(L)=- fl' d 3() L"" d3pplp2p31L dp4p4 

X [aq"¢ (I).aq"¢ (1)]0' = 1'/2' 

I~ir)(L) = fl' d 3() 1"" d 3p plp2p3 SoL dp4 p4 

X [aq.i(t)·aq.¢(t)]O'=1'12' 

I~V)(L) = fl' d 3() 1"" d 3p plp2p3 SoL dp4 p4 

X [aq.i(')·aq4¢ (1)]0' = 1'12' 

I~V)(L ) = _ m2 L21' d 3() L"" d 3p plp2p3 SaL dp4 p4 

X [i(I)¢(t)]04=1'!2' (All 8) 

Using (Allic), (Allie), (AII2) one has for a part of 

1~)(L ) 

_ 121' d 3() fX> d 3p p'p2p31L dp4 p4 

X [aq li(t)·aq l¢(t)]0'=1'/2 

= _ (21Tt3 121' d 3() 1"" d 3 P plp2p3 1L dp4 p4 

X 1"" d 3
KKIK2K3 So"" d

3
K' KjK;Ki 

X (KIKj /4)aa' (JII -I eiOI - JII + 1 e - ilj') 

X (J' e - iO I _ J' eiO I ) 

tl-l t.+l 

X JI, (K,»i)J" (K; p2) .. ·JI• (Wp4)JI. (W'p4) 

= - (1/4) L"" d 3p plp~3 LL dp4 p4 

X 1"" d 3KKIK2K31"" d 3K' KiK;KiKIKiaa' 

X (JII _ J;I -I + J II +, J;, +' ) JI,J;, .. ·JI;J ~ 

= -! SoL dp4 p4 So"" d 3K KIK2K3 laI2K~(JIY' (AII9) 

Likewise using (All la)-(AII It) all other integrals can 
be expressed as 

lyJ(L) = -! 1L dp4 p41"" d 3K KIK2K3IaI2K/LK/L(JIY' 

l~ir)(L) = I~J(L), 
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l(iil)(L)=lLLdfl4p4L'" d 3KKKK lal 2w2(J +J )2 
2 4 r 1 2 3 '4 - 1 '4 + 1 , 

o 0 

IUV)(L)=lLL dfl4p4L'" d 3KKKK lal lw2(J +J )2 2 4 r 1 2 3 t4 - 1 t4 + 1 , 
o 0 

I~V)(L) = - mlL
L 

dp4 p4L'" d 3K KIK1K3 laI 2(J,y. 

(All to) 

Therefore 

1 ~r)(L ) + 1 ~il)(L ) + IYil)(L ) + 1 ~iv)(L ) + 1 iV)(L ) 

= LL dp4 p4L'" d 3K KIK1K3 lal l { - (KJ.LKJ.L + ml)(J,)2 

+ (wl/4)[(J'4_ 1 +J'4+ 1)1+(J'4_ 1 -Jt.+I)l]). 
(All 11) 

Using (4.6), (AIIlk), (AII8), (AIIlI) one obtains 

11 = ~ L'" d 3K K1KzK3 lallwl LX> dp4 p4 

X(J~4_1 +I;4+1 - 2JD 
=0. (All 12) 

Therefore from (AII5), (AII7), (AIIt2) it follows that 

Q(t)= -eO(tl+tl+t3+t4) L'" d 3KK1K1K3 Ia(lf,tW· 

(All 13) 

Next the integral constant H (,) will be calculated. From (2.6) 

H(t) = lim [/1(L) + liL) + 13(L) + liL) + 15(L)], 
L_", 
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liL )= - f" d 30 L'" d 3p plpZp3 

X LLdP4{[ap.i(t)Hap4t,6(t)]}B4~"/2' 

15(L )-m2 LZ

" d 30 LX> d 3p plpZp3 

X LL dp4 [i(t)t,6(t)]B4~"/2 . 

Evaluating as before one can obtain 

II(L) = ~ LL dp4 L'" d 3K K1KzK3 lal lKJ.LKJ.LI;4' 

liL) = II(L ), 

(All 14) 

liL) = ! LL dP4L'" d 3K K1KzK3 laI Zw2(J,. -I + J,. + 1 )2, 

liL) = -! LL dP4L'" d 3K K1KzK3 laIZwZ(J,. -I + J,. + 1 )Z, 

(AliI 5) 

Using (4.6), (AlIt!), (Allt4), (Alit 5) it follows that 

H(')= L'" d 3KKKK la1zwzL'" dfl4 (J2 +J J ) 1 2 3 r 14 t4 - 1 14 + 1 
o 0 

= ~ f'" d 3KK1K2K3 Ia(lf,tWw. (AIIt6) 
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In extended phase space Vg, the classical field equation for spin-1/2 elementary particles is written 
as [vkalaqk + aka lapk - imI ]1/I(q,p) = 0. The 16X 16 matrices v\ak stand for the instantaneous 
4-velocity and 4-acceleration. The equation is called the Boltzmann-Dirac-Yukawa (in short 
BDY) equation. This equation treats q,p variables on equal footings and is covariant under the 
extended Poincare group Pg • The spin-l/2 field 1/1 is decomposed into plane wave solutions, and 
integral constants such as the total energy, the total momentum, the average position, etc., are 
computed. These integral constants become meaningful provided the modulus squared of each 
amplitude is interpreted as the statistical distribution function. Next the 1/1 field is subject to the 
Hankel transform 1/I(p,B)- ~,"'~ _ 00 ~~ ~ )~; ~ ) fO'dK K[,B(Ra) u(Ra) + Y(Ra) V(Ra)]J, (Kp)ei'O 
= ~,,,,,= _ 00 1/I(t); P = (q2 + p2) )12, B = arctan(plq). The integral constants are constructed from 

a single (t )-mode 1/1 (t). These turn out to be physically meaningful for eight spin-l/2 particles. 
Specially the total charge can be identified with Gell-Mann-Nishijima's expression for the baryon 
provided the quantum number t3 corresponds to the isotopic spin, 2t4 is identified with the 
strangeness, and the baryon number b is allowed to take 0, ± 1,2. With each of the (t )-mode 1/1('), 
eight baryon fi~lds can be associated so that 1/1 stands for the unified baryon fields. Finally some 
brief comments are made on the possibility of treating lepton fields within the framework of the 
BDY equation. 

I. INTRODUCTION 

The usual Dirac equation is generalized in extended 
phase space Vs to the equation 
[vka/aqk + aka/apk ]1/I(q,p) = im1/J(q,p). Here the 16X 16 
matrices v\ak satisfy vkv' + v'vk = aka' + a'ak = 21'/'I, 
vka' + a'uk = 0. 

The v\ak matrices correspond to the 4-velocity and 4-
acceleration and the right-hand side of the equation corre
sponds to the contribution from the self-collision so that the 
equation has a striking resemblance to Boltzmann's trans
port equation. This equation is covariant under the extended 
Poincare group Ps acting in Vs and thus obviously invariant 
under the reciprocity transformation q' = - p,p' = q. 
Yukawa 1 has already treated the reciprocity-invariant spin-
1/2 particle equations. He had three matrix equations, one 
for the space-time variables, another for the momentum
energy space, and the third for a consistency condition. In 
the present treatment the first two ofYukawa's equations 
are "fused together." All these considerations have led to the 
christening of the present spin-l/2 field equation as the 
Boltzmann-Dirac-Yukawa (or, in short BDY) equation. 
The BDY equation has two advantages over Yukawa's origi
nal three equations. First, the group of covariance is broad
ened and second the associated 1/I-field can describe infinitely 
many spin-1/2 particles in a unified fashion. The BDY equa
tion is formally identical with the spin-1/2 field equation 
written for the complex space-time2 model. 

In Sec. II the Lagrangian formalism developed3 in Pa
per I is applied to the spin-1/2 field 1/1. The integral constants 
such as the total energy, the total momentum, the average 
position, the total charge, etc., are expressed as 7-dimension
al integrals in the extended phase space. 

In Sec. III the Fourier transform method or the plane 
wave decomposition for the 1/I-fields is performed. Again the 

integral constants are computed from the plane wave solu
tions. They are expressible as 7-dimensional integrals in the 
dual extended phase space. The corresponding integrands 
are proportional tOjR (kJx ) = laR (kJxW, R = 1, ... ,8, where 
a R (kJx) are amplitude functions of kJx, the dual momentum 
and position-time. It is only natural to interpretjR (kJx) as a 
statistical distribution function for the spin-1/2 particles. 

In Sec. IV the variables p = (p2 + q2)1/2, B = arctan 
X (plq) are introduced in place of q,p. This step leads in an 
obvious fashion to the Fourier-Bessel integral1/J(p,B) 

~oo ~8 ~2 food [,B (Ra) - (Ra)] 
- ,~_ 00 R ~) a ~) 0 K K (Ra) U + Y(Ra) V 
XJ,(Kp)ei'O = ~~ _ 00 1/I(t). 

The quantum numbers (t) = (t l,t2,t3,t4 ) represent oscil
lations or tremors in space-time. The integral constants like 
the total energy, the total charge, etc. are computed via La
grangian formalism for a single (t)-mode 1/1(1). These 3-di
mensional integrals turn out to be physically meaningful. 
They are contributed by eight baryon particles. Particularly, 
the total charge Q is proportional to (tl + t2 + t3 + t4 + b), 
b = 0, ± 1,2. For the special case I) = 12 = 0, s = 2/4 the 
charge formula corresponds to Gell-Mann-Nishijima's4 ex
pression for the baryons, provided baryon number b takes 
values 0, ± 1,2. In addition ifone accepts the (mass)2-opera
tor as - rl[J2la pia pj + (1/ p')ala pj] instead of the usu
al5 one - 1Jij(a21 aqiaq0, then the 1/1(1) field will have 
(mass)2 = m2I - diag[1Jijtflfl p'Pi],L = 1, ... ,16. Specially 
for the case II = 12 = 0, s = 2t4 , one has (mass)2 = m2 

+(t3+CI)2Ip~ -(s+c2)/4p~ +BI(pl,p2). This mass 
formula has some resemblance to Okubo's6 expression. It 
may be mentioned that Nicolson's asymptotic formula7 for 
large order is 

J,(K p)_3-2/3(S IK p)I/3 [JII3(S) + J _ 1/3 (S)] , 

S = (2/3)(K pl2tt/2lK P - t 1-312, K P > t . 
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In the present context this formula might suggest that parti
cles with very large quantum numbers (I) behave as quarks 
and that is why quarks would be very difficult to produce. 

In Sec. V the possibility of dealing with lepton fields as 
the special solutions t/J(q,p) = t/J\(q) X t/Ji,p) of the BDY 
equation is briefly mentioned. 

In Appendices I, II, and III, the rigorous derivations of 
the integral constants from the Fourier as well as Hankel 
transforms of the t/J-field are furnished. 

II. NOTATIONS AND THE FREE SPIN-1/2 FIELD 
EQUATION 

The coordinates of the extended phase space Vs stand 
for the space-time and momentum-energy and are denoted 
in various ways, namely (5 )=(5 l,t 2,t 3,t 4,t 5,t 6,t 7,t 8) 

::::::.(ql ,q2,q3,q4,p\ ,p2,p3,p4)=(q,p). Capital italic indices take 
the values 1,2, ... ,8; lower italic the values 1,2,. .. ,4; and Greek 
the values 1,2,3. The capital italic L,M are bispinor indices 
with values 1,2, ... ,16. 

The summation convention is followed on repeated in
dices. The units are chosen to be a = b = c = 1, where a,b,c 
are, respectively, the fundamentallength, momentum, ve
locity. All the physical quantities are expressed as pure num
bers. The Minkowskian metric tensor is [11 ij J = [11 qiqi ] 
::::::.diag [ -1 3,1 ] and the metric tensor of Vg is [A'" AB ] 
::::::.diag[ -1 3,1, _13,1]. The derivatives are denoted by 
BA ==.BIBtA, Bqi~BIBqi, Bpi::::::.alapi. 

For the spin-lI2 field the relevant matrix algebra is the 
Clifford Algebra of eight generators a A satisfyingS 

(2.1) 

where I stands for the unit element. A convenient basis set 
for this 256-dimensional algebra is given by 

en ,n, .. n'::::::.(a \y' (a2t' ... (a8t 8
, 

where n4 = 0,1. It can be noticed that 

(en, .. n,)2 = ± I . 

(2.2) 

(2.3) 

In the representation of this algebra one can conclude 
that 

(2.4) 

where not all of the n A 's are zero. There exists a nonsingular, 

Hermitian matrix A such that 

(2.5) 

where the dagger stands for the Hermitian conjugation. The 
only irreducible representation of this algebra is 16-
dimensional. 

The Lagrangian for the 16-component spin-l/2 field 
t/J(5) is taken to be 

L = (2i) -1 (BA ihaAt/J + (h.c.) + m'ft/J, (2.6) 

where a A are given by (2.1), 'f=t/J tA, (h.c.) stands for the 
Hermitian conjugation of the previous terms, and m is the 
mass parameter. The Euler-Lagrange field equations are 

(2.7) 

The second-order equation that follows from (2.7) is 

[aABA + m2I] t/J( 5) = 0. (2.8) 
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The various matrix-GreeD's functions for (2.7) are giv
en by 

S(a) ( 5 - 5 '):== - i(21Ty8 f~ '" d 7 ~ 

xL,., d;4 (;A~A - m2yl 

x(aA~A + mI)/'/S '-S.A\ (2.9) 

where C(a) are the different contours in the complex; 4 -plane 
shown in Fig. 1. 

The two simple poles of the integrand in (2.9) are situat
ed at the points 

~4 = ± 11 

=± V~i +~~ +~~ +;; +;~ +;~ -;~ +m2
• 

(2.10) 

The various tensor fields obeying differential conserva
tion laws similar toaA T~ = Dcan be constructed from (2.6). 
They are 

TAB = (21)-1 [(aB 'f)aA t/J] + (h.c.) , 

JI~c = tBT~ - tcT~ , 

Y~c = (i/2) 'faA [aBac - aCaB ] t/J + (h.c.) , 

f~c = JI~c + y~c, 
nA = 'faAt/J. (2.11) 

Some of the integral constants which can be constructed out 
of(2.11) are [cf. Eq. (1-5.18)] 

Ka::::::' i d 3q dp T! 
v, 

= (21)-1 d 3q d 4p [(a
q
a'f)a4t/J] + (h.c.) , 

H==.K4= i d 3qd 4p T! = (21)-1 
v, 

X l,d 3q d4p [(aq.'f)a4t/J]+(h.c.), 

• 

Cp 

FIG. 1. The complex s4-plane. 
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Xa== f d 3q d 4p r;. = (21}1 l 
X 1 d 3q d 4p [(ap.~)a4tP] + (h.c.), 

u ab = r d 3q d 4p Y!b 1v, 

= i- f d3qd4p[~a4(aaab-abaa)tP]+(h.c.), 
2 Jv, 

T r d 3q d 4p [qjT~ - pjT:d 
1 

= ~ r d 3qd 4p [~a4(qaap. _paa
q
.) tP] + (h.c.), 

2 Jv, 
B=~ r d 3qd 4p [~a4(aaap. -aP·aa)tP]+(h.c.), 41 
Q =eo [ r + ~ (B)] , 

N== Id3qd4pn4= Id3qd4p(~a4tP), 

where eo is a charge parameter, ap.=aa +4' 

III. THE PLANE WAVE SOLUTIONS AND THE 
STATISTICAL INTERPRETATION 

From the generators a A in (2.1) the following can be 
defined: 

(3.1) 

A possible 16 X 16 irreducible representation is furnished by 
the matrices 

vl=iuIXIXIXI, v2=i~XuIXIXI, 

v3 = i~ X ~ X u l X I, v4 = ~ X ~ X ~ X u l
, 

al = i~XI Xl Xl, a2 = i~X~XI Xl, (3.2) 

a3 = i~X~X~XI, a4 = ~X~X~X~, 

A =~X~X~XI, 

where the £iX's are the Pauli matrices, and lis the 2 X 2 unit 
matrix and the cross X denotes the Kronecker product. The 
wave equation (2.7) goes over to 

[VbJqh + abJph] ¢(q,p) = im t/J(q,p) . (3.3) 

The Vb -matrices have the significance of the 4-velocity, ab are 
the components ofthe 4-acceleration, andf(q,p )=~¢ is anal
ogous to the statistical distribution function. The right-hand 
side is the self-collision term. Equation (3.3) obviously bears 
a striking analogy to Boltzmann's transport equation for the 
statistical distribution function. From the history behind the 
matrix-wave equation (3.3) it will be called the Boltzmann
Dirac-Yukawa or in short BDY equation. 

For the plane wave solutions of(3.3) the 16-component 
wave function tP is taken as 

tP(q,p) = U (k,x)e - ;(k.qQ + xaP
Q
). (3.4) 

Putting (3.4) into (3.3) one obtains the homogeneous linear 
algebraic system of equations 
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(3.5) 

Multiplying above from the left by [vbkb + abXb - mI ] one 
can obtain 

k4 = ± g"(k,x)= ± V kaka + XaXa - X~ + m2, 
(3.6) 

for any nonzero solution U(k,x). The necessary condition 
det[vbkb + abxb - mI] = 0 must be satisfied by (3.6). 

There exist suitable basic solutions 
U R, VS,(R,S = 1,2, ... ,8) of Eq. (3.5), which satisfy the nor
malization condition (see Appendix I) 

fj(R)fj(S) = _ V(R)V(S) = - (~X~X~)(RS» 

fj(R)V(S) = V(R)U(S) = 0, (3.7) 

fj(RVU(S) = V(R)V4V(S) = (g" /m)(~X~XI)(RS)' 

The Fourier integral of the ¢-field satisfying the BDY Eq. 
(3.3) can be expressed now by virtue of (3.4), (3.7) as 

¢(q,p) = (2trt7/2 r d 3kd 4x [m/g"(k,x)1 112 

JD, 
X ± [aR(k~)U(R)(k~)e- ;(k.qQ+xaP"l 

R=I 

+ iJR (k~) V(R )(k~)e;(k.q· + xaP"l] , 

kaqQ=kaqa + g"q4, 

D7=! (k-,x) I kaka + xaxa - x~ + m 2 > OJ . (3.8) 

The domain D7 has been chosen to avoid to avoid the 
imaginary values for g"; this choice would imply some re
strictions upon the inversion of the Fourier integral. 

Some of the integral constants (2.12) are evaluated us
ing (3.8) and they are (see Appendix I) 

Ka = L, d 3kd 4x Rtl [EJ-R(k~) - EJ+R(k-,x)]ka , 

H = L, d 3k d 4x Rtl [EJ-R(k-,x) - EJ+R(k-,x)]g"(k~), 

Xa = L, d 3k d 4x Rtl [EJ-R(k~) - EJ+R(k-,x)]xa , 

(3.9) 

N = L, d 3k d 4x Rtl [EJ-R(k~) - EJ+R(k-,x)], 

FR==laR(k-,x)1 2>0, /'R=I.BR(k,x)1 2>0, ER = ± 1. 

Some physical interpretations are now necessary. The 
nonnegative functionFR(k,x) is the statistical distribution 
function in the dual phase space for some spin-l12 particle 
ensemble and/' R stands for the antiparticle distribution 
function. The difficulty of indefiniteness of ± /' R is encoun
tered also in the classical Dirac theory, and can be remedied 
in the second quantization. The integral constants, Ka, H, 
Xa , X4, N can be interpreted as the total momentum, total 
energy, center of mass, time center, total number, respective
ly, of the particle-antiparticle ensemble. 

A. Das 1523 



                                                                                                                                    

IV. APPLICATION TO THE BARYON THEORY 

For application of the BOY Eq. (3.3) to the baryon the
ory, polar coordinates will be introduced as 

pU_ V (qa)2 + (pa)2, 

(;a-arctan(pqlqU) (no summation) , 

where 0 <pa, 0<,8 a < 21T . 

(4.1) 

In these coordinates the BOY equation goes over t02 

lab+e-;e·[Jph -(ilpb)J{!.] 

+ ab-ei{!h[Jph + (i/pb)J{!h] - imI 1 ¢(p,8) = 0, 

a b ' =!(vb ± iab) . (4.2) 

To solve (4.2) by the method of separation of variables each 
of the 16 components of the ¢-function is written in the form 

t/I-(p,8) = XL (p)e
it

W (L not summed), (4.3) 

where the bispinor indices Land M take the values 1,2, ... ,16. 
Summation is carried out on repeated indices, except when 
these are all sUbscripts or superscripts. Demanding that the 
¢-function is either a single-valued or a double-valued func
tion around the origin, the constants t ~ must take either 
integer or half-interger values. Putting (4.3) into (4.2) and 
writing (a b ±)~ for the entries of a b ± -matrices, the 16 ex
plicit partial differential equations can be exhibited as 

(ab ± )~[JphXL + (t t/pb)r ]ei(t~(i' - o"l 

+ (ab-)r[JphXL - (tt/pb)XL ]ei
(I;8<+iJ"l 

. M il:;'8 h 0 -lmx e =. (4.4) 

In order that the unimodular angular functions can be 
cancelled out from each of the Eqs. (4.4), the following 60 
linear equations among 64 constants t ~ must hold (see Ap
pendix II): 

t: =t~ =ti =t; =ti =t~ =ti =I~ =Ii-l 

= 1:° -1 = 1:1 -1 = t:2 -1 = t:3 -1 = t:4-1 

= I :5 _ 1 = 1:6 
- 1 , 

I~ = I~ = t~ = Ii = d -1 = t~ - 1 = Ii -1 = I~ -1 

= t i = t ~o = t ~ I = t ~2 = I ~3 - 1 = t ~4 - 1 = t ~5 - 1 

= t ~6 -1, 

I+cr I-cr tT + io.! tT - i(J1 

- (tT + i(JI) tT - i(J1 I+cr - (I - cr) 
~ - j(J1 tT + i(J1 - (I - cr) - (I + cr) 

4S= 
- (I - cr) I+cr - (tT - i(JI) ~ + i(J1 

t~ =t; =t~ =tj -1 = I~ =t~ =t; -1 = t~-1 
= t i = I jO = t ~ I - 1 = t ~2 - 1 = t ~3 = t j4 = t ~5 - 1 

= t ~6 -1, 

t! =t~ -1 = t! =t! -1 = I~ =t~ -1 = t~ =t~-1 

= 11 = t 1° - 1 = I! I = t !2 - 1 = t 2 = t l4 - 1 = t lS 
(4.5) 

It is clear that four of t ~'s can be chosen arbitrarily and 
the remaining 60 can be obtained via (4.5). The following t f; 
are chosen freely 

tl=t:, t2 t~, t3-t~-I, t4-t:-l. (4.6) 

With the above choices for t; Eq. (4.4) goes over to 

[(ab+ )~(Jph + t ~/pb) + (ab - )~(Jph _ I ~/pb) 

- imo~] XL(p) = O. (4.7) 

The nonsingular basic solutions of the above equation 
are expressible in terms of Bessel functions of the first kind of 
the appropriate orders. These are exhibited below: 

XL (p) = uL (K)J, ,(KI pl)J, ,(K2 p2)J, ,(K3 p3)J, ,(K4 p4) 
I 2 3 4 

(L not summed), (4.8) 

where t; are given by (4.5), (4.6) and UL(K) are the undeter
mined amplitude functions. To solve for these functions, 
(4.8) is substituted into (4.7). The Bessel functions can all be 
cancelled out (see Appendix II). Furthermore, using 
ab = - i(ab + - a b 

- ), one arrives at a simple matrix equa
tion for the column vector u (with components uL

) 

(4.9) 

Multiplying above from the left by [abKb - mI] one obtains 
the following necessary condition for nonzero solutions 

(4.10) 

From the commutation rules (3.1) it is evident that the 
given representations (3.2) of a b-matrices can be reduced to 
the four direct sums of Dirac matrices by a similarity tranS
formation (needless to say, the same similarity transforma
tion would not decompose v b-matrices). Such a similarity 
transformation, which is unitary as well, is explicitly shown 
below: 

i(I - cr) i(I + cr) - «(JI + itT) (J1-itT 

(JI + itT (JI - itT i(I - cr) - i(I + cr) 
(JI - itT - «(JI + i~) - i(I + cr) - i(I - cr) 

- i(I + cr) i(I - cr) - «(JI - i~) - «(JI + i~) 
- i(I + cr) i(I - cr) - «(JI - itT) - «(JI + i~) - (I - cr) I+cr - (~- ial) ~+ial 

(JI - j~ - «(JI + itT) - t(I + cr) - i(I - cr) tT - i(J1 ~ + i(J1 - (I - cr) - (I + cr) 

- «(JI + i~) - «(JI - i~) - i(I - cr) i(I + er) ~ + i(J1 - (~- i(JI) -(I+~) I-~ 

- i(I - cr) -i(I +~) (Jl + itT - «(JI - i~) - (I + er) - (I - er) - (~+ i(JI) - (~- iOI) 

(4.11) 

S ts = I, SabS -1 = I X yh, r'" -ier X 0"', 

~=~XI, SAv4S t = - ~XI X~XI. 
I ing this similarity transformation, (4.9) can be brought to the 
form 

The same symbol I has been used for the unit matrices of 
different sizes and can be understood from the context. Us-
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[(Ixyh)Kb -m(IxI)]u'(K) =0, 

u'-===Su . 

(4.12) 
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TABLE I. Baryon wave amiplitudes. 

K4=E 
U(II) U(12) U(21) U(22) U(31) U(32) U(41) U(42) 

e, e2 0 0 0 0 0 0 
0 0 e, e, 0 0 0 0 
0 0 0 0 e, e, 0 0 
0 0 0 0 0 0 e, e2 

With the knowledge of the plane wave solutions of the Dirac 
equation it is now easy to construct a set of 16 linearly inde
pendent solutions of (4.12). These are explicitly listed in Ta
bles I and II. 

The normalization conditions satisfied by the above so
lutions, derived by direct computation from (3.2), (4.11), 
(4.12), are the following: 

u(!{3) u(cr) = u(!{3) u(cy) = (E 1m ~(ac)8( {3r) , 

u(!{3)u(cr) = uia{3)u(cr) = (Elm~(ac)8({3r)' 
- 4 - 4 0 
u(a{3) V u(br) = u(a{3) V U(br) = , 
u(a{3) V

4
U(br) = - U(br) v

4
u(a{3) = i(y4)(ab) 8( {3r) . 

The general solution of (3.3) in polar coordinates can be 
written as 

4 2 '" 
if/-(p,(}) = (211"t3/2mI/2 L L L 

,.=la=lt=-c:o 

J ( 1).1 ( 2).1 ( 3).1 ( 4) it'-e" X t:KIP t}K2P ttK3P t;Ep e' 
(L not summed), (4.14) 

where fJ(ra)' Y(ra) are arbitrary 16 complex amplitudes and 
t:; satisfy (4.5). It will be convenient to subjectfJ(ra)' Y(ra) to 
two invertible complex linear transformations (Appendix 
III, Eqs. AIII8, AIII36) to obtain other complex amplitudes 
a(Ra) (R = 1, ... ,8; a = 1,2) and introduce the distribution 
functions 

i(Ra) (/f.,t )=(2111") la(Ra) (/f.,t) 12>0, 

N~')a)= So'" d 3K KIK2KJ!'(Ra) (kj) . (4.15) 

Then choosing a single t-mode in (4.14) the correspond-
ing integral constants (2.12) turn out to be (see Appendix 
III) 

TABLE II. ~[(E + m)/2m] ",. Dirac wave amplitudes. 

o 
-KJ(E+mt' 
- (K, + iK,)(E + m)~' 

o 
1 
- (K, - iK)(E + m)~' 

KJ(E + m)~' 
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u' 

K4= -E 
viII) V(12) Vi2l) v(22) V(31 ) V(32) Vi4l) V(42) 

e' , e' 2 0 0 0 0 0 0 
0 
0 
0 

0 e; e; 0 0 0 0 
0 0 0 e' , e' , 0 0 
0 0 0 0 0 e' , e; 

(t) _ 11" ~ [(t) (t) (t) (t) (t) B - - £.. N(la) +N(2a) -N(3a) +N(4a) -N(sa) 
2 a=1 

N (t) 3N(I) + 3N(t) 1 - (00) - (7a) (Sa)' 

2 

Q(I)= ~!!...eo L ((t1+t2+t3+t4 +1) 
2 a=1 

X [N(I) + N(I) N(I) 1 
(Ia) (2a) - (3a) 

+ (t l + t2 + t3 + t4)[ - N~2) + N~~~) + N~~) 1 
- (t l + t2 + t3 + t4 + 2)N(7a) 

- (t l + t2 + t3 + t4 -l)N~~~) J , (4.16) 

where EI = E2 = - E3 = - E4 = Es = E6 = - E7 = - Eg 

=1. 
In the above i(Ra) (K,t ) is the distribution function in 

momentum-space for the eight spin-1/2 basic particles at 
(t )-mode. K ~) = X ~) = 0 can be interpreted physically by 
recalling that in the basis of Bessel functions, incoming and 
outgoing waves are equally mixed. The charge constant Q (I) 

has a multiplier (11"12) and factors (t l + t2 + t3 + t4 + b), 
b = 0, ± 1.2. A possible antiparticle scheme is to consider 
the negative ( - t )-mode t/l- t). The various reflection prop
erties of the rfJ( - I)-field (4.14) are the following 

11"a if/..t)L (p,() )=rfJ(t)L(p .... ,(} a + 11" •••• ) = 5 ~rfJ(t)(P.(}) 
(L not summed), 

J:-L_ it~1T 
~a=E , 

f: L=f: Lf:Lf: L _ ei(l} + Ii + I t)1T 
~P-~1~2~3- • 

/:,L _ it~1T 
~ r=e , (4.17) 

e;1v e;/v 

K)(E+mt' 
(K, + iK2)(E + mY' 
I 
o 

(K, - iK,)(E + mt' 
-K)(E+mt' 
o 
I 
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where t ~ = ta, ta + 1. 
If one defines the (mass)2-operator by the following: 

M2(p,J p)= -1]ij[JpiJpi + (l/p;)Jpi ] , 

then from (4.4) one can derive a second-order equation 

M 2(p,Jp)X = M~t)(p)X' 
M 2 ( )- 21 d' [ij L L j '] (t) p =m - lag 1] tjtj/p'p' L= 1, ... ,16. 

(4.18) 

For the particular (I )-mode t I = t2 = 0 denotings==2t4 , 

e= - (17"l2)eo, one can obtain from (4.16), (4.18) the 
formulas: 

8 2 Sa"" H(t,.s) = r~l a~l ° d 3K KIK2K3[E"d(Ra)(K,t3,S)]E(K), 

Q (t"s) = ± e ± ± (t3 + ~ + b )N(Ra) (K,t3,S), 
R=la=1 2 

(mass)2=m2 + tPI(pl,p2) + (t3 + CI)2/(p3? 
-(S+C2)2/4(p4)2, (4.19) 

where b = 0, ± 1,2; C I = 1,0; c2 = 1,0; tPI=0,l/(pl)2, 
l/(p2?, l/(pl)2 + l/(p2)2. Equations (4.19) bear analogy 
with Gell-Mann-Nishijima,3 Okubo6 formulas for the 
charge and mass of the particles if t 3, s are identified with 
isospin quantum number and the strangeness, respectively. 

v. COMMENTS ON THE LEPTON FIELDS 

For the lepton fields the 16-component BOY Eq. (3.3) 

[aAJA -imI]t/J(5) =0 (5.1) 

is again chosen, but with a different mass value. Instead of 
the representations (3.2) the following equivalent irreducible 
representation of a A -algebra is taken. 

aa = _ y"Xl, aa+4 = - r.ya, 

r==iylyy3y4, A = y4X(O' 2 X l), 

= iy4 X (y4y5), 

where yMs are Dirac matrices in (4.11). 
Special solutions of (5.1) in the form 

t/J(q,p) = t/J(l) (q) X t/J(2) (p), 

(5.2) 

(5.3) 

where t/J(I) (q), t/J(2) (p) are 4-component column vectors, will 
be investigated. Putting (5.3), (5.2) into (5.1) one obtains 

[[ -iy"Jq"t/J(l)(q)]Xt/J(2)(p)J 

+ [[r(1)(q)][ -iy"Jp.t/J(2)(p)]J 

+ [mt/J(1)(q) X t/J(2)(P) ] = 0. 

By separating variables one can get 

TABLE III, Neutrino wave amplitudes. 

1 
o 
- x,Eo I 

o 

- (x, + ix2)E 0- I 

- (x, - ix2)E 0-' 

X3E O I 
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(5.4) 

[ - iy"Jq" + ml -Ar]t/J(l)(q) = 0, 

[ - iy"Jp" + A.I ]t/J(2)(p) = 0, 
(5.5) 

where A is the constant of separation. The second-order 
equations derivable from (5.5) are, resectiveiy, 

[1]abJ q"Jq h + (m 2 - A 2)1 ]t/J(1) (q) = 0, 

[1]U bJp"Jph + A 21 ]t/J(2)(p) = O. 

For the case A = 0 one obtains from (5.5) 

[ - iy"Jq" + ml ]t/J(e)(q) = 0, 

- iy"Jp.t/J(v)(p) = 0, 

(5.6) 

(5.7) 

where t/J(e) (q)=t/J(1) (q), t/J(v) (P)==t/J(2) (p). Equation (5.7) can 
be identified with the Dirac equation for the electron-posi
tron field t/J(e) and the neutrino-antineutrino field t/J(v) . 

The plane wave solutions of the Dirac equation satisfy
ing the normalization conditions 

eia)e({3) = el~)e({3) = 2E(,,-)o(a{3P 

t, t, 0 (5 8) e(a)e({3) = e(a)e({3) = , . 

are given in Table II, where a change of normalization from 
v to v'=(E + m)1/2 is still necessary. The plane wave solu
tions of the neutrino equation are furnished by (see Table 
III) 

(5.9) 

With the knowledge of these plane wave solutions one 
can write now the special class (5.3) of the solutions of (5.1) 
as 

t/J(q,p) = t/J(e)(q)Xt/J(V)(p) 

= 2- 1(21Tt3 t"" "" d 3,,-d 3:l£.(EEot
I/2 

2 

X L [ bra) (,,-)p( {3) (9 [e(a) X E"( {3) ] 
a.{3= 1 

X exp [i(kaqa + Xa pa)] 

+ ti;a) (,,-)8u j) (9 [era) X E"( {3) ] 

X exp [ - i(kaqa + Xa pa)] 

+ b(a) (,,-)8({3)(9 [e(a) XE"({3)] 
X exp [i(kaqa - Xa pa)] 

+ ti;U) (,,-)p( {3) (9 exp [i( - kaqa + Xa pa)] J, 
(5.10) 

X3E O I 

(x, + iX2)E 0 ' 

1 

o 
o 

A. Das 1526 



                                                                                                                                    

VI. ACKNOWLEDGMENTS 

The author wishes to thank his wife Mrs. Purabi Das, 
for checking out the matrix multiplications. He also thanks 
Mr. A. Vaze of the Computing Centre for figuring out the 
eigenvalues mentioned in the Appendix III. Furthermore, 
he acknowledges the support of NRC Grant No. 3993. Fi
nally, he thanks Dr. M.J. Hamilton and Dr. S. Kloster for 
informal discussions on papers I, II, and III in this series. 

APPENDIX I 

To construct a suitable basis set for the solution space or 
the null space of the matrix [vbkb + abxb + mI] in (3.5), 
this equation is expressed by (3.2) in a more elaborate fash
ion, namely, 

«(1 lk4 + (12X4 + ml)u 1 + (ik3 + X3)U2 + (ik2 + X2)U3 

+ (ik. + X1)U5 = 0, 

(ik3 - X3)U 1 + ( - (1 1 k4 - (12X4 + mI )U2 + (ik2 + X2)U4 

+ (ikl + X1)U6 = 0, 

(ik2 - X2)U 1 + ( - (1 1 k4 - (12X4 + mI )U3 - (ik3 + X3)U4 

+ (ikl + X1)U7 = 0, 

TABLE IV. Plane wave amplitudes ofBDY equation. 

K4 = g' 

V V(1 " V'" 
VOl,V(4) 

u, [(k; +xi)l2m2]"2X~~ 0 

U2 0 
(~) 

[(ki + xill2m2] '/2 X ('i) 

U, 0 0 

u. 0 0 

u, - (ik, + x,t'[a 'g' + a 2X. - (ik, + x3)(ik, + x,t'u2 
+mI]u, 

(ik2 - X2)U2 + ( - ik3 + X3)U3 + «(1 lk4 + (12X4 + ml)u4 

+ (ikl + X1)Us = 0, 

(ikl - X1)U 1 + ( - (1 lk4 - (12X4 + ml)u5 - (ik3 + X3)U6 

- (ik2 + X2)U7 = 0. 

(ikl - X1)U2 + ( - ik3 + X3)U5 + «(1 lk4 + (12X4 + ml)u6 

- (ik2 + X2)Us = 0, 

(ik 1 - X1)U3 + ( - ik2 + X2)U5 + «(1 lk4 + (12X4 + ml)u7 

+ (ik3 + X3)Us = 0, 

(ik 1 - X I)U4 + ( - ik2 + X2)U6 + (ik3 - X3)U7 

(All) 

where U l'U 2"",Us are 2-component fields which add up to the 
16-component U. The first four and the last four equations in 
(All) are linearly dependent and the rank of 
[vbkb + abxb + mI] is eight. Therefore any four of 
U 1'U 2 'o •• ,US can be chosen arbitrarily and the other four can 
be solved from (All). With this understanding a set of 16 
basic solutions has been arranged in Table IV. 

The solutions in Table IV satisfy the normalization con
ditions (3.7). 

V,S),V,6) V(7),V(8) 

0 0 

0 0 

(') 
[(ki +xil/2m2]WX~) 0 

0 
(') 

[(ki +xill2m2]"2x~) 

- (ik2 + x 2)(ik, + x,t'u, 0 

u" - (ik, - x3)(ik, + x,t'u, (ik, + x,t'[a 'g' + a 2X. - mI]u2 0 - (ik2 + x 2)(ik, + x,)"u4 

u, 
UK 

V 

u, 

u2 

1527 

- (ik2 - x2)(ik, + x,t'u, 
0 

(ik, - x,t'[ - a 'g' + a 2x. 
- mI]us 

(ik, - x,)(ik, - x,t'u, 

(ik, -x,)(ik, -x,t'us 

o 

(') 
[(k 2 + x2 )/2m2]"2X 0 

" <n 
o 

o 

o 

o (ik, +x,t'[a 'g' +a 2x. - mI]u, (ik, +x,)(ik, +x,t'u. 
- (ik2 - x2)(ik, + x,)"u2 (ik, - x,)(ik, + x,t'u3 - (ik, + x,t'[a 'g' 

- (ik, - x,t'[ - a 'g' + a 2X. 
+ mI]u6 

o 

(ik2 - x2)(ik, - x,)"u6 

o 

o 

o 

o 

- (ik, - x,t'[ - a 'g' + a 2X. 
+ mI]u, 

- (ik, - x,)(ik, - x,t'u7 

o 

o 

o 

+ a 2X. + mI]u. 

o 

(ik, - x,t'[ - a 'g' 

+ a 2X. - mI]u. 

o 

o 

o 
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The computation of 

10 = L, d 3
k d

4
x Rtl [ER laR(Isx) 12 - ER IfiR(IsX) 12]kj , 

(AI2) 

[Jq.¢]q.~o = (21T)-7/2 ( d 3kd 4x(m//ff)1/2(ikj) JD, 
8 _ 

X I {aRU(Rl 
R~I 

X exp (i(kJlqJl + Xa pU)] - /3R V(R) 
where 
EI = E2 = E7 = Eg = - E3 = - E4 = - Es = - E6 = 1, will 
be shown here. 

X exp [ - i(kJlqJl + Xa pa)] J. (AI3) 

From (3.8) it follows that 
From (2.12), (3.7), (3.8), (AB) and the usual represen

tation of the 8-function one obtains 
J 

Kj = [10 Jq. ~ ° = (21Tt7 r d 3q d'Jl r d 3k d 4x(m//ff)1/2(ikj) Jv, JD, 
xL, d 3k' d 4x'(m//ff,)1/2 Rt I R~ I {aR U(R) exp [i(kJlql' + Xa pa)] - fiR v(R) exp[ - i(k"qI' + Xa pU) Jl V4 

X {as U,(S) exp [ - i(k ~qV + x~ pb) J + P s V'(S) exp[i(k ~qV + x;, pb) J ) + (h.c.) 

= ~ L, d 3k d 4x(m//ff)1/2kj L, d 3k' d 4x'(m//ff,)1/2 Rtl Stl { CaRaS U(RVU'(S) - iJ's /3R V(R VV'(S)] 

X83(~ -1()84(x - x') + [aR f3 s U(RVV'(S) - as /3R V(RVU'(S)J83(~ + ~')84(X + x')J + (h.c.) 

= (m/2/ff) L, d 3k d 4x kj Rtl JI [aRaS U(Rlv4U(S) - iJs /3R V(RVV(Sl] + (h.c.) + (m/2/ff) L, d 3k d 4x kj 
88_ _ 

X I I faR (Isx)/3s( - Is - X)U(R )('sx)v4 V(Sl( - Is - x) 
R ~ I s~ I 

- aRC - Is - x)Ps(IsX)U(Rl( - 'sx)v4V(Sl(Isx) - a s( - Is - x)/3R(Isx)V(R/Isx)v4 U(S)( - Is -x) 

+ a s (Isx)/3 R ( - Is - x) V(R l( - Is - X)V4 U(S)(Isx)]. 

The last integral in the above equation vanishes because whenever (k,x)ElJ7 also the point ( - k, - x)ElJ7 and thus using (3.7) 
Eq. (AI2) is obtained. --

APPENDIX II 

From the matrix representations (3.2) and (4.2), Eq. (4.4) yield the following partial differential equation: 

[Jp'X2 + (t~/p4)X2J exp[i(t~Ob - 04)J + i[Jp'X3 + (t~/p3)X3] exp[i(t~Ol> - 0 3)] 

+ i[Jp'X5 + (t Up2)X5] exp[i(t ~O b - 0 2)] + i[Jp.x9 + (t i /pl)X9] exp [i(t bO b - 0 I) J - imxl exp [i(t 10 b)] = 0, 

[Jp.x l - (t !/p4)XI] exp [i(t bO b + (1 4)] + i[Jp'X4 + (t j/p3)X4] exp [i(tb O b - 0 3)] 

+ i[Jp,x6 + (t ~/p2)X6J exp[i(t ~O b - 0 2)] + i[Jp.X IO + (t :O/pl)XI J exp[l(t 1°0 b - 8 I)] - imX2 exp[i(t ~O b) J = 0, 

i[Jp,xl - (t Vp3)X I J exp [i(t bO b + 61 3) J - [Jp.x4 + (tUp4)X4] exp [i(t be b - 0 4) J 
+ i[ap,x7 + (t i/p2)X7] exp[i(t bO b - 0 2)] + i[ap.X II + (t :1/pl)XII] exp [l(dIO b - 61 I)] - imX3 exp [i(t ~8 b)] = 0, 

i[Jp'X2 - (tVp 3)X2] exp(i(t~eb + (1 3)] - [Jp.x3 - (t!/p4)X3] exp(i(t!8 b + 8 4)J 
+ i[Jp'X8 + (t Up2)X8] exp[i(t ~O b - 8 2)] + i[ap.X lz + (t :Z/pl)XI2] exp [i(t 128 b - 61 I)] - imx4 exp [i(t b8 b)] = 0, 

i[ap,x l - (t ilp2)X I] exp [i(t bO b + 0 2)] - [Jp.x6 + (t Up4)X6J exp [i(t ~8 b - 0 4)] - i[Jp'X
7 + (t i/p3)X7] 

X exp [l(t b8 b - 8 3)] + i[ap .x I3 + (t:3 /pl)X I3 ] exp[i(t !38 b - 8 I)] - imX5 exp [i(t be b)] = 0, 

i[Jp,x2 - (tUp2)X2] exp[i(t~Ob + 8 2
)] - [Jp'X5 - (t~/p4)X5] exp[i(t~8b + 8 4

)] - i[ap'X8 + (tVp4)X8] 

xexp[i(t~eb - 03)J + i[ap'XJ4 + (t :4//)XI4 J exp(i(t 148 b - 0 I)] - imX6 exp(i(t~Ob)J = 0, 

i[Jp,X3 - (t ~/p2)X3] exp [i(t ~e b + 8 2
)] - i[Jp'X5 - (t ~/p3)X5] exp [i(t be b + 8 3

)] + [ap.x8 + (t !/p4)X8] 

X exp [i(t ~e b - 0 4)] + i[ap.xI5 + (t :5/p l)X I5 J exp [i(t 150 b - 61 I)] - imx7 exp [i(t bO b)] = 0, 

i[ap'X4 - (ti/p2)X4 J exp[i(tbO b + 0 2
)] - i[Jp,x6 - (t ~/p3)X6J exp[i(t ~8 l> + 8 3

) J + rap'X
7 - (t ;/p4)X7] 

X exp [i(t beb + 8 4)] + i[Jp'XI6 + (t :6/p l)X I6 ] exp [i(t b6e b - 61 I)] - imx8 exp [i(t ~e b)] = 0, 

i[ap'X I - (t : /pl)XI] exp[i(t 10 b + 0 I)] - [Jp.XIO + (t !0/p4)XIO] exp [i(t boe b - (1
4)] - i[ap,x ll + (t; l/p 3)XII

] 

X exp[i(t 118 b - 0 3)] - i[ap,x13 + (t i3/p2)X 13
] exp[i(t 130 b - 0 2) J - imx9 exp[i(t bO b) J = 0, 

- i[ap'X2 - (ti/pl)X2] exp[i(t~eb + 61 I)] - [ap.X9 
- (t1/p4)X9

] exp[i(t~eb + (1 4)] 

- i[Jp'X I2 + (t ~2/p3)XI2J exp[l"(t 12e b - tP)J - i[ap'X I4 + (t ~4/p2)XI4] 
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x exp[i(t ~40b - 0 2)] - imxlO exp[i(t ~OOb)] = 0, 

i[Jp'X3 - (ti/p l)X3] exp[i(t~Ob + 0 I)] - i[Jp'X
9 - (tVp3)X9] exp[i(tb Ob + 0 3)] 

+ [Jp'XI2 + (t !2/p4)XI2] exp [i(d20 b _ 0 4)] - i[Jp'X I5 + (t ~5 /p2)X I5 ] 

X exp [i(t ~50b - 0 2)] - imxll exp[i(t ~IOb)] = 0, 

i[Jp'X4 - (ti/pl)X4] exp[i(t:e b + e I)] - i[Jp'X IO - (t ~O/p3)XIO] exp[i(t ~OOb + 0 3)] 

+ [Jp'XII - (t !1/p4)XII] exp[i(t ~Ie b + 0 4)] - i[Jp>XI6 + (t ~6/p2)XI6] 
X exp [i(t ~60 b - 0 2)] - imxI2 exp [i(t ~2e b)] = 0, 

i[Jp'X5 - (t~/pl)X5] exp[i(t~Ob + 0 I)] - i[Jp,x9 - (ti/p2)X9] exp[i(tb Ob + 0 2)] 

+ [Jp'XI4 + (t !4/p4)XI4] exp [i(t ~40 b - 0 4)] + i[Jp,X I5 + (t ~5 /p3)X I5 ] 

X exp [i(t ~50 b - 0 3)] - imxI3 exp [i(t ~30 b)] = 0, 

i[Jp'X6 - (t ~ /pl)X6] exp [i(t ~e b + 0 I)] - i[Jp'X IO - (t ~O/p2)XIO] exp [i(t ~oe b + e 2)] 

+ [Jp'XI3 - (t !3 /p4)X 13 ]exp[i(t ~3e b + 0 4)] + i[Jp'X I6 + (t ~6/p3)xI6]exp [i(t 160 b - 0 3)] _ imxI4exp [i(t ~40 b)] = 0, 

i[Jp'X7 - (t i /pl)x7]exp[i(t bO b + 0 I)] - i[Jp'XII - (t ~1/p2)XII ]exp [i(t ~IO b + 0 2)] 

+ i[Jp'X I3 - (t ~3 /p3)xI3]exp [i(t ~30 b + 0 3)] - [Jp'XI6 + (t !6/p4)x I6 ]exp [i(t ~60 b _ 0 4)] - imxI5exp [i(t ~50 b)] = 0, 

i[Jp'X8 - (t ~ /pl)x8]exp [i(t ~O b + 0 I)] - i[Jp ,xI2 - (t ~2/p2)XI2 ]exp[i(t ~20 b + 0 2)] 

+ i[Jp,xI4 - (t ~4/p3)XI4 ]exp [i(t ~40 b + 0 3)] - [Jp'XI5 - (t !5 /p4)X I5 ]exp [i(t ~50 b + 0 4)] _ imxI6exp [i(t ~60 b)] = o. 
(AlII) 

In order to cancel out the angular functions, e.g., from 
the first equation, one must have 

t~Ob_04 

=tb Ob - 03 

=t~Ob_02=tbOb_01=t~Ob, (A1I2) 

for 0,0 b < 21T (or else 0,0 b < 41T. Equating the coefficients 
of 0 b one obtains 

t~ =ti =t~ =ti -1 = tL 

t~ =t~ =t~ -1 = ti =t~, 

t~ =t~ -1 = tj =t~ =tL 

t~ -1 = t! =t~ =t: =t!. 

(AlB) 

From the remaining 15 equations in (All 1) similar rela
tions follow. Arranging all this information in a concise 
manner yields Eq. (4.5). It may be argued here that the de
mand of cancelling the angular functions would restrict the 
general solutions to special cases. But that is not so. It can be 
strictly proved that the angular functions can be taken out. 
To give the essential ideas in the proof, a similar problem in a 
simpler setting is considered. Suppose that FI(r), Fir), F3(r) 
are nonvanishing complex-valued functions in an interval of 
the real variable r, and m I' m2, m3 are real constants and ifJ is 
another real variable representing an angle. Furthermore, 
FI(r)eim . .p + F2(r)e

im ,.p + F3(r)e
im,.p = O. Dividing by ieim,.p 

and differentiating with respect to ifJ one obtains 
(ml - m3)FI(r) X exp [i(m I - m3)ifJ] + (m2 - m3)F2(r) 
X exp [i(m2 - m3)ifJ ] = O. Dividing by iei(m, ~ m,).p and dif
ferentiating with respect to ifJ one obtains 
(ml - m 2)(m l - m 3)FI(r)exp[i(m l - m 2)ifJ] = O. There
fore, either m I = m2 or m I = m3. Similarly, it follows that 
either m2 = m3 or m 2 = m l and either m3 = m l or m3 = m1. 
Therefore m I = m1 = m3, and the angular functions can be 
cancelled out. 
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Now the functions X L can be expressed in terms of the 
Bessel functions as follows: 

X L(p) = uL(9J,. (KI pl)J,> (K1pl)J" (K3p3)J,. (K4P4), 
(AII4) 

where uL (I£) is the amplitude factor. 
Substituting the above into, e.g., the first of the equa

tions, removing the angular functions, and using 
(Jp + t / p)J, (Kp) = + KJ, ± I (Kp) one obtains 

K4U
1
J"J"J"J" ~ I + iK3U

3
J,3J,JJ,3 I J,3 

1 2 3 4 I 2 3- 4 

(AIlS) 

Using the relations (4.5) among t ~'s one can see that the 
Bessel functions can be cancelled out and the above equation 
reduces to 

(AII6) 

Similar simplifications occur in the other 15 equations 
in (All 1) so that Eq. (4.9) results. 

APPENDIX III 

The computations of the integral constants N(t), H(I), 

K~>'X~), T('),B(') from the spinor field 

t//r)L = (21Tt3/1ml/l rtl at) 100 

d 3KKIK3K3 

X [/3 (K t )u(ra)L + r- (K t )v(ra)L ] 
(ra) ...! (ra) _, 

X J, ,(K I p))J, ,(K 2 p2)J, ,(K 3 p3)J, ,(Ep4)exp(it ~O b), 
I 2 J 4 

(AlII 1) 

where L is not summed, will be shown. The p4-integration 
will be restricted to the interval 0 <p4 < 00. The integral con
stant N (r) computed at 0 4 = 1T /2 from (2.12) is 

N(r) = [N(r)]e' ~ tT/2 
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i
oo 

d 3K' K' K' K' [ii ifra)L + Y iJra)L] I 2 3 (J(ra) (ra) 
o 

X (AV4)LM (/3 (s{3) U'(s{3)M + Y(S{3)V,(sP)M 1 
x J, t(K I pl)J, ,,(K; p I) •.. J, t(Ep4)J, .,(E 'p4) 

I 1 4- 4 

Xexp[i(t: - t~)OI'] [(i)':-'!'J. 
Recalling the integrals 

(21Tt l i21T ei(t-t') lJ d8 = Ii II" 

i'" dp pJt(Kp)J,(K'p) = (Kyl/j(K - K'), 

1'" dpJ,(Ep)J'+1 (Ep) = (2Etl, 

(AIII2) 

(AI1I3) 

and performing d 30, d 3p , d 3K', dp4 integrations (in that or
der), (AI1I2) goes over into 

NU ) 

= m " d 3K KKK (E)-I [/3- ifra)L + Y iJra)L] 
2 
~ I 2 3 (ra) (ra) 

rsa{3LM 
X [A v4] LM [ p(s{3) U(sP)M + Y(s{3) V(s{3)M ] 

X [(I)' l' -'!l. (A 1114) 

Define a matrix M with entries 

[M]LM=[(I),:-'!-][Av4]LM = - [IXIXIX0"2hM' 
(AllIS) 

where Eqs. (4.5) have been used .. From the solutions in Ta
ble I it follows that 

uira)Mu(S{3) = vtra)Mv(s{3) = - (E Im)[O" 2XI ]rs/ja{3' 
(AII16) 

ulra )Mv(S{3) = vtm)Mu(sP) = O. 

With (AllIS), (AII16) the integral constant N(') 

becomes 

m L'" N(t)= -2 I d3KKIK2K3(Etl[ffcra)ut<ra)+Y(rcr)vt(ra)] 
rsa{3 0 

xM [/3(s{3)u(s{3) + Y(S{3)v(s{3)] 

= -! I (OO d3KKIK2K3 
rsa Jo 

X [P(ra)/3(sa) + Y(ra) Y(sa) ] [0" 2 X I] rs' (ALII?) 

Making the following invertible linear transformation 
on the amplitudes /3(ra)' Y(ra): 

/3(10') = Jl(la) + iJl(3a) , 

/3(2a) = Jl(2a) + iJl(4a) , 

/3(3a) = Jl(3a) + iJl(la) , 

/3(4a) = Jl(4a) + iJl(2a) ' 

Y(la) = Ji(sa) - IJl(7a) ' Y(3a) = Ji(7a) - 'Jl(5a) , 

Y(2a) = Jir6a) - IJl(8a) ' Y(4a) = Jir8a) - IJl(6a) ' 

Eq. (ALII?) yields 

(AII18) 

8 2 100 

N(') = R"i;1 a.?1 0 d3KKIK2K3[ER IJlRa(l£..t) 1
2], 
(AlII9) 
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where 
EI = E2 = - E3 = - E4 = E5 = E6 = - E7 = - £8 = I. 

Now computing H(t) from (2.12), (AIIIl), (II-AllIe) 
one obtains 

H(r) = [H(t)]IJ' ~ ,,/2 

= (2t)-l m (21Ty3 I (2" d3pplplp2 
rsa/3LM Jo 

X 1
00 

dp4 Loo d 3KKIKIK3 1
00 

d 3K' K;K;KJ 

X [ Pera) ifra)L + Y(ra) iJra)L ] 

X (Av4)LM [/3 (s/3) U'(s{3)M + Y(s{3) V'(s{3)M] 

X J, :(K I pl)J, ~K; pI ) ... J, !(Ep4)J, /.E 'p4) 

xexp[i(t: - t~)OI'] 

X [(i)' l' - '.i-J(it ~ 1 p4) + (c. c.). (AlII 10) 

Performingd 30, d 3p , d 3K', dp4 integrations respectively 
and remembering (AI1I3) and also the integral 

100 

dp (ptIJ,(Ep)J,+ I (Ep) = [1T(t + D]-I, (AIIIIl) 

one gets from (AlII 10) 

H(') 

m " i OO 

d 3 [P- ;;(ra)L + ;;(ra)L ] = - ~ K KIK2K3 (ra)U Y(ra) V 
1T rsa/3LM 0 

X (Av4 hM [/3(S8) U(s/3)M + Y(S/3)V(s{3)M 1t~(t ~ + t ~tl 
X [(t)'4'--'!] + (C.C.). (AllIl2) 

Now another matrix M' can be defined as 

(M'hM=[(/)':-I!lt~(t~ + t~tl[Av4hM' (AIII13) 

Using (4.5), (4.6), (AllIS) the matrix M' can be ex-
pressed as 

M' = (l/2)M - (iI2)(2t4 + 1)-I[Av4]. (ALII 14) 
By (AIII14), (4.13), (AI1I6), Eq. (AliI 12) becomes 

H(t)= [ml1T(2t4+l)] I (00 d 3KKIK2K3 

rsaf3 Jo 
X [ffcra) u t(ra) + Y(m) V tim) 1M' 

X [/3(s/3)u(s/3) + Y(s{3)v(S/3)] + (h.c.) 

= [mhr(2t4+1)] I roc d 3KKIK2K3 
rsa Jo 

X «t4 + D( - Elm) 

X I [0" 2 X I ] rs [P(ra)/3(sa) + Y(ra) Y(sa) ] J 
;4 --+ H (, )rs [/3(ra) Y(sa) - Yra Psa ] J) + (C.C.). 

(All II 5) 
Recalling (AnI8) and noticing that the last curly 

bracket is cancelled out by the counterpart in (c.c.), one fi
nally arrives at the expression 

2 8 2 
H(t)= - I I 

1T R~la~1 

Xl'" d 3K K IK2K3 [€ R IJl(Ra) (&t) 12]E (K). 

(AlII 16) 

For the integral constants K ~), X~), one finds 

(AlII 17) 
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This is because the d 3() integrations bring in some restric
tions on t ~, t t/, which in turn require that only the zero 
entries of [AV4 ]LM can contribute. 

Next the integral constant T(t) is computed. From 
(2.12) and (AlII 1) one obtains 

T(tl = [T(t)] 0' = 71'12 

= im (2'17}3 L r27r 
d 3() roo d 3p plp2p3 

2 rsapLM Jo Jo 

it \lOti] 
Xe a 0' = 71'12 + (C.C) 

= _ m L roo d3KKIK2Ki2Etl[P(ra)ipa)L 
2 rsapLM Jo 

+ Y(ra) ilra)L ][AV4] LM [f3(SP) U(sP)M + Y(s{J)V(s{J)M] 

X(t~ + t~ + t~ + t~)[(l)tl'-t!] + (C.C), 
(AIII18) 

where in the last line d 3(), d 3p , d 3K', dp4 integrations have 
been carried out with the help of (AI1I3). Now the following 
matrix is introduced: 

[M" hM= [(1)'1' - tq(t~ + t~ + t~ + t~)[AV4]LM' 
M" = (tl + t2 + t3 + t4 + !)M + (i/2)[Av4], (AIII19) 

where in the last equation, the formulas (4.5), (4.6) have been 
used. Applying (AlII 19), (4.13), (AI1I6), the integral con
stant T(t) in (AIII18) reduces to 
T(t) 

= - m L roo d 3K KIK2KiEtl«tl + t2 + t3 + t4 + n 
4 rsa Jo 

x ( - Elm)! (a 2 X l)rs [P(ra)f3(sa) + Y(ra) Y(sa) ] I 
- H (y 4)" [P(ra)P(sa) - Y(ra)f3(sa) ] I) + (c.c.). 

(AIII20) 

The last curly bracket is cancelled by the corresponding 
term in (c.c.) so that by using (AI1I8), (AI1I9) one has 

T(t) = - (t l + t2 + t3 + t4 + DN(t). (AIII21) 

The calculation of B (t) in (2.12) will be done now. 

B(t)= [B(t)]0'=7r12 

1531 

= im (21Tt3 L (271' d 3() (00 d 3p plp2p3 
4 rsapLM Jo Jo 

X Loo dp4 Loo d 3KKIK2K3 Loo d 3KK;K2 K3 

X [iJ(ra) ii"a)L + Y(ra) ilra)L ] [Av4(v'ai - aivi) ]LM 
X [13' U'(s{J)M + y-, V,(s{J)M]J (K pi) (sP) (sP) t} 1 

XJt,,(K; pl) ... Jt ,(Ep4)Jt ,,(E 'p4) , . . 
Xexp (j(t t/ - t ~)81"] [(l)tl' - tq + (c.c). (AIII22) 

Performing d 3(), d 3p , d 3K" dp4 integrations one has 
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One can introduce a matrix 

[M1]LM= - [(I)I+tl'-t~l[Av4(viai -aiV;)]LM' 

MI = 2M; -2i[Av4], 

M; =diag[ -3a 2, _ a 2, _ a 2,a 2, _ a 2, a 2,a 2,3a 2]. 

(AIII24) 

From Table I it follows that 

N(ra)(s{J) -uira)M; u(s{J) = [~ ~], 
N (ra)(s{J) =vtra)M; v(s{J) = - N(ra)(s{J) , 

N(;a)(s{J)=uira)M;v(s{J) = [: ~], 

A=~ 
13 Y ~r] -a 8' 

8' -a -13 ' 
-Y -iJ a 

B=[~ 
0 A. q / 0 

0 -A. 
i 0 -/ 

a=KZK3[m(E + m)]-I, 

13 =i(m)-I[E - K2(K2 + iKI)(E + mtl], 

y=(m)-I[ - E + K3(K3 + iK1)(E + myl], 

8=(myl[ - iE + (KI - iK2)(K3 + iK1)(E + myl], 

8'=(mt l[ - iE + (KI + iK2)(K3 + iK1)(E + m)-I], 

/ = - KzCmY\ A. = - (myl(K3 + iK1). (AIII25) 

By (AIII24), (AIII25) the expression for B (t) becomes 

m Loo B(t)= - - L d 3KK1K2KiE)-1 
4 rsa{J 0 

X! [iJ(ra)f3(s{J) - Y(ra) Y(s{J) ]N(ra)(s{J) 

+ iJ(ra) r(s{J)N (;a)(s{J) + f3(ra) Y(s{J)N (~a)(sP) J 

+ im L roo d 3K KIK2K3(Etl 
4 rsa{JLM Jo 

X [.B;ra) z1ra)L + Y(ra) V(ra)L )[ A v4 hM 

X [f3(sP) U(s{J)M + Y(s{J) V(s{J)M] + (c.c.). (AIII26) 

By (4.13) the second integral of the above expression is 
cancelled by its counterpart in (c.c.). Therefore, using 
(AllIS) one obtains 

B(t) = _ m L roo d 3KKIK2K3(Eyl 
2 rsa{J Jo 

f [ .B;ra)f3(s{J) - Y(ra) Y(s{J) ]N(ra)(s{J) 

+ iJ(ra) Y(s{J)N (~a)(s{J) + f3(ra) Y(s{J)N (~)(s{J) J 

= - m L roo d 3K K1K2K3(E)-1 
RSap Jo 

X [fi(Ra)N(Ra)(SP)#(S) ], (AIII27) 
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[ [

N(ra)(s{3) N (;a)(s{3) ] 

N(Ra)(s{3) ]= - " . (AIlI27) 
N (ra)(s{3) - N(ra)(s{3) 

The integrand of B (I) is a Hermitian form on the 16 
ordered tuples f.l(Ra)' It is not in the convenient diagonal 
form. A similar situation arises with the Dirac wave field if 
one tries to compute a single component of the total spin 
angular momentum with the usual plane wave solutions. 
The situation can be remedied by a diagonalization which 
would not disturb the already diagonalized Hermitian form 
of the integrand of N(/). It would suffice for the present pur
pose to show the existence of such a diagonalization. To do 
that, the already diagonalized Hermitian form of the inte
grand of N(t) yields the corresponding matrix ("metric ten
sor") [1']=diagkl,E2, ... ,Eg], where ER = ± 1 are given in 
(AlII9). The pseudounitary matrices Wacting on Vl6 are 
defined by the equation 

wt1' W = 1'. (AlII28) 

The eigenvalue equation for the Hermitian matrix 
N ===[N(Ra)(s{3)] relative to the metric I I is 

[N - A1']U = 0, det[N - A1'] = O. (AlII29) 

An "orthonormal" basis of VI6 must satisfy 

(AlII30) 

A matrix which has for the columns 16 "orthonormal" 
vectors 

(AI1I31) 

must be pseudounitary. Let the first vector of a pseudouni
tary matrix WI be a "normalized" eigenvector u(l.1) of N 
corresponding to the real eigenvalueA(I.I) which need not be 
simple. It can be asserted that 15 other "orthonormal" vec
tors Z(2.1), ... ,Z(S.2) exist such that [U(I.I),Z(2.IP,,,,Z(S.2)] is an 
"orthonormal" basis set. Therefore WI can be expressed as 

WI = [U(I.IPZ(2.IP,,,,Z(S.2) ]=[U(I.IPZ], 

The condition (AIII28) can be expressed as 

[Utl
•
I
)] [1' 1'Z] zt U(I.I)' 

ui
'
.I)1'Z] 

zt1'Z 

implying that Zt1'U(I.I) = 0 = uII •I )1'Z. 
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(AIII33) 

Now consider 

Uil,l)NZ] . 
zWZ 

(A III 34) 

Using (AIII30), (AIII33), and noticing that wI NWI 

must be a Hermitian matrix, one obtains from (AIII34) 

wI NW
I 

= [A(lO·I)EI 0] 
ZtNZ' 

Repeating similar arguments, one can show the exis
tence of a pseudo unitary matrix W such that 

WtNW = diag[A(I.,)EI.A(I.2)EI, ... .A(s.I)Eg.A(8.2)Eg], 

wt1'W = diagkl,E" ... ,ES,EgJ. (AIII35) 

where all eigenvalues A(Ra) may not be distinct. 
Now writing 

(AI1I36) 

the integrands f of N(/) and B(t) respectively become 

f[N(t)] = L ER la(Ra) 1
2

, 

R.a 

f[B(t)] = L ERA(Ra) la(Ra) 12. (AIII37) 
R.a 

The eigenvalues A(Ra) have been computed on an IBM-
360 and they come out to be 

(mEyIA(Ra) = (1)6,( -It,(3)2,( - 3)2, (AIII38) 

where the exponents stand for the multiplicities. 

'H. Yukawa, Phys. Rev. 76, 300 (1949); 77, 849 (1950); 80,1047 (1950). 
2 A. Das, J. Math. Phys. 7, 45 (1966). 
'A. Das, J. Math. Phys. 21,1506 (1980). 
4M. Gell-Mann, California Inst. of Tech. Lab. Report CTSL-20 (1961). 
'It should be emphasized here that the usual mass operator in Eq. (6.1) of the 
paper by L. O'Raifartaigh, Phys. Rev. 139,258 (1965), for the proof of the 
NO-GO theorem is not assumed in the present paper. 

6S. Okubo, Prog. Theor. Phys. (Kyoto) 27, 949 (1962). 
7G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cam
bridge V.P., 1966) p. 248. 

RH. Weyl and R. Brauer, Am. J. Math. 57, 425 (1935); N. Jacobson, Lie 
Algebras (Wiley, New York, 1962), p. 229. 

A. Das 1532 



                                                                                                                                    

Large coupling expansions for eigenenergies and Regge trajectories of the 
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Large coupling expansions of eigenenergies, wave functions and Regge trajectories of the 
generalized even power potential V (r) = - i'~r= o N z/1.j are obtained. These general expansions 
are then used to obtain eigenenergy expansions and Regge trajectories for the anharmonic 
oscillator, Gauss, and similar potentials. 

1. INTRODUCTION 

Recently there has been a great deal of interest in large 
coupling solutions to various problems arising in particle 
physics. In field theory, however, this search has not yeilded 
useful information about specific problems such as nucleon 
structure and therefore most of those working on this model 
have confined themselves to studying simple models using 
different forms of static sources in the Hamiltonian formal
ism 1-4 and properties of noncompact strong coupling 
groups.5-7 Attempts have also been made to explain pion
nucleon scattering8 and nuclear forces9 in the context of a 
static model. Large coupling solutions of the Bethe-Salpeter 
equation of scalar <p 3 theory have been studied by Cheng and 
Wu. \0 Large coupling solutions of the Bethe-Salpeter equa
tion of the Wick-Cutkosky model have also been derived. II 

Various difficulties in quantum field theory have led to 
a revival of interest in analogous aspects of nonrelativistic 
potential theory which is flexible enough to serve as a simple 
prototype of almost any kind of model theory. In elementary 
particle physics, nonrelativistic potential models have con
tributed substantially to a deeper understanding of the ana
lytic behavior of scattering amplitudes. Several authors have 
investigated nonrelativistic wave equations for large cou
pling constants. Thus, Cheng and Wu 12 calculated the ap
proximate behavior of Regge trajectories for the Yukawa 
potential. Iafrate and Mendelsohn 13 and Zaudererl4 have 
studied the energy eigenvalues for the Yukawa potential. 
Muller-Kirsten and Vahedi-Faridil5 have investigated the 
Yukawa potential for large coupling constants. Other cases 
for which large coupling solutions have been determined are 
the Gauss l6 and the superposition of inverse square and 
Yukawa potentials. 17 

The main result of the present investigation is the deri
vation of the eigenenergy and Regge trajectory expansions 
for a general even-power potential with large coupling con
stant. The general even-power potential is of particular in
terest in potential theory since such well-known potentials as 
the harmonic oscillator, the Gauss potential, and anhar
monic oscillator potentials (with even anharmonicities) may 
be derived from this as particular cases. Thus the results of 
this paper give a unified treatment of these potentials. In our 
derivation we use the perturbation technique which has been 
used in numerous other investigations. 11.15.16 In Sec. 2, we 

derive the large coupling expansion of the eigenenergy and 
Regge trajectories for the general even-power potential. In 
Sec. 3, we give applications of the general eigenenergy ex
pansion to the harmonic oscillator, the Gauss potential, and 
the general anharmonic oscillator. In Sec. 4, the general ex
pression for Regge trajectories is utilized to derive the Regge 
trajectories for the Gauss potential and for a potential which 
can be assumed to be the superposition of an inverse square 
and an anharmonic oscillator potential. Finally in Sec. 5, we 
give a brief discussion of our results. 

2. EIGENENERGIES FOR THE GENERAL EVEN-POWER 
POTENTIAL 

We consider the radial Schr6dinger equation 

[ ~+k2_ /(/+1) _ v(r)]t/J=o 
dr r 

(Ii = c = 1, m = D, 
and take a potential of the form 

(2.1) 

V(r) = - i' ! N 2jr j
, (2.2) 

j=O 

where the coefficents N2j can be negative. In particular we 
require N2 to be negative so thatthe eigenvalues to be derived 
below are real. It is convenient at times to express the overall 
coupling constant i' in terms of parameter A defined by 

g=IAlei1T12
• (2.3) 

We wish to determine the eigenenergies k 2 under nor
mal bound state boundary conditions for large values of the 
coupling constant i'. 

Substituting (2.2) into (2.1) and changing the indepen
dent variable to 

Z = (2ig vli;Y/2r, 

we obtain 

d
2

t/J + [k2+i'No_ /(/+1) 
dr 2ig VN;. Z2 

= N 2j (z2/2)jt/J 
- ! j~2 (g)j - I (tV N2)H I (2.4) 

We now assume that asg_oo (k 2 + i'No)/2igv'Nz-finite 
and nonzero, i.e., of 0 (g~. (This ensures also that the correct 
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result for the harmonic oscillator is reproduced.) Then the 
right-hand side of this equation is of 0 (l/g). 

Hence in the limitg---+oo, (2.4) may be approximated by 

d2~0 + [k 2
+g2No _ 1(/-;1) _ z2 ]1/10=0. (2.5) 

dz 2ig VIi;. z 4 

Setting 

I/1o{z) = i + Ie - Z'
/4XO(Z) and S = ~, 

one gets 

d 2X dX 
S -2-0 + (b - s) __ 0 - aXo(s) = 0, 

ds ds 
where 

I 3 
a= -+ 

2 4 

A solution of Eq. (2.7) is 

Xo(s) = ifJ (a,b;s), 

where ifJ is a confluent hypergeometric function. 

The solution of Eq. (2.5) 

I/10(z) = i + Ie - r/4ifJ (a,b;z2 12) 

will be a normalizable bound state wave function, if 

a = - n for n = 0,1,2,···. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.1O) 

(2.11) 

Setting q = 4n + 3 gives (k 2 + g2No) = ig(V N2){21 + q). 
Hence in our original problem we may write 

(k 2 + g2No) = igY N2(21 + q) - 2Nzt1, (2.12) 

whereA is an (as yet) undetermined expansion in descending 
powers of g. Inserting (2.12) into (2.4) we have 

and 

(2.15) 

As a first approximation to 1/1 we have (apart from an overall 
normalization factor) 

(2.16) 

This approximation obviously leaves uncompensated terms 
on the right-hand side of (2.13) amounting to 

R ~O) = [~Ah + 1- I N2jh }-1 (~Z2)j]I/1q(Z). (2.17) 
2 4 j=2 N/ 2 

For convenience we set I/1q(z)=l/J(a,b;z)-l/J(a) and write the 
recurrence relation for I/1(a) in the form 

¥21/1(a) = (a,a + 1)l/J(a + 1) + (a,a)l/J(a) 
+ (a,a - 1)I/1(a - 1), 

where 

1534 

(a,a + 1) = a = -l(q - 3), 

(a,a) = b -20 = 1+ q12, 
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(2.18) 

and 

(a,a - 1) = a - b = - Hq + 3) -/. (2.19) 

By repeated application of (2.19), we obtain the following 
general relation: 

(¥2)ml/J(a) = f Sm (a,a + J)I/1(a + J), (2.20) 
j= -m 

where the coefficients Sm (a,a + r) satisfy the recurrence 
relation 

sm(a,a + r) =Sm_1 (a,a + r-l)(a + r-l,a + r) 
+ Sm -I (a,a + r)(a + r,a + r) 
+ Sm -I (a,a + r + 1)(a + r + 1,a + r), 

(2.21) 

withso(a,a) = 1; allso(a,a + I) = 0, for i#O and Sm (a,a + r) 
= 0, for Irl > m. The expansion R ~O) may now be written 

where [a,aL = A 12 + (N4/4N/)s2(a,a) 

and 

(2.22) 

[a,a + K] j+ I = (N2(j +2)/4N/+ 2)sj+2 (a,a + K), 
(2.23) 

forj and K not zero simultaneously. 
We now observe that Dql/J(a + K) = KI/J(a + K), so 

that a termp,l/J(a + K) maybe removed by adding to 1/1(0) the 
contribution (pI K )I/J(a + K) except, of course, when K = O. 

Hence the next contribution to 1/1(0) becomes 

[a,a +K ]HI 
K I/1(a +K). I/i l ) = ! h HI jf 

j=O K= -(j+2) 

(2.24) 

This contribution leaves uncompensated a sum of terms R ~I) 
which again lead to another contribution 1/1' 2). Repeating this 
process successively and adding these contribution to 1/1(0) we 
obtain 

(2.25) 

However, (2.25) will be a solution of our equation only if the 
sum of all terms containing I/J(a) in R ~0l, R ~I),. .. , left uncom
pensated so far, is set equal to zero. Thus, 

o = h a,a I + h a,a 2 + a,a - 2 I "':"'---'--"--'-[] 2 { [ ] [ ] [a - 2,a L 
-2 

+ [a a-I] [a - l,a L + [a,a + 1 ] I [a + 1 a] } 
, I -1 1 ' I 

+ 0 (h 3). (2.26) 

The expansion (2.25) is then an eigensolution and (2.26) 
the appropriate secular equation which enables us to calcu
late A and hence the eigenenergy k 2. Explicit calculation of 
terms up to 0 (h 3) yields the following expression for the 
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eigenenergies for large coupling constant If: 

(k 2 + If No) = igV N 2(21 + q) + ~4 [3(q2 + I) +4(3q -1)1 + 8/ 2] 
2 N2 

+ N6 [5q(q2 + 5) + 2(15q2 - 6q + 25)1 + 24(2q - 1)/ 2 + 16/ 3] 
24N/ '2(ig) 

N4 [q(17q2 +67) +2(5Iq2 -18q +67)1 + 24(7q -3)F +64/ 3] 
26 N 2

512(ig) 

Ns [(35q4 + 49Oq2 + 315) + 280lq3 - 384/ 3 + 1281 4] 
27N/1f 

+ N4N 6 [( I 65q4 + 177Oq2 + 945) + 1320lq3 + 504lq2 + 7080lq - 13681 
2sN/1f 

+ 3456/ 2q2 - 2016/ 2q + 5856/ 2 + 3264/ 3q + 1928P + 768/ 4] 

N/ [(24OOOq4 + 21 8496q2 + 9896) + 20781q3 - 660481q2 - 8739841q 
216lfN2

4 

-1397761 + 56995Fq2 -264192J2q + 745472J2 +504108Pq -241664/ 3 + 131072/ 4] + 0(1I~). (2.27) 

In terms of IA I Eq. (2.27) can be written [this expression is only written up to 0 (lilA I)]: 

k 2 -IA2INo = -IA IVNz(2/+q) + (N4/2
3N 2) {3(q2 +1)+4(3q-I)/+8/ 2

J +0(11 IA I). (2.28) 

The Regge trajectories follow with the help of (2.8) and (2.11), and we obtain 

a (k)=1 (k)= -2n- ~_!.._ N4 (-8n2-8n-l-p2 -2P-24nP) 
n n 2 2 23AN23/2 

+ 4 ~6 2 (960n3 - 120n2 - 140n - p 3 + 6p2 - 8P + 12p2n + 24Pn + 24Pn2) 
2A N2 

N 2 

+ 6 43 2 (1088n3 + 792n2 + 648n - 4P 3 + 18P 2 - 27 P + 378 + 36P 2n + 522Pn - 24Pn2) + 0 (P 4), (2.29) 
2 N2A 

where 

P = (k 2 - A 2No)1 A '\IN;. 

3. APPLICATIONS OF THE GENERAL EIGENENERGY 
EXPANSION 

We now apply the eigenenergy expansion (2.28) to three 
cases. 

A. Harmonic oscillator 

The harmonic oscillator is given as 

VCr) = a 2r, 
Implying 

No = 0, N2i = 0 for />2, 

and so 

k 2 = ig~(21 + q) = -A V Nz(21 + q), 

which is the well-known result. 

B. Gauss potential 

The Gauss potential is given by 

VCr) = -Ife - a'''', 
so that 

N2i = ( - 1) ia 2
j 1]1, 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

I db' an weo tam 

(2.30) 

a 4 

= ga(21 + q) - 4' [3(q2 + I) +4(3q -1)1 + 8/ 2 ] 
2 

3 

a [q(llq2 + I) +2(33q2 
3X2S xg 

-6q + 1)1 + 24(5q -1)J2 +64P] 
4 

+ ~5 If [4(85q4 + 2q2 - 423) 
3X2 X 

+ I (272Oq3 - 71q2 + 32q + 2976) 
+ 32/ 2(252q2 - 12q + 64) 

+ 256/ 3(41q -9) +4096/ 4] + 0(1I~). (3.6) 

Expansion (3.6) is identical with the expression derived 
previously. 16 

C. Generalized anharmonic oscillator 

Next we consider the application of (2.27) in evaluating 
the eigenenergies for the generalized anharmonic oscillator 
with anharmonicities of the form/, where m = 2,3, and 4, 
and the following Hamiltonian 

( 
d2 I I ) 

H= - -+ -r+ -frm 
• dr 4 4 

(3.7) 
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Evaluating the eigenenergies of this oscillator for m = 2 (I' 
anharmonicity), we make the following substitutions in 
(2.27): 

No = 0, - g'lN2 =!, - g'lN4 =!f, 
N6 = N8 = 0, 1= 0. (3.8) 

For consistency of these equations under the condition that 
N2 is in general not simply related toN4 wesetg = 1. For the 
eigenenergies, we then obtain 

F = (2n + n +3f(2n2 +3n + D 
- j2[34n3 + 153n2 + (263n/4) + (165/8)] 
+ 0 (/3). (3.9) 

The eigenenergies for m = 3 (Y> anharmonicity) and m = 4 
("s anharmonicity) can be evaluated similarly. Bender and 
WU,18 while discussing the anharmonic oscillator problem 
defined by the differential equation 

( - d_: + ~,:z + ~ AI')t/J (r) = E (A) t/J (r), (3.10) 
dr 4 4 Iim~(r)=O 

r--+ ± '" 
observed that the perturbation series for the ground state 
energy Eo(/) has the form 

00 ( f )n 
Eo(/) = ~m + n~1 mAn m 3 • 

(3.11) 

The coefficients An calculated by Bender and WUl8 agrees 
with our calculations. 

i 

8'5 

8 

_k 2 

FIG. 1. Regge trajectories for the even power (Nz) = 1) potential in the 
ground state for different values of coupling constant A. z. 
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FIG. 2. Regge trajectories for the even power potential (N2) = 1) for differ

ent values of n. 

4. REGGE TRAJECTORIES 

We consider the following examples. 

A. Harmonic oscillator 

In this case we have 

an =In(k)= -2n- ~_k2/2igVN; 
as is well known. 

B. Gauss potential 

The expansion for the ground state has the form 

lo(k) = _ ~ + k 2 + g'l _ ~ { _ ~ 
2 2ag 23g 2 

(4.1) 

+ k
2 

+g'l _ (k
2 

+g'l)2 } + o (a2). (4.2) 
ag 2a2g'l 

Aly et al. 19 have calculated the expression for the Regge 
trajectories for this potential [V (r) = @e - a'r'] up to 0 (k 4). 
By settingg = @1/2/iinexpansion (4.2), we now get the fol
lowing series for the Regge trajectories 

lo(k) = _ ~ + (k 2 -@)i__l_(k2_@) 
2 2a'\l'® 8@ 

__ 1_' _ [ _ ~ (k 2 _@)a+(k2- @)2 ~ ] 
16@3/2 3 a 
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3i [(k 2 _ ®)4 ] + ... + + .... 
24X 102 a 

(4.3) 

This expression is an improvement over that derived by Aly 
et al. 19 (Since it contains terms up to those of 0 (k 8). 

C. Superposition of inverse square and anharmonic 
oscillator potentials 

Finally we derive the Regge trajectories for the poten
tial described by the following Hamiltonian 

H = ( _ :; + 1(1; 1) + r + A,.zm), (4.4) 

where m = 2,3,4, etc. Thus with the value of m = 2 (r4 an
harmonicity) the Regge trajectories (for the ground state) 
are given by: 

3 k
2 

( 1 k4 ~) 
lo(k) = - 2 + 2 + A - 23 - 23 + 22 

A2(~ 3
2
k4 3

3
k

2
) + 24 + 25 + 26 . 

(4.5) 

Similarly for m = 3 (~ anharmonicity) and m = 4 (yB anhar
monicity), we can write the following expressions for the 
Regge trajectories (for the ground state) 

lo(k) = - ~+ ~+ A3 (4k 2 +3k 4
) 

2 2 2 
(for ~ anharmonicity), (4.6) 

lo(k) = - ~ + ~ + .i ( - 10 + 8k 2 + 3k 4) 
222 

(for yB anharmonicity). (4.7) 

FIG. 3. Ground state Regge trajectories for Re(l ) for the Gauss potential for 
different values of coupling parameter Fl. 
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o 

--+Re 1 

FIG. 4. Ground state Regge trajectories for complex I values for the Gauss 
potential for various values of Fl· 

Graphical representation of Regge trajectories: 
(1) In Fig. 1, we show the ground state Regge trajector

ies for the even-power potential with all coefficients N2j = 1 
in (2.2) for different values of the coupling constant A 2. 

(2) In Fig. 2, these trajectories for the potential which 
contains only even powers of r for different values of n viz: 
n = 1 (q = 7), n = 2 (q = 11) n = 3 (q = 15) and n = 4 
(q = 19) have been plotted. 

(3) Ground state Regge trajectories for the Gauss po
tential for different values of i" have been displayed in Fig. 3. 

(4) Regge trajectories for complex I values for the Gauss 
potential are plotted in Fig. 4. This work has also been done 
by Aly et al. 19

; our graph, however, has been drawn with the 
improved approximation obtained in Eq. (4.3). 

(5) Figure 5 depicts the behavior of Regge trajectories 
for different anharmonicities (r4, 1', and yB) for the potential 
which is the superposition of inverse square and anharmonic 
oscillator potential in the ground state for Re(l). 

5. DISCUSSION 

(A) It is well known that the linear potential gives a 
rather rapid rise of Regge trajectories, while the oscillator 
potential yields linearly rising trajectories. For a Yukawa 
potential the trajectoreis do not rise but fall off rapidly with 
increasing energy. This behavior also persists in the strong 
coupling domain. It has been conjectured that a Coulomb/ 
Yukawa-like force is responsible for the power law fall-off of 
form factors and vertex functions. 20 It is therefore of interest 
to understand the wave functions and Regge trajectories 
when the potential contains an anharmonic as well as 
Yukawa-like part. However, for such a potential the wave 
equation is, in general, difficult to solve except in two cases: 
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FIG. 5. Ground state Regge trajectories for Re(l) for the superposition of 
inverse square and anharmonic oscillator for different anharmonicities of 
the oscillator. 

1. the case of the Coulomb potential perturbed by anhar
monic contributions, and 2. the case of the oscillator (quark 
confining) potential perturbed by Coulomb or Yukawa 
contributions. 

Other types of potentials have been discussed in this 
context; one that has attracted considerable interest recently 
is a potential with a finite range singularity i.e., a potential 
VA (r) which is singular at a point r = A, where A, ¥O or 00. 

The potential of this type discussed by Filippov21 has 
the form 

VA(r) = _®2/r_A,2, (5.1) 

with the property that limHao VA (r) = O. 
For r¥A, one can write 

VA (r) = ~ {I + ..c. + (..c.)2 + ... }. 
A,2 A,2 A,2 

(5.2) 

Thus for r > A, potential (5.1) behaves as a modified harmon
ic oscillator, and one can easily obtain its eigenvalues and 
Regge trajectories from Eqs. (2.27) and (2.29). The Regge 
trajectories for the potential are given by 

3 (k 2 A, 2 - (2) 1 { 2 
In(k) = -2n- -+ + - -n-n 

2 2® ® 

1538 J. Math. Phys., Vol. 21, No.6, June 1980 

and demonstrate their rise with k 2. However, for A, ap
proaching zero the linear rise of trajectory is lost, the poten
tial therby reducing to that of the centrifugal type. 

(B) We also observe from Fig. 2, that for the general 
even-power potential (with N2j = 1), the spacing between 
two successive Regge trajectories increases with nor q. 
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Path-dependent quantum formulation of electromagnetism with magnetic 
charges 
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A path-dependent quantum formulation of electromagnetism with magnetic charges is proposed. 
One starts from a path-dependent nonsingular potential which generalizes the Wu-Yang 
potential. Then a Lagrangian formulation is proposed manifestly self dual and without singular 
terms or kinematical constraints. The quantization of this Lagrangian leads to a linear space of 
path-dependent wavefunctions where the dynamical equations are stated. The angular 
momentum usually considered in the field of a static monopole is identified with the generator of 
spatial rotations in the space of the path-dependent wavefunctions. 

1. INTRODUCTION 

Path-dependent objects were first considered by Man
delstam 1 in ordinary electromagnetism with the introduc
tion of the path-dependent field operator: 

1/1 (x,P (x» = t/J(x) exp {ieiX dx'''AA (X')} , (1.1) 
P(x) 

where I/J(x) is the ordinary matter field which under gauge 
transformations: 

AI"(x~AI"(x) + A ,I" (x) 

transforms according to: 

I/J(x~t/J(x) exp[ - ieA (x)J. 

(1.2) 

(1.3) 

Obviously 1/1 (x,P(x» is a gauge-independent operator. 
The gauge dependence of the ordinary matter field has been 
changed into path dependence of the Mandelstam operator. 

In first quantization 1/1 (x,P(x» is a path-dependent 
wavefunction. It is then a natural object to consider since 
both its modulus and its phase may be considered as phys
ical. Moreover, by introducing the Mandelstam covariant 
derivative: 

1)1" 1/1 (x,P(x» = lim 1/1 (x + E,PE(X + E» - l/I(x,P(x» , 
£--0 E 

(1.4) 

where E is an infinitesimal displacement along the "p" direc
tion and PE(x + E) is the path P(x) with a rectilinear exten
sion to reach the point X + E, the quantum equations for t/J(x) 
coupled to the electromagnetic field may be rewritten as for
mally free equations with D derivatives for the path-depen
dent wavefunction. 

On the other hand, as most clearly remarked by Wu and 
Yang,2 the Aharonov-Bohm experiment may be considered 
as the experimental detection of the phase factor 

exp{ie f dX'A AA(X')} , (1.5) 

which in tum may be considered as the relative phase in a 
linear superposition of two Mandelstam path-dependent wa
vefunctions. It turns out that a linear space of path-depen
dent wavefunctions could be the natural framework for a 

"This research was supported in part by the Consejo Nacional de Investiga
ciones Cientificas y Tecnol6gicas de Venezuela. 

quantum description of general electromagnetism. 
This is the point ofview advocated in the present paper 

where path dependence is recognized as the key element to 
have a nonsingular description of electromagnetism in the 
presence of magnetic poles. One starts in Sec. 2 by introduc
ing a path-dependent potential which furnishes a globally 
nonsingular description of the electromagnetic field. The po
tential has a natural relationship with the Wu-Yang2 poten
tial of which it may be thought as the limit to a continuous 
number of regions. Stated in more geometrical terms, the 
Wu-Yang potential furnishes a connection in a principal fi
ber bundle over space-time. This structure may be used to 
induce a principal fiber bundle over the manifold of paths of 
space-time. The induced bundle is globally trivial. This is 
the geometrical explanation of the "free looking" aspect of 
the dynamical equations expressed in terms of path-depen
dent wavefunctions and the geometrical motivation of the 
whole path-dependent approach. 

In Sec. 3 the path-dependent potential is used to discuss 
a Lagrangian formulation for a general system of point 
charges in electromagnetic interaction. This formulation is 
free from anomalous singularities and kinematical con
straints. The complete set of the Lorentz-Maxwell equations 
is obtained as stationarity conditions of the action which is 
manifestly covariant and selfdual. 

In Sec. 4, the quantization of this Lagrangian is consid
ered. One obtains a quantum formulation in a linear space of 
path-dependent wavefunctions, which reduces to the Man
delstam formulation in the case of ordinary 
electromagnetism. 

Finally, in Sec. 5 the general properties of the angular 
momentum of the formulation are considered. The angular 
momentum ofWu-Yang3 in the case of a static monopole is 
recovered now as the local version of the generator of spatial 
rotations in the path-dependent linear space. 

2. THE PATH-DEPENDENT POTENTIAL 

Let us consider some field strength Fl"v(x) verifying the 
Bianchi identities 

FI"V.A (x) + FVA'I" (x) + FAI".v(x) = gl"VA (x), (2.1) 

where gl"VA (x) is the dual of the magnetic current. In ordi
nary electromagnetism g=O and these identities guarantee 
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the existence of the familiar representation 

F,jx) = Av,/1 (x) - A/1,v(x), (2.2) 

If one tries, following Dirac,4.5 to maintain this decomposi
tion when magnetic charges are present, the potentials ex
hibit string singularities. The position of the strings is com
pletely arbitrary thus suggesting the existence of new degrees 
offreedom in the potential. Other formulations,6 free from 
anomalous singularities, need also to consider generalized 
objects in the process of quantization.7 

In this paper one introduces path-dependent potentials 
as the general and natural way to process the information 
contained in the Bianchi identities. For this purpose let us 
define the path-dependent object 

K/1 (x,P(x» = (X dX'AFA/1 (x'), (2.3) 
jP(x) 

where P (x) goes from spatial infinity, where F/1v(x) is as
sumed to vanish, to the point x, 

Let us also introduce the differential operator, which 
we shall refer hereafter as the parallel derivative, given for an 
arbitrary path-dependent functional by 

( )
. G (x + E,P(X + E» - G (x,P(x» 

~G~W=~ , 
.--0 E 

(2.4) 

where P (x + E) is obtained by parallel transporting P (x) 
from x to x + E and E is some infinitesimal displacement 
along the "Jl" direction. 

Using this definition in (2.3) one immediately obtains 

K,lV(X,P(x» = (X dX'A FA(.l,v(x'). (2.5) 
jP(X) 

Hence we may integrate (2.1) along some path P(x) to 
obtain the representation 

F'"V(X) = KV:/1 (x,P(x» - K/1:v (x,P (x» 

+ r dX'A g/1VA (x'). 
jP(X) 

(2.6) 

This decomposition of the point function field strength 
in terms of path-dependent potentials is in fact the coordi
nate version of a natural geometric construction which re
presents nonclosed k forms in a manifold by k - 1 forms in 
the manifold of paths of the original manifold. Then (2.6) 
arises as a very general homotopy associated with the 
construction. 

The path-dependent potential is essentially a nonsingu
lar object. According to its definition (2.3), the potential is 
singular for paths going through the sources of the electro
magnetic field. But these singularities are avoidable by con
sidering appropriate limits on small deformations of the 
path. Only when the end point is a source itself the singular
ity becomes unavoidable. But these singularities should be 
associated with the ordinary source-induced point singulari
ties of ordinary electromagnetism rather than anomalous 
string singularities present in the point-function potentials of 
electromagnetism with magnetic charges. 

Ordinary point-function potentials may be obtained 
from the path-dependent potential by selecting a fixed path 
for every point x. For instance let us consider some fixed 
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reference path C going from spatial infinity to the origin of 
coordinates. One may then select for every point x the path 
C (x) obtained from Cby parallel transport from the origin of 
coordinates to the point x, The point function object which 
arises from this path specialization will be denoted as 

A/1 (x) = K/1 (x,P(x» I P(x) ~ e, 

or simply 

A/1(x) = K/1(x,C). (2.7) 

It is an immediate consequence ofthe definition given in 
(2.4) that 

a:/1 Kv (x,P (x» I P(x) ~ e = Av,/1 (x) (2.8) 

and then it follows from (2.6) that K/1(x,C) is an ordinary 
potential with its string singularities related to C in an obvi
ous geometrical way. For instance, in the case of a static 
monopole at the origin of coordinates, one may obtain from 
(2.8) the Dirac's potential with a generic string8

: 

A(x) = - L. daXB(x - a), (2.9) 

where the string C' is symmetric to the reference path C by 
rapport to the origin. It is evident from this example the role 
played by the path dependence of the potential in avoiding 
the anomalous singularities. Once the degrees of freedom 
associated with the path are frozen, by selecting fixed paths 
for every point, the string singularity becomes unavoidable. 

Since parallel derivatives are obviously commutative 
one may generalize (2.3) to 

K(x,P(x»= r dX'AFA/1(x') + A,l (x,P(x», (2.10) 
jP(X) 

without changing the decomposition (2.6). Thus the gauge 
freedom of this path-dependent formulation may be stated in 
complete analogy with the ordinary case. The path-depen
dent formulation is related in a very natural way to the Wu
Yang2 formulation of gauge theories. To see this, let us con
sider some finite covering of space-time by open sets 
D1,Dz, ... ,DN with nonvanishing intersections D/). Let us as
sign a reference path C j to each region D j and then let us fix 
parallel paths C;(x) for each point in D;. Within a region D; 
one must then have the usual representation of the field 
strength in terms of the ordinary point-function potential 
K(.l (x,Cj ). For x belonging to some intersection region Du 
the potential is doubly defined but one immediately sees that 
the two potentials are related by a gauge transformation. In 
fact, a simple calculation using the Bianchi identities and 
Stokes theorem shows that for x in D;j one has 

Kil (x,C;) - K'l (x,C) = all {~ S;, daVA FvA } , (2,11) 

where ~ /) is some two-dimensional surface drawn from Cj (x) 
to C;(x). A change of this surface will change the integral in 
(2.11) by the amount of the magnetic charges enclosed in the 
variation. Hence the potentials in adjacent regions are relat
ed in the intersection by the gradient of a multiply-valued 
function and we recognize all the elements of an ordinary 
Wu-Yang formulation. 

Since the reference paths C; may be changed at will, the 
whole Wu-Yang construction is equivalent to a path-depen-
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dent potential which only exhibits the degrees of freedom 
associated with the path when going from region to region in 
some covering of space-time. One may then consider more 
refined coverings and in the limit where the regions reduce to 
points the Wu-Yang potential reduces to the path-depen
dent potential as defined in (2.10). 

3. LAGRANGIAN FORMULATION 

Let us now consider a general system of classical parti
cles in electromagnetic interaction. There is a number of 
well-known Lagrangian formulations for this problem. 
Some of them5.9 contain highly singular string-string inter
action terms associated with the use of Dirac potentials. This 
problem will be avoided in the present formulation as a result 
of the nonsingular nature of the path-dependent formula
tion. Other formulations are not manifestly self dual. The 
particles may have a single type of charge5.10 or part ofthe 
Maxwell equations is imposed externally as kinematical con
straints. 1O In the present formulation the self duality of the 
action is strongly emphasized. Complex notation is adopted 
throughout which allows one to assign completely symmet
ric roles to the electric and magnetic charges. Moreover the 
structure equation for the complex field strength 

FJ.'Y(x) = FJ.'''(x) + i~v(x), (3.1) 

is assumed only as a boundary condition and then obtained 
as part of the dynamical equations. 

Dirac's5 well-known veto of Wentzel's 11 weaker condi
tion will play now the role of appropriate restrictions on the 
possible choices of the gauge. 

The action for a system of particles which may be both 
electricaIIy and magnetically charged is given by 

S=RE~, 

~ = L~' d 4
x (iFJ.'V(x)F!v(x) 

+ * F*J.'V(x) [ KJ.'.v (x,P (x» 

_ Kv.J.' (x,P(x» - (X dx'A hl-'vA(x/)J 
Jp(X) 

+ !HJ.'V(x)B!.v(x) - (iI2)B!(x) JJ.' (x») 

+ * 2: G ~ (2 do'"V (Av.J.' - AJ.'.v + HI-'v) 
i J1I, 

+ + mj f ds {it)(s)ff(t)(s)}t12. (3.2) 

The action integral is taken in a 4-dimensional region 
bounded by the two spatial surfaces 0'1 and 0'2' 

FJ.'v(x) is a point function antisymmetric complex Lo
rentz tensor. The self duality condition (3.1) is assumed to 
hold only as a boundary condition in the surfaces 0'1 and 0'2' 

Kp (x,P (x» is a complex path-dependent 4-vector. Its 
general structure is assumed to be 

KJ.'(x,P(x» = IX dx'A HAP (x/) + AI' (x) +Ap(x,P(x», 
Jp(X) 

(3.3) 

where Hpv(x) is a complex antisymmetric Lorentz tensor, 
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AJ.' (x) is a complex point function Lorentz vector and 
A (x,P (x» is an arbitrary path-dependent scalar. hJ.'vA (x) is a 
notation for 

hpVA (x)=HJ.'V.A (x) + "VA.I-' (x) + H"I-'.v(x). (3.4) 

The structure of the path-dependent potential has been 
chosen to guarantee the path independence for the free part 
of the action which is a rather obvious requirement since 
path dependence is only relevant for a interacting theory. 

BJ.' (x) is a complex point function Lorentz vector which 
will be identified later on as a potential a fa Dirac. 

J I-'(x) is the complex electromagnetic current of the sys
tem. The ith particle contributes to this current by 

Jt'(x) = Gj f ds i~)(s)84(X - l"(s», (3.5) 

where Gi is the complex charge ofthe particle: 

(3.6) 

The next-to-Iast term in (3.2) is expressed in terms of 
two-dimensional surface integrals. Each surface ~i is made 
up with the worldline IIi of the ith particle and a selection of 
paths P (x) for each point x on IIi' All the paths are assumed 
to have their origin in the same point at spatial infinity to 
avoid undesirable contributions in the asymptotic region due 
to the radial nature of the magnetic field of magnetic poles. It 
is also required that the worldlines of the particles do not 
cross. This is a well-known 12.10 condition for the proper defi
nition ofthe action. It may be seen that this term is the con
tinuous limit of the interaction part of the Wu-YanglO 

action. 
The last term in (3.2) is the ordinary real free action for 

a system of material particles of mass m j • 

The dynamical variables are defined to be: the complex 
Lorentz tensor FJ.'v(x), the path dependent potential 
KJ.' (x,P (x», the point function Dirac's potential BJ.' (x) to
gether with their complex conjugates and the surfaces Ii 
which embody the information of the worldlines IIi and the 
path dependence of the action. It is interesting to realize that 
according to the definition (3.3) the path-dependence poten
tial contains independent degrees offreedom associated with 
the antisymmetric generator Hpv(x), the ordinary potential 
AJ.' (x) and the paralleI4-gradient. All these elements have 
then to be varied independently. 

The combined information furnished by the variations 
ofFJ.'v(x), KJ.' (x,P(x» and BJ.'(x) leads to 

(a) The Maxwell equations: 

(b) The representation ofFJ.'v(x) in terms of the path
dependent potential: 

FJ.'v(x) = KvJ.' (x,P(x» - K"y(x,P(x» 

_ i (X dx'A JJ.'Y" (x/); 
Jp(X) 

(c) The Dirac representation 

FJ.'v(x) = ~y(x) + €J.'vP"Bp.,,(x), 

where 
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~v(X) = L ~~)(x) 
i 

= ~ G foo ds r dt (a iOa z(O - a z(Oa Z(I)j Lt tJ.Lsv tvsp 
i - 00 r$) 

X 84 (x - z(l) (3.10) 

is the well-known Dirac string written in complex notation; 

(d) The representation 

lFpv(x) = Hpv(x) + Av,p (x) - Ap.y(x). (3.11) 

which in fact contains many other interesting 
representations,6,9 

The variation of the surfaces .Ii' which contain the 
world lines of the particles lli and the selection of paths 
attached to them. leads to 

(a) The Lorentz equations: 

'(0 - ( F + F-) v(0, miup - ei pv gi py U • (3.12) 

(b) The Wentzel condition: 

atzv(°aszA (O(e; gpvA - gi jpvA) = O. (3.13) 

Hence the whole set of the Maxwell-Lorentz equations 
is obtained as stationary conditions for the action (3.2). 

The equation (3.13) may be considered as an equation 
of motion for the path 9 or. if the path is considered as a gauge 
variable. as a restriction on the possible choices ofthe gauge 
which is automatically satisfied assuming Dirac's veto or 
Wentzel's weaker condition. 

It is also interesting to discuss the Lagrangian formula
tion for the restricted problem of a point charge in some 
general externally fixed electromagnetic field. The action 
may be written by considering the appropriate restriction of 
(3,2): 

SI2 = ft

' dt L (t). 
t, 

(3.14) 

where 

L (t) = m{ up(t)Up(t)jl/2 + RE I G *Ap(x)up(t) 

+ G * [ dslHlpv(z)a,zI'(s.t )aszY(s,t). (3.15) 

Here the dynamical variable is the surface zI'(s.t) which 
has been parametrized in such a way that for fixed t,zl"(s,t) 
describes the path P (x( t » when s moves from 00 to O. and for 
s = 0 one has 

zI'(O.t) = xp(t). atzl"(o.t) = up(t). (3.16) 

The Lorentz tensor lHlpy(x) and the potential AI' (x) are 
externally fixed complex objects which reproduce the field 
strength by 

lFpv(x) = lHlpv(x) + Ay,p(x) -Ap,v(x). (3.17) 

The variations of the action lead now to the equations 

(3.18) 

where we have introduced the notation 

liJpv(x)==eF/lv(x) + g~v(x). (3.19) 

together with the Wentzel condition (3.13). 
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4. THE STRUCTURE OF THE WAVEFUNCTION 

Let us consider in this section the quantum description 
of a point charge G = (e.g) moving in some externally fixed 
general field strength lFpv(x). 

A satisfactory classical Lagrangian formulation for this 
problem has been obtained in the last section. The Lagran
gian (3.15) reproduces the correct classical equations of mo
tion using the surface zI'(s,t ) as the dynamical variable. 

In general, if the dynamical degrees offreedom of some 
classicalsystem are q I(t). q2(t ), .... q N (t). the wavefunction is 
defined as a function on the classical configuration space: 
IJI = IJI (q l.q2 ..... q N ). In the present case. the dynamical vari
able is zI"(t,s) and the wavefunction should be defined as a 
functional over the function zI'(s) which describes the path 
P (x(t ». Hence. the first step towards the quantum descrip
tion of the system should be the identification of the wave
function as a path dependent object: 

IJI= IJI{Zlt(S)j = lJI(x.P(x». (4.1) 

On the other hand one may compute the total canonical 
momentum of the system as: 

[ 
8L 

Pp(t) = ds . 
00 (j(atzl'(s.t » 

(4.2) 

Carrying on the calculation with the Lagrangian (3.15) 
it is easy to obtain 

PI' = mul' + ill' (x.P(s». 

where we have introduced 

(4.3) 

ill'(x.P(x»= r dX,A liJAp (X')+A.I'(x,P(x». (4.4) 
Jp(X) 

A/l is an arbitrary parallel 4-gradient and the field 
strength liJpv(x) has been introduced in (3.19). 

Let us now consider the differential operator 

P I1 ===ia.1' ' (4.5) 

which obviously verifies the commutation relations 

IP/l'PY j = O. (4.6) 

From the definition (2.4) of the parallel derivative, it is 
evident that the change induced in the path-dependent wave
function by a global infinitesimal translation 

IJI(x.P(x»-IJI(x + €,P(x + E»~ (4.7) 

is generated by p./l' 
Hence one must have the correspondence rule 

P/l = mul'-Pp - ill'(x.P(x». (4.8) 

Now the dynamical equation is obtained as usual. From 
the relation 

PI' JT' = m2
• (4.9) 

one obtains the path-dependent Klein-Gordon equation 

I p./l - il/l (x.p (x» j {P~ - ilp(x.P(x»}1JI (x.p (x» 

= m 2 1J1 (x,P (x». (4.10) 

and a similar procedure leads to the path-dependent Dirac 
equation or any other desired dynamical equation. 

The structure of the path-dependent wavefunction is 
severely limited by the invariance requirements of the for-
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mulation under gauge transformations. The Lagrangian for
mulation clearly identifies two types of gauge freedom in the 
path-dependent potential: 

1. The path-dependent potential may be changed by an 
arbitrary parallel 4-gradient 

ill' (x,P(x»---..il" (x,P(x» + A." (x,P(x»; (4.11) 

2. Since the path selection in the Lagrangian is arbi
trary, the transformation 

IJI (x,P (x»---..IJI (x,P '(X» (4.12) 

must also be considered as a gauge transformation. 
These two types of gauge transformations are in fact 

closely related as we shall see in the course of this section. 
The wavefunction must transform in order to ensure 

the invariance of the electromagnetic current: 

IJI *(x,P (x» {P" - il" (x,P (x» JIJI (x,P (x» - C.c. 
(4.13) 

For gauge transformations of type 1, the problem is for
mally identical to the corresponding problem in ordinary 
electromagnetism. Hence, under these transformations, one 
must have 

lJI(x,P(x»---..IJI(x,P(x» exp! - iA (x,P(x»J. (4.14) 

One may then choose the path-dependent potential in 
the specific form 

il,,(x,P(x»= r dXtAOJA,,(X' ) (4.15) 
Jp(X) 

and concentrate in the transformation properties of the 
wavefunctions under gauge transformations of type 2. 

Let us then consider two arbitrary paths P (x) and P' (x) 
with the same finite end at the point x and the same asymp
totic direction. Let us also introduce an auxiliary system C of 
parallel paths C (x') each one attached to a point x' in some 
region D containing the point x. The system C is chosen to 
have the same direction of asymptoticity as P (x) and P '(X) 
and it is required that the paths C (x') do not cut any source. 
I t is evident that if x is not a source itself, this construction is 
always possible in a sufficiently small neighborhood of the 
point x. 

One may now introduce the path-dependent function 

Ac(x,P(x» = - ~ r del''' OJ"y, (4.16) 
JIC<P) 

where ~dP) is a surface with edges in the paths P(x) and 
C (x). Its positive sense is defined by the sense of circulation 
along P (x) and it is required that the surface does not contain 
any source. 

The field strength OJ"y(x) verifies the Maxwell 
equations 

aVw"v(x) = eg;. (x) - g!,. (x), (4.17) 

where!,. and g;. are, respectively, the external electric and 
magnetic currents of the sources. According to the quantiza
tion condition, given in Zwanzinger's 13 chiral invariant form 

eg' - ge' = 21TN, (4.18) 

the source charges of OJ"y(x) must be entire multiples of21T. 
Hence a change in the surface in the definition (4.16) can 
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only change A C<x,P (x» by a multiple of21T. This multifor
mity is not important as we shall see that the final result does 
not depend of the chosen branch of Ac(x,P(x». 

One may now compute the parallel derivative of this 
function and using (4.17) and Stokes theorem it is easy to 
obtain 

A c " (x,P(x» = ill' (x,P(x» - ill' (x,C(x». (4.19) 

Hence the change of path from C (x) to P (x) may be 
considered as a gauge transformation of type 1. Then one 
must have 

lJI(x,P(x» = lJI(x,C(x» exp! - iAC<x,P(x»J. (4.20) 

This result does not depend of the specific chosen branch as 
indicated. The same result holds with P (x) replaced by P I (x) 
and one must have 

lJI(x,P'(x» = tJI(x,P{x» exp{ - iAc(x,P'(x» 

+ iAC<x,P(x» J. (4.21) 

Let us introduce a surface ~ (P,P ') with edges at P (x) 
and P t (x) and with its positive sense defined by the sense of 
circulation along P '(X). Now using the Gauss theorem and 
charge quantization it is easy to obtain 

lJI(x,P'(x» = tJI(x,P(x» 

Xexp {..!....- r del'YOJ"y} . (4.22) 
2 JI(P,P') 

It follows from this relation that the norm of the wave
function is path independent. It also follows from (4.22) a 
very useful relation between the Mandelstam and the paral
lel derivatives when acting on an electromagnetic wavefunc
tion. From the definitions (1.4) and (2.4) it immediately fol
lows that 

tJI(x + E,P,(X + E»~ = [11 + e-'a" JIJI(x,P(x», (4.23) 

lJI(x + E,PE(X + E»~ = 111 + e-'D,,) lJI(x,P(x». (4.24) 

But P, (x + €) and P E(X + €) are paths with the same 
finite end and the same asymptotic direction. Hence, using 
(4.22) one may relate the wavefunction in the two paths and 
it is easy to obtain the expression 

D", lJI(x,P(x» = {a,,,, - in", (x,P (x» J IJI (x,P (x». 
(4.25) 

In the linear space of the path-dependent wavefunc
tions, (4.22) defines a linear subspace which we shall refer 
hereafter as the electromagnetic subspace. Only the wave
functions in this subspace are acceptable to describe the 
quantum motion of the particle. An operator which leaves 
this subspace invariant will be known as physical or gauge 
invariant and only these operators are suitable to represent 
physical quantities. It follows from (4.25) that the Mandel
stam derivatives D" leave invariant the electromagnetic sub
space. Hence any operator constructed with D derivatives 
must be physical. 

According to (4.10) and (4.25) the dynamical equation 
may be written in terms of Mandelstam covariant deriva
tives. Hence a wavefunction initially electromagnetic will 
remain in the electromagnetic subspace in the course of its 
dynamical evolution. 
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The path dependence of the wavefunction is completely 
determined by (4.22). The dynamical equation may then be 
used to find the x-dependence of the wavefunction. For this 
reason this quantum formulation is in fact a description of 
the degrees of freedom associated with a point particle. 

In the case of ordinary electromagnetism, this formula
tion should reduce explicitly to the usual description in 
terms of point functions. This is indeed the case as it may be 
seen in a rather trivial way. When magnetic poles are not 
present one must have 

lU/lv(X) = eF/lv(x) = e(Av'/l (x) - A/l'v(x», (4.26) 

this relation holding everywhere except on the sources. We 
may then use this decomposition in (4.22) and use Stokes 
theorem to obtain 

1[/ (x,P '(x» exp { - ie r dx';' A;. (X')} 
)p'(X) 

= l[/(x,P(x» exp {- ie rx dx';' A;. (X')} , 
)P(X) 

for arbitrary P (x) and P '(x), 

Hence both terms must be path independent: 

l[/(x,P(x» = t/J(x) exp fie rx dx';' A;. (X')} 
)P(X) 

(4.27) 

(4.28) 

and one recovers the Mandelstam path-dependent wave
function. It is immediately seen that 

D/l l[/(x,P(x» = {(ail - ieA/l(x»t/J(x)} 

Xexp fie r dx';' A;. (X')} . (4.29) 
)P(X) 

Hence in the dynamical equation, or in any physical 
operator constructed with D derivatives, the path depen
dence of 1[/ (x,P (x» simply factors out and becomes irrele
vant. One obtains then a projected dynamical equation for 
the ordinary wavefunction t/J(x) which reproduces the usual 
quantum formulation for a particle in an external field. 

When magnetic poles are present, (4.26) cannot be valid 
globally and one must retain the general relation (4.22) to 
determine the path-dependent structure of the wavefunc
tion, but it remains true that the wavefunction continues to 
describe the degrees of freedom associated with the motion 
of a point charge. 

To close this section let us now generalize (4.22) to the 
case where P(x) andP '(x) do not have the same direction of 
asymptoticity. In this case (4.22) cannot be valid as it stands. 
Two different surfaces.I (P,P ') and.I '(P,P ') will fail to close 
in the asymptotic region since P(x) and P '(x) are no longer 
asymptotically parallel. Then a change in the surface in the 
phase factor of(4.22) will contribute by the magnetic flux at 
spatial infinity through the asymptotic hole between the two 
surfaces, If the electromagnetic field is created by a finite 
system of charges, the asymptotic field may be considered as 
generated by a point charge of total electric charge e~ and 
magnetic charge g'T' In general electromagnetism where one 
may haveg'T #0, there will be a radial magnetic field giving a 
finite contribution to the asymptotic flux. Accordingly, 
(4.22) depends on the particular surface drawn through P (x) 
and P '(x) and becomes undetermined. 

1544 J. Math. Phys,. Vol. 21. No.6. June 1980 

Under this general gauge transformation, P (x}-+P '(x), 
the wavefunction must transform to ensure the invariance of 
the electromagnetic current and of its norm. Both require
ments can be embodied into a single expression by writing 

1[/*(x,P(x»(~ + e'D/l)I[/(x,P(x» 

= 1[/*(x,P'(x»(~ + e'D/l)I[/(x,P'(x», (4.30) 

where € must be considered as an arbitrary infinitesimal dis
placement. According to (1.4) this relation is equivalent to 

1[/ *(x,P (x» 1[/ (xo,P E(XO» = 1[/ *(x,P '(x» 1[/ (xo,P e(xo», 
(4.31) 

where Xo = x + €. By iterating (4.31) it is not difficult to 
obtain the following finite relation: 

Let x and y be two arbitrary points which do not coin
cide with any source. Let P (x) and P '(x) be two arbitrary 
paths attached to the point x with asymptotic directions k/l 
and k~, respectively. Let Hey) and "'(y) be another arbi
trary couple of paths attached to the point y. It is required 
that" (y) and" '(y) be asymptotically parallel toP(x) and 
P '(x). An electromagnetic wavefunction must verify the 
relation 

1[/ (x,P (x» 1[/ *( y," '(y» 

= l[/(x,P(x»I[/*(y,"(y» 

.exp {~ r dd"v lU/lv -
2 )I (P,P ') 

~ r dd"v lU/lv } , 
2 )I(l/,fl ') 

(4.32) 

where the same cutoff curve must be used to evaluate the two 
surface integrals. 

(4.32) is the desired generalization of (4.22) to the case 
where the two paths are not asymptotically parallel. It looks 
as a duplicate version of it where factorization is not possible 
due to the asymptotic problem already discussed. It will be 
useful in the next section in discussing the properties of the 
angular momentum. 

5. ANGULAR MOMENTUM 

Let us consider some spatial pathz;(s) attached to some 
point x; = z;(O). Its asymptotic direction is given by some 
unitary vector k;. Under some infinitesimal rotation of angle 
0</1 and axis n;, the path will transform into 

z;(s) = z;(s) + O</1€;jk njzk (s). (5.1) 

Then one may introduce the differential operator 

1[/ ! z~(s) J - 1[/ ! z(s) J 
in.JI[/(x,P(x»= lim' " 

o<J>--.O 0</1 
(5,2) 

which obviously verifies the commutation relations 

! Ju-'i J = i€ijk Jk· (5.3) 

Obviously, J, is the generator of spatial rotations in the 
linear space of path-dependent wavefunctions. 

The transformation (5.1) may be divided into two parts 

z;(s) = z;(s) + O</1€ijknjXk + O</1€ijknj !Zk(S) - Xk J. (5.4) 

In the first part, the path is parallel transported to the 
rotated end point z;(O). The corresponding change in the 
wavefunction is generated by 
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L;-iEijkXjPk. (5.5) 

In the second part, the path is rotated around the finite 
end point to reach the final path. One may then introduce the 
generator 

in.OW(x,P(x» 

= lim W!Z;+o,pEijknizk-xk)}-W!Z;} , (5.6) 
{j~ o,p 

which also verifies 

!O;,OjJ =iEijkOk' 

and one has 

(5.7) 

J, = L; + 0;. (5.8) 

The L operator describes the rotational degrees offree
dom associated with the finite end. It reduces to the ordinary 
angular momentum operator when acting on a point func
tion. The ° operator takes into account the new degrees of 
freedom associated with the path itself. It has no analogue in 
the usual Hilbert space of point functions. 

Since the ° operator does not affect the end point, its 
action on an electromagnetic function must be completely 
determined by (4.32). 

Let us then consider two arbitrary points x and y and 
two arbitrary paths P (x) and II (y) attached to them. It is 
required that the paths do not cut any source and that both 
paths have the same asymptotic direction described by the 
unitary vector k;. Under an infinitesimal rotation of angle o,p 
and axis along the" j" direction the paths P (x) and II ( y) will 
transform respectively into P'(x) and ll'(y). According to 
the definition (5.6) of the ° operator one must have 

W (x,P '(x»W *( y,ll '(y» 

= !~ + io,pO;(x) - io,pO;(y)J 

X W(x,P(x»W*(y,ll(y», (5.9) 

where we have written 0; (x), ° i(y) to emphasize the wave
function on which these operators must act. 

On the other hand one may use (4.32) to relate the val
ues of the wavefunction on the four paths. The result is 

W (x,P '(x» W *( y,ll '( y» 

= ! 1+ io,pEijkxJlk(x,P(x» 

- io,pEijkyJ1dy,ll(y» 

+ iO,pA; (x,P (x» - io,pA;( y,ll (y» J 

X W (x,P (x» W *( y,ll (y», (5.10) 

where we have introduced the path-dependent function 

A;(x,P(X»=Eijk r dZm U)mj(Z)zk' (5.11) 
jP(X) 

Comparing (5.9) and (5.10) one must have 

W-1(x,P(x)H 0; (x) - EijkxJlk (x,P(x» 

- A; (x,P (x» J W(x,P(x» 

= W*-I(y,ll(y)>! ° iCy) - EijkyJlk(y,ll(y» 

- A;(y,ll(y» J W*(y,ll(y» 

= C;(k), (5.12) 

where C; (k ) must be a real constant which may only depend 
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on the common asymptotic direction of P(x) and II (y). 
Hence one must have 

O;W(x,P(x» = {EijkxJlk(x,P(x» 

+ A; (x,P(x» + C;(k)J W (x,P (x». 
(5.13) 

Since the ° operators are known to verify the commuta
tion relations (5.7) the constant C;(k) can be evaluated to 
make (5.13) compatible with them. After a tedious but 
straightforward calculation one finds 

eg'T -ge'T 
C;(k) = Jlk;. f..l= , 

417" 
(5.14) 

where e'T and g'T are respectively the total electric and mag
netic charges of the sources of the external electromagnetic 
field. 

From (5.8) and the relation (4.25) between the Mandel
starn and the parallel derivatives one may write down the 
desired restriction of the angular momentum operator to the 
electromagnetic subspace: 

J;W(x,P(x» = {EijkXi - iDk) 

f..lk; + A;(x,P(x» J W (x,P(x». (5.15) 

From this expression it follows that J; does not leave 
invariant the electromagnetic subspace unless A; is path in
dependent and this is only possible for rotationally invariant 
field strengths. Hence only in this case Ji becomes physical 
or gauge invariant. 

In the case of a static source at the origin of coordinates 
one finds 

A;(x) = (f..lx;lr) - f..lki (5.16) 

and the angular momentum becomes 

This is the well-known operator used to represent the 
angular momentum in the field of a static monopole. The 
new point is that this operator has been identified with the 
generator of spatial rotations in the linear space of the path
dependent wavefunctions while this operator cannot be asso
ciated with any coordinate transformation in the ordinary 
space of the point functions. 
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Considering the coherence properties of an inelastically scattered quantum radiation by an 
ensemble of N identical three level atoms in a solid-like array, we addressed the question whether 
this process is actually mediated by a series of multi pole interactions and/or a series of virtual 
intermediate-exciton transitions and how the type of the considered mediation is reflected in the 
higher order coherence properties of the scattered radiation. Using a projector technique the 
reduced field density operator, the atomic and field correlation functions were found, the higher 
order coherence properties were studied and the arrival-time and phase correlation conditions of 
the light quanta were obtained and analysed. The results suggest that not only the arrival-time and 
phase correlation conditions are mathematically independent from the type of the considered 
mediating process, but that the multi pole interaction approximation of a resonant Raman 
scattering, in the above considered system, is physically equivalent with the virtual intermediate
exciton transitions too. 

I. INTRODUCTION 

Higher order coherence phenomena in scattered radi
ation are a subject of considerable interest for modern opti
cal physics. Although higher order coherence effects have 
been investigated fairly extensively since the early 1960's, 
they have been mainly studied in areas such as photon statis
tics in lasers near the threshold of oscillations and in connec
tion with photoelectric detection of light fluctuations. 

Higher order photon-counting measurements per
formed on a scattered quantum radiation can yield informa
tion on the scattering medium not available with conven
tional first order experiments. The theory behind these 
experiments was developed based in part on the concepts of 
higher order optical coherence and correlations. Discrepan
cies between the experimental findings and theoretical pre
dictions point to the fact that there is a clear need for further 
refinement of the existent theory. 

The question we would like to address in this paper is: 
(a) whether a resonant Raman scattering process on a 

system of frozen or nearly frozen N identical three level 
atoms is actually mediated by a series of dipole, quadrupole, 
and multipole interactions and/or by a series of virtual inter
mediate-exciton transitions; 

(b) how this mediation is reflected in the higher order 
coherence properties of the scattered radiation, namely in 
the arrival-time and phase correlation conditions of light 
quanta. 

The basic Raman effece·2 is usually considered as an 
inelastic light-scattering process in which an incident quan
tum hVi is scattered into a quantum hvs while the difference 
in energy is absorbed (or emitted) by the material scattering 
center. In principle the excitation hv;s = h (Vi - vs ) of the 
material system may be considered a pure electronic excita
tion, a vibrational, rotational or other kind of excitation of 
the scattering center, depending on the nature of the center 
or the technique we approach the process. 3

-
8 Depending on 

the treatment and the correlations involved the coherence 

properties of the scattered quantum radiation can be investi
gated in various ways.9-12 

In three recent papers l3
-

15 the author considered the 
coherence properties of a quantum radiation inelastically 
scattered by an ensemble of N identical three level atoms. 
Considering dipole-dipole interactions in the Hamiltonian 
the atomic correlation functions were found, the higher or
der coherence properties were analyzed and the correlation 
conditions in the arrival-times and phases of light quanta 
were obtained. In the present paper the above mentioned 
investigation is intended to be expanded by considering the 
questions addressed above. 

II. THE HAMILTONIAN 

The scattering center will consist of a system of N fixed 
three level atoms at uncorrelated spatial positions-a so
called frozen or nearly frozen "dense" gas-on which some 
of the features of solids can be carried over. 16 Let II) be an 
eigenstate of the atomic Hamiltonian 

(2.1) 

where 
N 

~1/'I= IIl)(/lm' (2.2) 
m= 1 

with Ig) staying for ground state Ih ) for intermediate state 
and I f) for final state. The Hamiltonian of the field-the 
incident coherent radiation-is 

(2.3) 

where 

where the interaction between the field and atomic system 
will depend on the type of mediation considered. 
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Single-photon interactions of atoms and molecules at 
optical or even ultraviolet frequencies are adequately de
scribed in the dipole-dipole approximation. Basically, this 
stems from the fact that the atomic dimensions are much 
smaller than the wavelength of optical radiation. It was 
shown recentlyl7.18 that for certain ranges of photon fre
quencies contributions from electric quadrupole transitions 
will be larger than the corresponding dipole contributions. 
This will occur when the photon frequency is approximately 
equal to the energy difference between two states connected 
with a quadrupole transition. 17 In most cases quadrupole 
resonances occur at frequencies around which the pure di
pole contributions is near a minimum. As a result, quadru
pole contributions will often exceed the pure dipole ones by 
several order of magnitude. 

In this case the interaction part of the Hamiltonian of 
the atomic system + field is 

( e ~ - (e2 )x2 V= - - -·A (r) + -- (r). 
me 2me2 

(2.4) 

Power and Zienau 19 have shown that the interaction V, in all 
its generality, can be written in terms of multi pole expansion 

V=="V D + VQ + ... - er.E(O) -!e 2: Qa/3 V{3Ea(O) + ''', 
a{3 

(2.5) 

where 

Qu{3 = xa x{3 -!rc5a{3' a,/3 = 1,2,3, (2.6) 

is the quadrupole dyadic. 
The contribution of the first term in (2.5) to the higher 

order coherence properties of the scattered radiation was 
analyzed in Refs. 13, 14, 15. It is well known20 that 
V D = - er.E(O) can be written in second quantized form. 

where 

(

OJ )1/2 " - ~,,) J1hJ = --- J1hJ·e , 
21i€g V 

(2.8) 

with 

PhJ = (h lerj f) = (h Id I f) (2.9) 

being the dipole matrix element between the atomic states 
Ih ) and I f) and eK

) the electric field polarization vector. All 
the other notations are self-evident. 

To write VQ in a suitable second quantized form we first 
apply the V {3 operator in (2.5) on the a component of the 
electric field, than taking into account the double summa
tion, collect the corresponding terms and we have 

(2.10) 

which is identical with Birman's decomposition of the multi
pole term into a symmetrical quadrupole 
!k.(rp + pr)'E, 17terms and an antisymmetrical magnetic di
pole term, if only we label 
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(2.11 ) 

as the a component of the Q(K) vector and take its scalar 
product with e;). In the interaction picutre (I.P.) 

(2.12) 

and using the completeness relation 

1= 2: Ij)(jl (2.13) 
j 

twice, we have 

Q(t) = I Qjllj)(ll/Wj/t, (2.14) 
Nd 

where 

QjI = (jIQll) (2.15) 

is the quadrupole matrix element between the atomic states 
I j) and II ) and OJ jl = OJ j - OJ I' (2.14) and (2.10) leads imme
diatley to the quadrupole term ofthe interaction Hamilton
ian 

VQ(t)= II I IlQjl[aK+(t)lj)(llm +a,,(t)II)(jlm]' 
" m 1 "i'j 

(2.16) 

where 

a
K 
(t ) = a" (O)e - i(w, - W jI)t, 

(2.17) 

a,,+(t) = a,,+(O)/(w,-WjI)t. 

Thus (2.5) has the suitable form 

V(t) = I I I 1l[(iJ1 jI + QjI)a,,+ (t)lJ) (I 1m 
K m I"i'j 

- (iPIj - QIj)aK(t)ll) (jIm ] 
(2.18) 

and the Hamiltonian of the mUltipole interaction mediated 
resonant Raman process will be 

H=Ho+H', (2.19) 

with 

Ho=HA +HF' (2.20) 

from (2.1) and (2.3), and 

H'= V, (2.21) 

from (2.18). 
However, in the Raman effect, when a photon is scat

tered producing a change in the vibrational state of the atom
ic system the virtual intermediate states involve the excita
tion of the electrons and this intermediate states can be 
considered as exciton states. Let assume therefore that the 
Raman scattering by phonons is an inelastic process mediat
ed by virtual intermediate-exciton transitions.17 

The material scattering center will be the same system 
of N fixed three level atoms as above, the atomic Hamilton
ian being (2.1) with (2.2). The Hamiltonian of the field-the 
incident coherent radiation-is given by (2.3) and the exci
ton Hamiltonian representing the so-called weak-binding 
Wannier-Mott model will be given as4 
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with 

Hex = L £vx(j,l)b v1(j,/)bvx (j,l), 
j'1'l 
vx 

b -+:. = ff 1/2" ~v."" C + C _ = ~ ~ ~ ~E-x 
k k 

the exciton creation, and 

b - = ff- 1/2" eivEC + -c vx ~ I.E-x JE 
k 

(2.22) 

(2.23) 

(2.24) 

the annihilation operators obeying "almost" boson commu
tation relations22 

[b - b + ] = 8 ,8--, o( no.of.el-hole pairs) 
vx' v'x vv xx + ff . 

(2.25) 

The excitons having inner quantum number v and wave vec
tor X are formed from thej -I"bands". This is to say that we 
consider the electrons as being represented in Wannier exci
ton representation. The operator CI•E _ x will destr~y an elec
tron (creates a hole) in band 1 with wave vector k - x and 
similarly C 1- creates an electron in bandj with wave vector _ J 

k. Thus an exciton state is given alternately by 

1JIj/(kjZ -xh ) = C /i:,CI,k-x/PO' (2,26) 

with <Po being our vacuum state. The C /1< and CIX _ x obey 
the usual anticommutation relations. 

This noninteracting boson approximation is correct as 
long as the exciton density does not become too high. It is 
only overlaps and interactions which make excitons fail to 
behave as independent bosons. 

In these assumptions-for the exciton mediated Raman 
process-the interaction part of the Hamiltonian for the 
above described atomic system + field is 

V = VI + V 2
, (2.27) 

where V I is linear in both exciton and photon operators and 
V 2 is linear in photon and bilinear in exciton operators4 

V 1= L L L [Vii(/,j,X)b v~(/,j)aii8x,ii 
I¥- j vx K 

+ ft(/,j,X)b vx (/,J)aK 8x, - ii} 

- Vt(/,j,X)bvx(/,J)a/ 8x,ii 

+ fii(/,j,X)b v~(/,j)a/ 8x, _ ii}]' (2.28) 

V 2 

= L L L [{Fii(/,j,x,!'J',x')b v1(/,J)byx,(/',j')aii8x-x',ii 
I #-j vx Ii 

['=1=-/ v'x' 

+ Ft(/,j,x,1 ',j',x')bvx(/,J)b y~' (1',j')a ii8x - x', - ii} 

{F*(I . -I' ., -')b (I ;\b -+:. (I' ;\ -+ £- -,-- K ,j,X, ,j ,x vx ,il vx' ,1,QK UX_X,K 

+ Fii(/,j,x,l ',j',x')b v~(/,J)b vx' (I ',J)a/ 8x -x', - ii}]' 
(2.29) 

with the coupling parametersfii and Fii extensively analyzed 
in Ref. 4: 

fAI,j,X)- - v( 2~K V }12 Utj,AO)UIe<K).dll), 
g 

• - , ., -, _ 1 K 

(

UJ )1/2 
FAI,J,x,1 ,J ,x )= - 21 2fzE

g 

V 
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[
" U* ({3-)U ({3-) -i(X-X'),P( 'I~K)d-1 ")£ X "7t I,j,x I',j',x' e J e . J ull' 

- ~ Utj,x(iJ)UI',j',x(P)(1 je<K).dll')811']' (2.30) 

The wavefunction for the relative motion of the electron and 
hole is UI,j,x( 11) with pbeing the electron-hole separation. 
Ganguly and Birman4 shows that Fii vanishes if simulta
neously j = j' and I = I'. In interaction picture 

V(t)= VI(t)+ V2(t) = eilfi(Hr+HA+H")'(VI + V2) 

Xe - ilfi(Hr+ H, + H,.)' (2.31) 

and using the completeness relation (2.13) twice we have 

V(t) = L L L L ([Gm(/ ,J)Il)Ulmaii(t) 
I #-j vx if m 

/'#/ v'x' 

- Gm(j,l)Ij)(/lma/(t)] 

+ [.9J m(/,J)Il)Ulmaii(t) 

- .9J m(j,!)Ij)(/lmaii+(t)]}, 

where 

with 

Gm(/ ,J) = G ::t: (/,J)m + G+(/ ,J)m' 

G (j,!)m = G-(j,l)m + G ! (j,!)m' 

.9J m (/,J) = .9J ::t: (/,j)m + .9J +(/,J)m' 

.9J m(j,l) = .9J -(j,l)m + .9J! (j,l)m' 

G ::t: (/,J)m = (llfiiei(w, - W')'bvx 8x,ii I j) m' 

G + ( . I) ( '1 r i(w, + w')'b + £ II ) + j, m = JIJj(e yX-Ux-. -if m' 

G (1;\ = (/lf'!' - i(w, + (U,,J'b -8- -I') 
+ ,jJm K e vx X.-K ] m' 

G ( . I) = (/lf'!' - i(w, - w')'b -8- -II) - j, m K e vx X,K m' 

(2.32) 

(2.33a) 

(2.33b) 

(2.34a) 

U3 + ('1) = ( 'IF- i(w,-w,,+w')'b -+:.b ,-,£- -, -II) u + j, m ] K e vx vxUx-x,-,.· m' 
(2.34b) 

U3 (1;\ = (I IF '!' - i«u, - w, + w,J'b -b ~-, 8- -, -I J') 
0.7+ ,JIm K e vx vx X-X,-K m' 

.9J-(j'!)m = UlFte-i(W,-w,-(U')'byxbv:x,8x_x,iill)m' 

and because the Kronecker symbols in (2.34), the photon 
creation and annihilation operators will have only UJ)I in the 
exponent of (2.17). Thus (2.27) has the suitable form 

V(t)= - L L LL[(G(j/)m + .9J(j/)m)a/(t)Ij)(/lm 
I¥- j l',X K m 

1''1'/ v',x' 
- (G(/J)m + .9J(IJ)m)aii(t)il)Ulm] (2.35) 

and the Hamiltonian of the exciton mediated resonant Ra
man process will be 

H=Ho+HI, 

with 

Ho=HA +HF + Hex' 

from (2.1), (2.2), (2.3), (2.22), and 

H' = V(t), 

from (2.35). 
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III. TIME AND PHASE CORRELATION CONDITIONS 

The question whether an initially coherent radiation 
preserves its coherence in the Glauber sensei I, 12 (and if so, to 
what order) after being inelastically scattered by an atomic 
ensemble was studied in three recent papers l3

-
15 assuming a 

dipole-dipole interaction among the atoms, Using the pro
jection technique the reduced field density operator was 
found, and with it the first and higher order field correlation 
functions were computed, It was proved that the inelastical
ly scattered radiation is for the most part incoherent in any 
order at any time interval after collision, except some specif
ic time intervals and positions, where the coherence is pre
served, the order of coherence being determined by the 
atomic correlations considered, The time and phase correla
tion conditions were given and analyzed. 

Let's consider at first the extension of these consider
ations for the multi pole interactions among the atoms in the 
scattering center and later considering the virtual intermedi
ate-exciton transitions too. 

The necessary and sufficient conditions for coherence 
in the above mentioned sense are connected with some prop
erties-namely normalization and factorization proper
ties-of the jth order field corelation functions 

G (J)(X I ,. ... X 2j ) = Tr{pE( - )(xl) ... E (-)(x j)E (+'(x j + 1 ) 

... E(+)(x2)}. (3.1) 

where x j = (rj;t ) and E (- '(x j); E (+ '(x j) are the negative 
and positive frequency parts of E (rj;t j) respectively, whilep 
is the density operator of the whole system in Heisenberg 
representation. p(t ) satisfies the equation 

.¥. ap(t) _ GYP ( ) 1,,-- -cfl pt. 
at 

(3.2) 

where d7'" is the Liouville operator for the Hamiltonian given 
in (2.19). The reduced field density operator-which is the 
only relevant in our problem-can be found more easily in 
the interaction picture where (3.2) takes the form 

if! aX (t) = YX (t). 
at 

(3.3) 

with Y the Liouville operator for the time-dependent interac
tion operator (2.18). and the reduced field density operator is 

a (t) = TrAx (t). (3.4) 

The TrA meaning that the trace is applied over the atomic 
ensemble only. We can write the density operator of the 
whole system in (I.P) as 

X (t) = f(HA)a (t) + 77(t). (3.5) 

where 

(3.6) 

and 

77(t) = §X(t), (3.7) 

with § = §2 = [1 - f(HA )TrA ]. a projector in the opera-
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tor space of the entire system. 
Then the equation of motion for a (t ) is 14 

da(t) 

dt 
- i TrA y!(HA)a (t) 

-TrAY So' drexp[ -i§yrj§y!(HA)a(r). 

(3.8) 

which is a non-Markoffian equation valid for all times and 
for any orders in V (t ). and has in the second term on the 
right-hand side a generalized collision operator containing 
the memory of the system. 

Maintaining the second order terms in V (t ) for the colli
sion operator. after performing the indicated integrals. we 
have for the reduced density operator 

da (t) 
----;;;- = I [B'[aKa(t)aK+ -aK+a"a(t)] 

" 
+ F' [a/ a (t )aK - aKa/ a (t)] J, (3.9) 

with 

B' = f!2( IlhJ Il Jh - QhJ Q Jh )21Tg(W,,)(g,h), 
F' = f!2(llhJIlJh - QhJQ Jh)21Tg(W,,)(g'!), (3.10) 

whereg(w,,) is a weigh function20 and (g. h ). (gJ) the atomic 
correlation functions 

ffe - flE" [e - flE, + e - fl-" + e - flEJ 11 -I 

(g,h) = • (3.11) 
TrA [exp( - PHA)] 

while (gJ) the same expression having €h interchanged with 
€ J' The numerical values of these functions can be easily 
obtained by a relatively simply computer program for any 
desired value of ff. The solution of (3.9) is given in Ref. 14 

a (aK,aK+ .t) = II ~ Ie - (F'/4)k 'Ie - [(B' - F')/F'[u,;<l,,' 

f! K 

XJO [k(aKa/)IJ2], (3.12) 

withk 2 =2(nx +ny);nX,n y =O.I.2···and 
J 0 [k (aKa/ )IJ2] the zeroth order Bessel functions. 

Inserting (3.12) into (3.1) we can compute the normal
ized field correlation functions 

I 
(~ G(})(x l ,; ... ;X2 ) 

g J (x l ; ... ;x2 )1 = -2 -. ___ --=.:C...-_, 

IT [G{j\x l ;xal I/2 
(3.13) 

i= 1 

obtaining 
k' 

() --F'I(t",+ .. ·+t,,l-3(t,+ ... +t,l1 
g J (x l ; ... ;X2j ) = 2: Ie 8 

k- n 

Xe-(cp,·, +"'+CP'J-CP'-"'-cP') 

X n(n + 1) .. -(n + j + 1) 

(3.14) 

The necessary and sufficient conditions for coherence in the 
Glauber's sensei I are related to the unit absolute magnitude 
of the normalized correlation functions 

Ig(})1 = 1, (3.15) 

and to the factorization property of 
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(3.16) 

with 'l? (x j) being complex functions. 

From (3.10), (3.11), (3.13), and (3.14) one can immedi
ately conclude '3 that the Glauber conditions (3.15), (3.16) 
are fulfilled if 

(t j+' + ... + t2 ) = 3(t, + ... + t) 

and (3.17) 

(cp j +, + ... + CP2) = (CPI + ... + cp) 

because B ' ex: F' and with increasing values of n the second 
part of(3.14) always tends to unity. 15 

The arrival-time and phase conditions (3.17) thus as
sure that in some specific space-time points the scattered 
radiation maintains its coherence to a degree which depends 
entirely on the considered atomic correlations. 

Let us consider now the case when the Raman process is 
mediated by virtual intermediate-exciton transitions. 

The Hamiltonian for (3.2) of the radiation + scattering 
center is given in (2.36) while the interaction Hamiltonian 
has the form 

H' = V(t) 

= - I I II [G(j,l,j',l',m)ait(tW)(llm 
l-=/=j v,x if m 

- G(I,/}',j',m)aiC(t)ll) (jIm ], (3.18) 

where 

G(j,l,j',l',m) = Gm(j,l) + ~ m(j,/) 

and (3.19) 

G(/,j,l',j',m) = Gm(/,J) + ~ m(/,J) 

are given by (2.33) and (2.34), respectively. 
Inserting (3.18) into (3.8) we found 

( 
B"-F" + [ + 1t2]) Xexp - F" aiCaiC fo k(ajKajK ) , 

with 

B" = ~ (FiCFt - fdt)21Tg(wK)(g,h), 
ff 

F" = ~ (FiCFt - fdt)21Tg(w K )(g,f), 
ff 

(3.20) 

(3.21) 

wherefiC(/,j,X) and FiC(l,j,x,l ',j',x') are given in (2.30) and 
(g, h), (g,f)in(3.11). BeingagainB" ex: F" the necessary and 
sufficient conditions for higher order coherence in Glauber's 
sense yield the same arrival-time and phase relations (3.17) 
as above in the sense when the multipole interactions were 
considered as mediating the Raman process. This suggests 
the conclusion that the arrival-time and phase conditions 
(3.17) are independent of the type of mediation, either multi
pole interactions, and/or virtual intermediate exciton transi
tions are considered. 
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IV. MULTIPOLES VERSUS EXCITONS 

The complete mathematical independence of the arri
val-time and phase correlation conditions (3.17) from the 
type of the mediating process in the above considered Ra
man scattering, further suggests a possible physical analogy 
between the multipole-multipole interactions and virtual in
termediate exciton transitions. 

Let us look more closely to these effects and find the 
answer to our first addressed question: Whether a resonant 
Raman scattering process on a system of frozen or nearly 
frozen N identical three level atoms is actually mediated by a 
series of dipole, quadrupole and multi pole interactions 
and/or by a series of virtual intermediate exciton transitions. 
The considered dipole-dipole, dipole-quadrupole and qua
drupole-quadrupole interactions (we did not go further in 
the multi pole expansion, but the extrapolation of the results 
is straight forward) can be written in the form 

iiJ+Q=II I (if1jl+Qjl)m(if1,j-Q')m" (4.1) 
K m,m' I #j 

/'",/ 

withf1 j/ and Qjl being the dipole, respectively, quadrupole 
matrix-element between the atomic energy states I j) and II) 
multiplied by the field polarization vector e(K) as defined by 
(2.8), (2.9), and (2.15). 

The (4.1) expressions are the only nonzero coefficients 
of the generalized collision operator in the second term on 
the right-hand side of the equation of motion (3.8) up to 
second order in V (t ) (2.18). Expanding (4.1) in terms of (2. 9) 
and (2.15), using the completeness relation (2.13) and the 
fact that I j) m = I j) m' (the scattering system being formed 
from N identical atoms), we have 

(4.2) 
m,m' 

with 

(4.3) 

It is worthwhile mentioning that (4.2) is a pure dipole-di
pole, quadrupole-quadrupole coupling and the mixed di
pole-quadrupole term is missing. This is significant if one 
remembers that the quadrupole moment is the measure of 
the ellipticity of the charge-distribution, an egg-shaped dis
tribution having positive Q, while a saucer shaped a negative 
one. 

Turning our attention now toward the virtual interme
diate-exciton transitions one can easily find that the only 
nonzero coefficients of the generalized collision operator in 
the second term on the right-hand side of (3.8) up to the 
second order in V(t) (2.35) are 

G + f1 = I I I I [Gm(j/) + f1 m(j/)] 
I ¥ j m v,.i K 

/'*/ m' v'J" 

X [Gm,(/j) + f1 m '(/J)]· (4.4) 

Expanding (4.4) in terms of(2.33) and (2.34) taking into 
account the Kronecker symbols and using the completeness 
relations (2.13) we have 
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G+ Y = I III (jlliJtb/bj( 
I#jm v,x K 

m' 

+ I j( I j(b / b ~ j( + It Itb ~ j(bj( 

+ Itlj(b~j(b ~j( 
+ F j( Ftb ,t bX+j(bxb /+j( 
+ F j( F j(b x+ bx + j(b / bx ~ j( 

+ F t F tbxb x+~ j(bxb x++ j( 

+ FtFj(bxbLj(b/bx~j(lj). (4.5) 

Inserting (2.23) and (2.24) into (4.5) and applying the anit
commutation relations for C jk; C Ito, 

I C jk ,clto , I. =OjIOkk" {Cjk,C lk ' I. =0, 
ICtk'Clto,}.=O, (4.6) 

we have 

(4.7) 

with 1m = l:K (f K)m and F m = l:K (FK)m' All the other 
terms vanish. Inserting (2.30) into (4.7) and carrying on the 
trace, we obtain 

Q+ Y ex§) + Q, (4.8) 

once this later is expanded in terms of (2.11). 
This result suggests the conclusion that the multi pole 

approximation of a resonant Raman process in the case of a 
scattering center made up from N identical three level atoms 
in a quasisolid like array is equivalent with the virtual inter
mediate-exciton approach. 

V. CONCLUSION 

Considering the coherence properties of an inelastically 
scattered quantum radiation by an ansemb1e of N identical 
three level atoms in a solid-like array we addressed the ques
tion whether this process is actually mediated by a series of 
multipole interactions and/or by a series of virtual interme-
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diate-exciton transitions and how the type of the considered 
mediation is reflected in the higher order coherence proper
ties of the scattered radiation. 

Using a projector technique the reduced field density 
operator, the atomic and field correlation functions were 
found, the higher order coherence properties were studied 
and the arrival-time and phase correlation conditions of the 
light quanta were obtained and analyzed. 

The results suggests that not only the arrival-time and 
phase correlation conditions are mathematically indepen
dent from the kind of considered mediating process, but that 
the multipole interaction approximation of a resonant Ra
man scattering in the above considered system is physically 
equivalent with the virtual intermediate-exciton transitions 
too. 
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ERRATA 

Erratum: Linearization stability and a globally singular change of variables 
[J. Math. Phys. 21, 15 (1980)] 

Judith M. Arms 
Department of Mathematics and Department of Physics University of Utah, Salt Lake City, Utah 84112 

(Received 8 February 1980; accepted for publication 8 February 1980) 

The title should be amended to read as above, with 
"change" substituting for "gange", which appeared in the 

heading in the January 1980 issue of the Journal of Math
ematical Physics. 

Erratum: Rigid body motions, space curves, prolongation structures, fiber 
bundles, and solitons 
[J. Math. Phys. 20, 1667 (1979)] 

M. Lakshmanan 
Department of Physics, University of Madras, Post-Graduate Center, Tiruchirapalli:-620 020, Tamilnadu, 
India 

(Received 5 February 1980; accepted for publication 22 February 1980) 

In Eq. (31 b), the suffixes have got mixed up. The cor
rect form of this equations is as follows: 

In Eq. (32), the lowermost element inside the last 
square bracket on the right-hand side should be + U)2' 

Erratum: Classification of gauge fields 
[J. Math. Phys. 20, 2605 (1979)] 

Yongmin Cho 
Max-Planck-Institutfiir Physik und Astrophysik, Mu'nchen, West Germany 

(Received 19 February 1980; accepted for publication 29 February 1980) 

In Table I, on page 2608, three arrows are missing 
which should point from IV to II, from III to II, and from III 
to I. 

1552 J. Math. Phys. 21 (6), June 1980 0022-2488/80/061552-01 $0.00 @ 1980 American Institute of PhySiCS 1552 


	JMP, Volume 21, Issue 06, Page 1269
	JMP, Volume 21, Issue 06, Page 1277
	JMP, Volume 21, Issue 06, Page 1284
	JMP, Volume 21, Issue 06, Page 1293
	JMP, Volume 21, Issue 06, Page 1299
	JMP, Volume 21, Issue 06, Page 1312
	JMP, Volume 21, Issue 06, Page 1318
	JMP, Volume 21, Issue 06, Page 1326
	JMP, Volume 21, Issue 06, Page 1332
	JMP, Volume 21, Issue 06, Page 1336
	JMP, Volume 21, Issue 06, Page 1340
	JMP, Volume 21, Issue 06, Page 1352
	JMP, Volume 21, Issue 06, Page 1366
	JMP, Volume 21, Issue 06, Page 1370
	JMP, Volume 21, Issue 06, Page 1372
	JMP, Volume 21, Issue 06, Page 1377
	JMP, Volume 21, Issue 06, Page 1390
	JMP, Volume 21, Issue 06, Page 1393
	JMP, Volume 21, Issue 06, Page 1408
	JMP, Volume 21, Issue 06, Page 1416
	JMP, Volume 21, Issue 06, Page 1418
	JMP, Volume 21, Issue 06, Page 1423
	JMP, Volume 21, Issue 06, Page 1432
	JMP, Volume 21, Issue 06, Page 1439
	JMP, Volume 21, Issue 06, Page 1442
	JMP, Volume 21, Issue 06, Page 1449
	JMP, Volume 21, Issue 06, Page 1455
	JMP, Volume 21, Issue 06, Page 1460
	JMP, Volume 21, Issue 06, Page 1465
	JMP, Volume 21, Issue 06, Page 1473
	JMP, Volume 21, Issue 06, Page 1495
	JMP, Volume 21, Issue 06, Page 1506
	JMP, Volume 21, Issue 06, Page 1513
	JMP, Volume 21, Issue 06, Page 1521
	JMP, Volume 21, Issue 06, Page 1533
	JMP, Volume 21, Issue 06, Page 1539
	JMP, Volume 21, Issue 06, Page 1546
	JMP, Volume 21, Issue 06, Page 1552

